Introduction into Mathematics of Constraint Satisfaction

Andrei Krokhin
Durham University

Part I

Two Well-Known Problems

SAT: is a given propositional formula in CNF satisfiable?

$$
F=(\neg x \vee y \vee \neg z) \wedge(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z)
$$

Linear Equations: does a given system of linear equations have a solution in the fixed field K ?

$$
\left\{\begin{array}{l}
2 x+2 y+3 z=1 \\
3 x-2 y-2 z=0 \\
5 x-y+10 z=2
\end{array}\right.
$$

The Constraint Satisfaction Problem

CSP

Instance: (V, D, C) where

- V is a finite set of variables
- D is a set of values (aka domain)
- C is a finite set of constraints $\left\{C_{1}, \ldots, C_{q}\right\}$
- each constraint C_{i} is a pair $\left(\bar{s}_{i}, R_{i}\right)$ with * scope \bar{s}_{i} - a list of variables of length m_{i}, * relation R_{i} - an m_{i}-ary relation over D

Question: Is there $f: V \rightarrow D$ s.t. $f\left(\bar{s}_{i}\right) \in R_{i}$ for all i ? Can ask to find such an f too.

Some Real-World Examples of CSPs

- Solving a Sudoku puzzle
- Drawing up timetable for a conference
- Choosing frequencies for a mobile-phone network
- Fitting a protein structure to measurements
- Laying out components on a circuit board
- Finding a DNA sequence from a set of contigs
- Scheduling a construction project

Outline of the Course

1. The CSP and its forms

- Examples of CSPs from
- Logic
- Algebra
- Graph Theory
- AI
- Complexity Issues

2. Computational questions

- What questions do we ask about CSPs?

3. Mathematical techniques

- What maths do we use to analyse those questions?

Relational Structures

A signature τ is

- a finite sequence $\left(R_{1}, \ldots, R_{k}\right)$ of relation symbols
- each R_{i} has an associated arity $\operatorname{ar}\left(R_{i}\right)$.

A relational structure of signature τ (or τ-structure) is

- a tuple $\mathcal{A}=\left(A ; R_{1}^{\mathcal{A}}, \ldots, R_{k}^{\mathcal{A}}\right)$ where
- A is a set called the universe of \mathcal{A}
- each $R_{i}^{\mathcal{A}}$ is a relation on A of arity $\operatorname{ar}\left(R_{i}\right)$

If $\tau=\{E\}$ and $\operatorname{ar}(E)=2$ then τ-structures are digraphs.

CSP in Logical Setting

CSP

Instance: A τ-structure \mathcal{B} and a formula $\exists x_{1} \ldots \exists x_{n} \varphi$ where $\varphi\left(x_{1}, \ldots, x_{n}\right)=R_{i_{1}}\left(\bar{s}_{1}\right) \wedge \ldots \wedge R_{i_{q}}\left(\bar{s}_{q}\right)$.

Question: Does \mathcal{B} satisfy φ ?

The $\bar{s}_{i}{ }^{\prime} \mathrm{s}=\mathrm{constraint}$ scopes \bar{s}_{i}
Predicates $R_{i}^{\mathcal{B}}=$ constraint relations R_{i}

In Database Theory, Conjunctive-Query Evaluation

Exercise

Let $\mathcal{B}=(\{0,1,2\} ; E)$ where $E=\{(0,1),(1,2),(2,0)\}$.
Let $\varphi_{1}=E\left(x_{0}, x_{1}\right) \wedge E\left(x_{1}, x_{2}\right) \wedge E\left(x_{2}, x_{3}\right) \wedge E\left(x_{3}, x_{0}\right)$.
Let $\varphi_{2}=E\left(x_{0}, x_{1}\right) \wedge E\left(x_{1}, x_{2}\right) \wedge E\left(x_{2}, x_{3}\right) \wedge E\left(x_{3}, x_{1}\right)$.
Does \mathcal{B} satisfy $\exists x_{0} \ldots \exists x_{3} \varphi_{1}$? Does it satisfy $\exists x_{0} \ldots \exists x_{3} \varphi_{2}$?

