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Two Well-Known Problems

SAT: is a given propositional formula in CNF satisfiable?

F = (¬x ∨ y ∨ ¬z) ∧ (x ∨ y ∨ ¬z) ∧ (¬x ∨ ¬y ∨ z)

Linear Equations: does a given system of linear equations

have a solution in the fixed field K?














2x+ 2y + 3z = 1

3x− 2y − 2z = 0

5x− y + 10z = 2
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The Constraint Satisfaction Problem

CSP

Instance: (V,D,C) where

• V is a finite set of variables

• D is a set of values (aka domain)

• C is a finite set of constraints {C1, . . . , Cq}

– each constraint Ci is a pair (si, Ri) with

∗ scope si - a list of variables of length mi,

∗ relation Ri - an mi-ary relation over D

Question: Is there f : V → D s.t. f(si) ∈ Ri for all i?

Can ask to find such an f too.
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Some Real-World Examples of CSPs

• Solving a Sudoku puzzle

• Drawing up timetable for a conference

• Choosing frequencies for a mobile-phone network

• Fitting a protein structure to measurements

• Laying out components on a circuit board

• Finding a DNA sequence from a set of contigs

• Scheduling a construction project
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Outline of the Course

1. The CSP and its forms

• Examples of CSPs from

– Logic

– Algebra

– Graph Theory

– AI

• Complexity Issues

2. Computational questions

• What questions do we ask about CSPs?

3. Mathematical techniques

• What maths do we use to analyse those questions?
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Relational Structures

A signature τ is

• a finite sequence (R1, . . . , Rk) of relation symbols

• each Ri has an associated arity ar(Ri).

A relational structure of signature τ (or τ -structure) is

• a tuple A = (A;RA
1 , . . . , R

A
k ) where

– A is a set called the universe of A

– each RA
i is a relation on A of arity ar(Ri)

If τ = {E} and ar(E) = 2 then τ -structures are digraphs.
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CSP in Logical Setting

CSP

Instance: A τ -structure B and a formula ∃x1 . . . ∃xnϕ

where ϕ(x1, . . . , xn) = Ri1(s1) ∧ . . . ∧ Riq(sq).

Question: Does B satisfy ϕ?

The si’s = constraint scopes si

Predicates RB
i = constraint relations Ri

In Database Theory, Conjunctive-Query Evaluation
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Exercise

Let B = ({0, 1, 2};E) where E = {(0, 1), (1, 2), (2, 0)}.

Let ϕ1 = E(x0, x1) ∧ E(x1, x2) ∧ E(x2, x3) ∧ E(x3, x0).

Let ϕ2 = E(x0, x1) ∧ E(x1, x2) ∧ E(x2, x3) ∧ E(x3, x1).

Does B satisfy ∃x0 . . . ∃x3ϕ1? Does it satisfy ∃x0 . . . ∃x3ϕ2?
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CSP in Combinatorial Setting

CSP

Instance: Two τ -structures, A and B

Question: Is there a homomorphism h : A → B?

∀i [(a1, . . . , ani
) ∈ RA

i =⇒ (h(a1), . . . , h(ani
)) ∈ RB

i ]

• Think of elements in A as of variables.

Tuples in relations in A = constraint scopes si.

• Think of elements in B are values.

Relations in B = constraint relations Ri.
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Exercise

a

bc

?

?
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Example: 2-Sat in Hom Form

Let RB
ab = {0, 1}2 \ {(a, b)} and B = ({0, 1};RB

00, R
B
01, R

B
11).

An instance of 2-Sat, say

F = (¬x ∨ ¬z) ∧ (x ∨ y) ∧ (y ∨ ¬z) ∧ (u ∨ x) ∧ (x ∨ ¬u) . . .

becomes a structure A with base set {x, y, z, u, . . .} and

RA
00 = {(x, y), (u, x), . . .}

RA
01 = {(y, z), (x, u), . . .}

RA
11 = {(x, z), . . .}

Then h : A → B iff h is a satisfying assignment for F .
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Recap: 3 Forms of CSP

• Variable-value (AI, Algebra)

Given finite sets A (variables), B (values), and a set of

constraints {(s1, R1), . . . , (sq, Rq)} over A, is there

a function ϕ : A → B such that ϕ(si) ∈ Ri for all i?

• Satisfiability (Logic, Databases)

Given a finite structure (or database) B and a ∃∧-FO

sentence (or conjunctive query) ϕ, does B satisfy ϕ?

