Basal forebrain participation in general anesthesia

L Stan Leung

Dept Physiology and Pharmacology and Neuroscience Program University of Western Ontario

Collaborators: Tao Luo, J Ma, J Tai, S Petropoulos, & Ian Herrick

What is the Basal forebrain?

A group of neurons (including cholinergic neurons) at the base of the forebrain

Receives from the brainstem and controls electrical activity of the cerebral cortex

Early cholinergic pathology in Alzheimers disease

Involved in cortical activation (physiological and functional), cognitive and other behavioral functions

Basal forebrain & wake-sleep circuit

Hippocampal & Neocortical EEG

General Anesthesia

state of overall loss of awareness and pain, allowing surgical operations

- □Components □
 - 1. Loss of awareness
 - 2. Loss of pain
 - 3. Loss of voluntary movements
 - 4. Loss of memory of the surgery

Surgical anesthesia in animals

Loss of Righting Reflex in animals correlated with loss of consciousness in humans

Response to pain tested by tail-pinch (surgical anesthesia)

Record EEG frontal cortex & hippocampus

Franks, Nat Rev Neurosci 2008

Volatile anesthesia stages (Guedel 1951)

- I. Analgesia
- II. Delirium (behavioral excitation)

Priestley J (1776) on N₂O: ☐The sense of muscular power became greater, and at last an irresistible propensity to action was indulged in ☐. ☐before impressions ceased to be perceived ∴ and voluntary power was altogether destroyed ☐

- III. Surgical anesthesia
- IV. Respiratory Paralysis

Delirium after halothane in control rats

Septal lesion abolishes anesthetic-induced delirium

Reversible inactivation of brain by GABA-A receptor agonist muscimol

Muscimol (0.4-1 ug) injection 0.3-0.6 ul in ~1 min

hyperpolarizes and stops neuronal firing

Within ~ 1 mm radius

Saline infusion as control

Halothane-induced delirium reduced by inactivation of medial septum

Ketamine induced delirium suppressed by septal inactivation

Delirium reduced by hippocampal inactivation (muscimol)

Ma et al., J Neurosci., 2002

Septal inactivation prolongs effects of general anesthesia

Limbic circuit involved in anesthesia

Ma & Leung, Neuropsychopharmacology, 2006

Cholinotoxin (192 IgG-saporin) lesion of medial septum

AChE

Septal cholinergic lesion increased propofol sensitivity

Laalou et al. Anesthesiology. 108:888, 2008.

Septal cholinergic lesion increased isoflurane sensitivity

Sensitivity to equilibrium level of isoflurane increased In septal cholinergic lesion rats as compared to sham lesion

Both induction and emergence from anesthetic were affected

Induction measured by the time to the loss of righting reflex in 1.375% isoflurane

and emergence measured by the time to recover righting after 30 min in isoflurane

Tai SK and Leung, unpublished

Nucleus basalis Cholinergic Lesion

Saline in NB

192 IgG-saporin in NB

500 µm

ChAT in NB

Nucleus Basalis Cholinergic Lesion prolongs some anesthetic effect

Inactivation of nucleus basalis induces paradoxical slow waves during waking

with righting and pain responses intact

Leung, Luo, et al. Exp Neurology 228: 259, 2011

Nucleus Basalis inactivation prolongs effect of general anesthetic

Leung et al. Exp Neurology 2011

Nucleus Basalis inactivation prolongs effect of general anesthetic

Duration of lost response

Leung et al. Exp Neurology 2011

Neurochemical correlates of behavioral states

SWS REMS quiet awake active awake

Acetyl- - +++ + +++

choline

Histamine - - + +++

(similar to other monoamines: serotonin, noradrenaline; orexin)

Histaminergic neurons in hypothalamus: tuberomammillary nucleus (TMN)

adenosine deaminase stain, Gerashchenko et al. 2004

Nelson et al., Nature Neuroscience 5:979. 2002

GABA-A agonist muscimol in TMN induced sedation GABAzine, GABA-A antagonist, in TMN reversed GABAergic anesthetic induced sedation

Histaminergic neurons in hypothalamus

Gerashchenko et al. Sleep 2004

Luo and Leung, Anesthesiology 115:36 (2011)

Control (sham) Lesion (orexin2-saporin)