CSP in Combinatorial Setting

CSP

Instance: Two τ-structures, \mathcal{A} and \mathcal{B}
Question: Is there a homomorphism $h: \mathcal{A} \rightarrow \mathcal{B}$?

$$
\forall i\left[\left(a_{1}, \ldots, a_{n_{i}}\right) \in R_{i}^{\mathcal{A}} \Longrightarrow\left(h\left(a_{1}\right), \ldots, h\left(a_{n_{i}}\right)\right) \in R_{i}^{\mathcal{B}}\right]
$$

- Think of elements in \mathcal{A} as of variables. Tuples in relations in $\mathcal{A}=$ constraint scopes \bar{s}_{i}.
- Think of elements in \mathcal{B} are values.

Relations in $\mathcal{B}=$ constraint relations R_{i}.

Exercise

Example: 2-Sat in Hom Form

Let $R_{a b}^{\mathcal{B}}=\{0,1\}^{2} \backslash\{(a, b)\}$ and $\mathcal{B}=\left(\{0,1\} ; R_{00}^{\mathcal{B}}, R_{01}^{\mathcal{B}}, R_{11}^{\mathcal{B}}\right)$.
An instance of 2-SAT, say

$$
F=(\neg x \vee \neg z) \wedge(x \vee y) \wedge(y \vee \neg z) \wedge(u \vee x) \wedge(x \vee \neg u) \ldots
$$

becomes a structure \mathcal{A} with base set $\{x, y, z, u, \ldots\}$ and

$$
\begin{aligned}
& R_{00}^{\mathcal{A}}=\{(x, y),(u, x), \ldots\} \\
& R_{01}^{\mathcal{A}}=\{(y, z),(x, u), \ldots\} \\
& R_{11}^{\mathcal{A}}=\{(x, z), \ldots\}
\end{aligned}
$$

Then $h: \mathcal{A} \rightarrow \mathcal{B}$ iff h is a satisfying assignment for F.

Recap: 3 Forms of CSP

- Variable-value (AI, Algebra)

Given finite sets A (variables), B (values), and a set of constraints $\left\{\left(\bar{s}_{1}, R_{1}\right), \ldots,\left(\bar{s}_{q}, R_{q}\right)\right\}$ over A, is there a function $\varphi: A \rightarrow B$ such that $\varphi\left(\bar{s}_{i}\right) \in R_{i}$ for all i ?

- Satisfiability (Logic, Databases)

Given a finite structure (or database) \mathcal{B} and a $\exists \wedge$-FO sentence (or conjunctive query) φ, does \mathcal{B} satisfy φ ?

- Homomorphism (Logic, Graph Theory)

Given two similar relational structures, $\mathcal{A}=\left(A ; R_{1}^{\mathcal{A}}, \ldots, R_{k}^{\mathcal{A}}\right)$ and $\mathcal{B}=\left(B ; R_{1}^{\mathcal{B}}, \ldots, R_{k}^{\mathcal{B}}\right)$, is there a homomorphism $h: \mathcal{A} \rightarrow \mathcal{B}$?

Representation Issues

When speaking about algorithms/complexity

- for finite domains, will usually assume that relations are given explicitly, by full list of tuples;
- for infinite domains, need to
- fix the domain in advance,
- give relations in some finite form.

Propositional Satisfiability

Important fragments of SAT:

- 2-SAT - clauses with at most 2 var's tractable
- Horn k-Sat - clauses $\left(\neg x_{1} \vee \ldots \vee \neg x_{n}\right)$, $\left(\neg x_{1} \vee \ldots \vee \neg x_{n} \vee x_{n+1}\right)$, and $(x) \quad$ tractable
- 1-IN-3-SAT - one constraint type $\{(1,0,0),(0,1,0),(0,0,1)\}$

NP-complete

- Not-All-Equal-Sat - one constraint type $\{0,1\}^{3} \backslash\{(0,0,0),(1,1,1)\}$