• Homomorphism (Logic, Graph Theory)

Given two similar relational structures,

A = (A; RA
1 , . . . , R

A
k ) and B = (B; RB

1 , . . . , R
B
k ),

is there a homomorphism h : A → B?
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Representation Issues

When speaking about algorithms/complexity

• for finite domains, will usually assume that relations

are given explicitly, by full list of tuples;

• for infinite domains, need to

– fix the domain in advance,

– give relations in some finite form.
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Propositional Satisfiability

Important fragments of Sat:

• 2-Sat — clauses with at most 2 var’s tractable

• Horn k-Sat — clauses (¬x1 ∨ . . . ∨ ¬xn),

(¬x1 ∨ . . . ∨ ¬xn ∨ xn+1), and (x) tractable

• 1-in-3-Sat — one constraint type

{(1, 0, 0), (0, 1, 0), (0, 0, 1)} NP-complete

• Not-All-Equal-Sat — one constraint type

{0, 1}3 \ {(0, 0, 0), (1, 1, 1)} NP-complete



Andrei Krokhin - Intro into Maths of CSP 15

Equations over Groups

A group is an algebra (G; ·,−1, 1) such that 1 · x = x · 1,

x · (y · z) = (x · y) · z, and x · x−1 = x−1 · x = 1

System of equations over a finite group G (Eq∗G):














a1x11 · · · amx1mam+1 = 1

. . .

b1xn1 · · · bmxnmbm+1 = 1

Can replace xyz . . . = 1 by xy = x′ and x′z . . . = 1.

Theorem 1 (Goldmann, Russell ’2002)

The problem Eq∗G is tractable if G is Abelian and

NP-complete otherwise.
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Equations over Semigroups

A semigroup is an algebra (G; ·) with x · (y · z) = (x · y) · z.

System of equations over a finite semigroup S (Eq∗S):

can assume all equations of the form u · v = w where each

of u, v, w is either a constant or a variable.

Theorem 2 (Klima,Tesson,Thérien’2005)

Assume that S is a monoid (has 1). If S is commutative

and is the union of its subgroups then the problem Eq∗S is

tractable. Otherwise it is NP-complete.

No full answer for general semigroups yet ...
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Equations over Algebras

A finite algebra is a tuple A = (A; f1, . . . , fk) where each fi

is an operation fi : A
ni → A.

Can consider systems of equations over A.

By the same trick, assume all equations are of the form

fi(u1, . . . , uni
) = w where each of u1, . . . , uni

, w is either a

constant or variable.

Interesting work by Larose,Zádori’06 and Zádori’07+’11 –

classification for large classes of algebras.
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Colourability

k-Colourability

Instance: A graph G = (V,G) and a number k.

Question: Is there a colouring of V in k colours such

that adjacent vertices are different colour?

• Equivalent to CSP instance (G,Kk), in hom form.

Indeed a required colouring is a homomorphism

G → Kk

• tractable for k ≤ 2, NP-complete for k ≥ 3.
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List Colourability

List k-Colourability

Instance: A graph G = (V,G), a number k, and a list Lv

of allowed colours for each v ∈ V .

Question: Is there a k-colouring of G such that each

vertex gets an allowed colour?

• Equivalent to CSP instance (A,B), in hom form

– B = ({1, . . . , k}; 6=k, L1, . . . , L2k) where L1, . . . , L2k

is a fixed enumeration of subsets of {1, . . . , k}.

– A = (V ;E,U1, . . . , U2k) where each Ui consists of

vertices whose list is Li.
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Clique

Clique

Instance: A graph G and a number k.

Question: Does G contain a k-clique, i.e. k pairwise

adjacent vertices?

• Equivalent to CSP instance (Kk, G) in hom form.

Indeed, G has a k-clique iff Kk → G.

• NP-complete
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Hamiltonian Circuit

Hamiltonian Circuit

Instance: A graph G = (V,G).

Question: Is there a cyclic ordering of V such that every

pair of successive nodes in the ordering are

adjacent in G?

• Equivalent to CSP instance (A,B) in hom form where

– A = (V ;CV , 6=V ), CV is a cyclic permutation on V ,

– B = (V ;E, 6=V )

• NP-complete
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Graph Isomorphism

Graph Isomorphism

Instance: Two graphs G1 = (V,E1) and G2 = (V,E2).

Question: Is there an isomorphism (bijective

homomorphism) from G1 to G2?

• Equivalent to CSP instance (A,B) in hom form where

– A = (V ;E1, E1) and B = (V ;E2, E2)

– here Ei = {(u, v) ∈ V 2 | (u, v) 6∈ Ei and u 6= v}

• not known to be tractable or NP-complete

• main candidate for NP-intermediate
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Directed st-Reachability

Directed st-Reachability

Instance: A digraph G = (V,E) and two nodes s, t in it.

Question: Is there a directed path from s to t in G?

• Essentially equivalent to the complement of (A,B)

• A = (V ;E, {s}, {t}) and B = ({0, 1},≤, {1}, {0}).

• tractable, NL-complete.
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Graph Factors

Let G be a graph.

• A factor of G is a subgraph obtained by deleting edges.

• If X is a set of numbers, an X-factor of G is a factor

such that the degree of each vertex belongs to X.

• What are 1-factors of a graph?

• What are 2-factors? {1, 2}-factors?

• Large subarea of graph theory.

• Recent result: if r is odd and k even with 2 ≤ k < r/2

then each r-regular graph has a {k, r − k}-factor.

• Open: does every 5-regular graph have a {1, 4}-factor?
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Factors in Regular Graphs

Let G = (V,E) be r-regular and let X ⊆ {0, 1, . . . , r}.

Let RX = {a ∈ {0, 1}r | weight(a) ∈ X}.

Consider the following CSP instance I = (V ′, D′, C ′):

• V ′ = E, D′ = {0, 1}, and C ′ = {Cv | v ∈ V };

• each Cv = ((e1, . . . , er), RX) where e1, . . . , er are the

edges incident to v.

Fact. G has an X-factor iff I has a solution.

Fact. There is a 1-1 correspondence between X-factors in

r-regular graphs and solutions of Boolean CSP instances

that use only relation RX and each variable appears twice.
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Vertex Cover

Vertex Cover

Instance: A graph G = (V,E) and a number k.

Question: Is there a subset V ′ ⊆ V such that |V ′| ≤ k

and, for each (a, b) ∈ E, we have a ∈ V ′ or b ∈ V ′?

• Equivalent to CSP instance (V, {0, 1}, C),

• C = {u ∨ v | (u, v) ∈ E},

• additionally: want only solutions with k ones.

• NP-complete
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Independent Set

Independent Set

Instance: A graph G = (V,E) and a number k.

Question: Is there a subset V ′ ⊆ V such that |V ′| ≥ k

and (V ′)2 ∩ E = ∅?

• Equivalent to CSP instance (V, {0, 1}, C),

• C = {¬u ∨ ¬v | (u, v) ∈ E},

• additionally: want only solutions with k ones.

• NP-complete
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Parameterized Complexity in One Slide

• Both Vertex Cover and Independent Set can be

solved in O(nk) by exhaustive search.

• Vertex Cover can be solved in O(2k · n2) — good

• O(f(k) · nc) algorithm — fixed-parameter tractable

(FPT)

• W[1] — parameterized analog of NP (kind of)

• Ind Set is W[1]-complete — no(k) algorithm unlikely.
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Biclique

Biclique

Instance: A graph G = (V,E) and a number k.

Question: Does G contain an induced subgraph

isomorphic to Kk,k (bipartite k-clique)?

• NP-complete. Open problem: Is it FPT?

• Equivalent to CSP instance (V, {0, 1, 2}, C)

• where C = {C ′

(u,v) | (u, v) ∈ E} ∪ {C ′′

(u,v) | (u, v) 6∈ E},

• C ′

(u,v) = ((u, v), R′), R = {0, 1, 2}2 \ {(0, 0), (1, 1)},

• C ′′

(u,v) = ((u, v), R′′), R = {0, 1, 2}2 \ {(0, 1), (1, 0)},

• want only solutions with k zeroes and k ones.
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Directed Acyclicity

Acyclic Digraph

Instance: A digraph G = (V,E)

Question: Is it true that G has no direct cycles?

• Equivalent to CSP instance (V,Q, C) where

• C = {Ce | e ∈ E}, C(u,v) = ((u, v), <).

• tractable
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Betweenness

Betweenness

Instance: A finite set V and a set M ⊆ V 3.

Question: Is there a linear ordering of V such that, for

each triple (u, v, w) ∈ M , we have u < v < w or

u > v > w?

• Equivalent to CSP instance (V,Q, C) where

• C = {Cm | m ∈ M}, Cm = ((u, v, w), Rb),

Rb = {(a, b, c) ∈ Q3 | a < b < c or a > b > c}.

• NP-complete
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Ordering CSP

Let Π be a set of permutations on {1, . . . , k}.

Π-Ordering CSP

Instance: A finite set V and a family M ⊆ V k.

Question: Is there a linear order on V such that each

element of M agrees with some permutation from

Π?

• Straightforward generalisation of the previous two.

• Directed Acyclicity — k = 2, Π = {(12)}

• Betwenness — k = 3, Π = {(123), (321)}



Andrei Krokhin - Intro into Maths of CSP 33

Allen’s Interval Algebra

The most popular formalism in temporal reasoning (AI)

[Allen, 1983].

Allows qualitative binary constraints between time

intervals.
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Allen’s Algebra:

13 Basic Relations
x precedes y p xxx

y preceded by x p−1
yyy

x meets y m xxxx

y met by x m−1
yyyy

x overlaps y o xxxx

y overlapped by x o−1
yyyy

x during y d xxx

y includes x d−1
yyyyyyy

x starts y s xxx

y started by x s−1
yyyyyyy

x finishes y f xxx

y finished by x f−1
yyyyyyy

x equals y ≡ xxxx

yyyy
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AIA Satisfiability

Relations in AIA — 213 disjunctions of the basic relations.

AIA-Sat

Instance: Given a labelled digraph G = (V,A) where

• V is a set of interval variables and

• A consists of triples (u, r, v) with u, v ∈ V and r

in AIA.

Question: Is there an assignment of intervals for the

variables such that relations on all arcs from A are

satisfied?
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Example

v

w

m

u

m
m
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Example

v

w

u

m

m
m
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Example

v

w

u

d v f 

-1

f v s

m v o
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Example

v

w

u

d v f 

-1

f v s

m v o
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Complexity Classifications

• Complexity Theory: aims at classifying combinatorial

problems by computational complexity.

• Want: a test bed to see if they are good at this.

• CSP is very expressive and rich, but clean and

manageable

• Natural test bed for complexity classifications (and

algorithmic techniques)