NP-complete

Equations over Groups

A group is an algebra $\left(G ; \cdot,^{-1}, 1\right)$ such that $1 \cdot x=x \cdot 1$, $x \cdot(y \cdot z)=(x \cdot y) \cdot z$, and $x \cdot x^{-1}=x^{-1} \cdot x=1$

System of equations over a finite group $G\left(E q_{G}^{*}\right)$:

$$
\left\{\begin{array}{l}
a_{1} x_{11} \cdots a_{m} x_{1 m} a_{m+1}=1 \\
\cdots \\
b_{1} x_{n 1} \cdots b_{m} x_{n m} b_{m+1}=1
\end{array}\right.
$$

Can replace $x y z \ldots=1$ by $x y=x^{\prime}$ and $x^{\prime} z \ldots=1$.

Theorem 1 (Goldmann, Russell '2002)

The problem $E q_{G}^{*}$ is tractable if G is Abelian and
NP-complete otherwise.

Equations over Semigroups

A semigroup is an algebra $(G ; \cdot)$ with $x \cdot(y \cdot z)=(x \cdot y) \cdot z$.
System of equations over a finite semigroup $S\left(E q_{S}^{*}\right)$:
can assume all equations of the form $u \cdot v=w$ where each of u, v, w is either a constant or a variable.

Theorem 2 (Klima,Tesson,Thérien'2005)

Assume that S is a monoid (has 1). If S is commutative and is the union of its subgroups then the problem $E q_{S}^{*}$ is tractable. Otherwise it is NP-complete.

No full answer for general semigroups yet ...

Equations over Algebras

A finite algebra is a tuple $\mathbf{A}=\left(A ; f_{1}, \ldots, f_{k}\right)$ where each f_{i} is an operation $f_{i}: A^{n_{i}} \rightarrow A$.

Can consider systems of equations over \mathbf{A}.
By the same trick, assume all equations are of the form $f_{i}\left(u_{1}, \ldots, u_{n_{i}}\right)=w$ where each of $u_{1}, \ldots, u_{n_{i}}, w$ is either a constant or variable.

Interesting work by Larose,Zádori'06 and Zádori'07+'11 classification for large classes of algebras.

Colourability

k-COLOURABILITY
Instance: A graph $G=(V, G)$ and a number k.
Question: Is there a colouring of V in k colours such that adjacent vertices are different colour?

- Equivalent to CSP instance $\left(G, K_{k}\right)$, in hom form. Indeed a required colouring is a homomorphism $G \rightarrow K_{k}$
- tractable for $k \leq 2$, NP-complete for $k \geq 3$.

List Colourability

List k-Colourability

Instance: A graph $G=(V, G)$, a number k, and a list L_{v} of allowed colours for each $v \in V$.

Question: Is there a k-colouring of G such that each vertex gets an allowed colour?

- Equivalent to CSP instance $(\mathcal{A}, \mathcal{B})$, in hom form
$-\mathcal{B}=\left(\{1, \ldots, k\} ; \not{ }_{k}, L_{1}, \ldots, L_{2^{k}}\right)$ where $L_{1}, \ldots, L_{2^{k}}$ is a fixed enumeration of subsets of $\{1, \ldots, k\}$.
$-\mathcal{A}=\left(V ; E, U_{1}, \ldots, U_{2^{k}}\right)$ where each U_{i} consists of vertices whose list is L_{i}.

Clique

Clique
Instance: A graph G and a number k.
Question: Does G contain a k-clique, i.e. k pairwise adjacent vertices?

- Equivalent to CSP instance $\left(K_{k}, G\right)$ in hom form. Indeed, G has a k-clique iff $K_{k} \rightarrow G$.
- NP-complete

Hamiltonian Circuit

Hamiltonian Circuit

Instance: A graph $G=(V, G)$.
Question: Is there a cyclic ordering of V such that every pair of successive nodes in the ordering are adjacent in G ?

- Equivalent to CSP instance $(\mathcal{A}, \mathcal{B})$ in hom form where
$-\mathcal{A}=\left(V ; C_{V}, \not \neq V_{V}\right), C_{V}$ is a cyclic permutation on V,
$-\mathcal{B}=\left(V ; E, \not{ }_{V}\right)$
- NP-complete

Graph Isomorphism

Graph Isomorphism

Instance: Two graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$.
Question: Is there an isomorphism (bijective
homomorphism) from G_{1} to G_{2} ?

- Equivalent to CSP instance $(\mathcal{A}, \mathcal{B})$ in hom form where
$-\mathcal{A}=\left(V ; E_{1}, \overline{E_{1}}\right)$ and $\mathcal{B}=\left(V ; E_{2}, \overline{E_{2}}\right)$
- here $\overline{E_{i}}=\left\{(u, v) \in V^{2} \mid(u, v) \notin E_{i}\right.$ and $\left.u \neq v\right\}$
- not known to be tractable or NP-complete
- main candidate for NP-intermediate

Directed st-Reachability

DIRECTED st-REACHABILITY

Instance: A digraph $G=(V, E)$ and two nodes s, t in it.
Question: Is there a directed path from s to t in G ?

- Essentially equivalent to the complement of $(\mathcal{A}, \mathcal{B})$
- $\mathcal{A}=(V ; E,\{s\},\{t\})$ and $\mathcal{B}=(\{0,1\}, \leq,\{1\},\{0\})$.
- tractable, NL-complete.

Graph Factors

Let G be a graph.

- A factor of G is a subgraph obtained by deleting edges.
- If X is a set of numbers, an X-factor of G is a factor such that the degree of each vertex belongs to X.
- What are 1 -factors of a graph?
- What are 2-factors? \{1,2\}-factors?
- Large subarea of graph theory.
- Recent result: if r is odd and k even with $2 \leq k<r / 2$ then each r-regular graph has a $\{k, r-k\}$-factor.
- Open: does every 5 -regular graph have a $\{1,4\}$-factor?

Factors in Regular Graphs

Let $G=(V, E)$ be r-regular and let $X \subseteq\{0,1, \ldots, r\}$.
Let $R_{X}=\left\{\mathbf{a} \in\{0,1\}^{r} \mid \operatorname{weight}(\mathbf{a}) \in X\right\}$.
Consider the following CSP instance $I=\left(V^{\prime}, D^{\prime}, C^{\prime}\right)$:

- $V^{\prime}=E, D^{\prime}=\{0,1\}$, and $C^{\prime}=\left\{C_{v} \mid v \in V\right\} ;$
- each $C_{v}=\left(\left(e_{1}, \ldots, e_{r}\right), R_{X}\right)$ where e_{1}, \ldots, e_{r} are the edges incident to v.

Fact. G has an X-factor iff I has a solution.
Fact. There is a 1-1 correspondence between X-factors in r-regular graphs and solutions of Boolean CSP instances that use only relation R_{X} and each variable appears twice.

Vertex Cover

VERTEX Cover
Instance: A graph $G=(V, E)$ and a number k.
Question: Is there a subset $V^{\prime} \subseteq V$ such that $\left|V^{\prime}\right| \leq k$ and, for each $(a, b) \in E$, we have $a \in V^{\prime}$ or $b \in V^{\prime}$?

- Equivalent to CSP instance ($V,\{0,1\}, C$),
- $C=\{u \vee v \mid(u, v) \in E\}$,
- additionally: want only solutions with k ones.
- NP-complete

Independent Set

Independent SET

Instance: A graph $G=(V, E)$ and a number k.
Question: Is there a subset $V^{\prime} \subseteq V$ such that $\left|V^{\prime}\right| \geq k$ and $\left(V^{\prime}\right)^{2} \cap E=\emptyset$?

- Equivalent to CSP instance ($V,\{0,1\}, C$),
- $C=\{\neg u \vee \neg v \mid(u, v) \in E\}$,
- additionally: want only solutions with k ones.
- NP-complete

Parameterized Complexity in One Slide

- Both Vertex Cover and Independent Set can be solved in $O\left(n^{k}\right)$ by exhaustive search.
- Vertex Cover can be solved in $O\left(2^{k} \cdot n^{2}\right)-\operatorname{good}$
- $O\left(f(k) \cdot n^{c}\right)$ algorithm — fixed-parameter tractable (FPT)
- W[1] - parameterized analog of NP (kind of)
- Ind SET is $\mathbf{W}[\mathbf{1}]$-complete - $n^{o(k)}$ algorithm unlikely.

Biclique

BICLIQUE

Instance: A graph $G=(V, E)$ and a number k.
Question: Does G contain an induced subgraph isomorphic to $K_{k, k}$ (bipartite k-clique)?

- NP-complete. Open problem: Is it FPT?
- Equivalent to CSP instance ($V,\{0,1,2\}, C$)
- where $C=\left\{C_{(u, v)}^{\prime} \mid(u, v) \in E\right\} \cup\left\{C_{(u, v)}^{\prime \prime} \mid(u, v) \notin E\right\}$,
- $C_{(u, v)}^{\prime}=\left((u, v), R^{\prime}\right), R=\{0,1,2\}^{2} \backslash\{(0,0),(1,1)\}$,
- $C_{(u, v)}^{\prime \prime}=\left((u, v), R^{\prime \prime}\right), R=\{0,1,2\}^{2} \backslash\{(0,1),(1,0)\}$,
- want only solutions with k zeroes and k ones.

Directed Acyclicity

Acyclic Digraph
Instance: A digraph $G=(V, E)$
Question: Is it true that G has no direct cycles?

- Equivalent to CSP instance (V, \mathbb{Q}, C) where
- $C=\left\{C_{e} \mid e \in E\right\}, C_{(u, v)}=((u, v),<)$.
- tractable

Betweenness

BETWEENNESS

Instance: A finite set V and a set $M \subseteq V^{3}$.
Question: Is there a linear ordering of V such that, for each triple $(u, v, w) \in M$, we have $u<v<w$ or $u>v>w ?$

- Equivalent to CSP instance (V, \mathbb{Q}, C) where
- $C=\left\{C_{m} \mid m \in M\right\}, C_{m}=\left((u, v, w), R_{b}\right)$, $R_{b}=\left\{(a, b, c) \in \mathbb{Q}^{3} \mid a<b<c\right.$ or $\left.a>b>c\right\}$.
- NP-complete

Ordering CSP

Let Π be a set of permutations on $\{1, \ldots, k\}$.

M-Ordering CSP

Instance: A finite set V and a family $M \subseteq V^{k}$.
Question: Is there a linear order on V such that each element of M agrees with some permutation from Π ?

- Straightforward generalisation of the previous two.
- Directed Acyclicity - $k=2, \Pi=\{(12)\}$
- Betwenness - $k=3, \Pi=\{(123),(321)\}$

Allen's Interval Algebra

The most popular formalism in temporal reasoning (AI) [Allen, 1983].

Allows qualitative binary constraints between time intervals.

Allen's Algebra:

13 Basic Relations

x precedes y	p	xxx
y preceded by x	p^{-1}	yyy
x meets y	m	xxxx
y met by x	$\mathrm{~m}^{-1}$	yyyy
x overlaps y	\circ	xxxx
y overlapped by x	o^{-1}	yyyy
x during y	d	xxx
y includes x	$\mathrm{~d}^{-1}$	yyyyyyy
x starts y	s	xxx
y started by x	$\mathrm{~s}^{-1}$	yyyyyyy
x finishes y	f	xxx
y finished by x	f^{-1}	yyyyyyy
x equals y	\equiv	xxxx

AIA Satisfiability

Relations in AIA - 2^{13} disjunctions of the basic relations.

AIA-SAT
Instance: Given a labelled digraph $G=(V, A)$ where

- V is a set of interval variables and
- A consists of triples (u, r, v) with $u, v \in V$ and r in AIA.

Question: Is there an assignment of intervals for the variables such that relations on all arcs from A are satisfied?

Example

Example

Example

Example

Complexity Classifications

- Complexity Theory: aims at classifying combinatorial problems by computational complexity.
- Want: a test bed to see if they are good at this.
- CSP is very expressive and rich, but clean and manageable
- Natural test bed for complexity classifications (and algorithmic techniques)

