Biomarkers of Stable Sleep

Oscillatory Activity of the Brain Predicts Sound Sleep on Noisy Nights

jeffrey_ellenbogen@hms.harvard.edu

http://www.hms.harvard.edu/zzz

Before I begin...

□ Toronto: experiences formed the motivation for these set of experiments
 □ What I learned:
 □ Intra- and inter-individual differences in sleep depth
 □ Vulnerable populations
 □ Consequence (cognition and physiology)
 □ Opportunity for novelty regarding sleep depth and

treatments

Outline

Background		
IntroductionSleep and cognitionNoise perception during sleep		
Questions to be addressed		
□ Biological drivers of stable sleep□ Sleep stages□ Traits□ States		
Closing		
Summary/ConclusionsFuture DirectionsDiscussion		

Sleep Lab

Sleep Disordered Breathing in AD

Sleep "Stages" (Hypnogram)

Raw EEG

Predictors?

Can we employ features of human EEG in order to make insights (i.e., independent variables; predictors) about phenomena of the brain, mind, or disease (i.e., dependent variables; outcomes)?

Sleep and Cognition

How does sleep influence our waking experiences? □ e.g., memory enhancement; inferences
How do our waking experiences influence sleep? □ e.g., replay of events; slow-oscillations (is sleep local or global?)
How does cognition behave at the interface of sleep-wake? □ e.g., why don't we remember a phone call in the middle of the night?
What are the cognitive consequences of sleep disorders or sleep deprivation?
What can sleep tell us about brain-based diseases or aging?
How does the brain interact with the environment <i>during</i> sleep? ☐ e.g., sleep stability in noisy environments

Challenges to Sleep

Approaches to minimizing noise

Active Noise Control"noise cancellation"	☐ Human Physiology
□ Passive Noise Control□ Source	What brain-based factors are involved in dampening sound perception during sleep?
☐ "shhh!" ☐ Public policy ☐ Path ☐ Far plugs	Can they be measured to identify who is at risk of noise-induced sleep disruption, and when?
 □ Ear plugs □ Architecture and materials □ Sound Masking □ ("white" paics) 	Can these systems be manipulated (drug, device, or behavior)?
☐ ("white" noise)	

Approaching the Problem

Predictors
☐ Hypotheses: noise-induced disruption of sleep will be governed by
☐ Sound level (e.g., 65 dB)
☐ Sound type (e.g., traffic)
☐ Sleep physiology
☐ Sleep stages
☐ Spindles (individual traits, between subjects)
☐ Alpha oscillations (instantaneous states, within subjects)
Subjects:
□ 13 healthy subjects (median age = 24)
Methods:
☐ 3 nights (1 quiet; 2 noisy)
☐ 14 hospital sounds
Outcome
☐ Probability of disrupted sleep ("EEG arousal")

Sound-induced sleep disruption (arousal)

Sound in Sleep: The Set Up

Sound in Sleep: The Set Up

Probing sleep depth

Probability of Arousal: Sleep Stages

Buxton, Ellenbogen et al, Annals of Internal Medicine, In press

Heart-Rate Response to Arousals

Outline

Noise and Sleep
□ Background
Questions to be addressed
☐ Biological drivers of stable sleep
☐ Sleep stages
□ Traits
☐ States
Closing
☐ Summary/Conclusions
☐ Future Directions
□ Discussion

Biomarkers of stable sleep

☐ Traits: Sleep spindles

- ☐ Background:
 - » Thalamus is the gateway of sensory information
 - » Thalamus generates spindles
 - » Rate of spindles are stable night-to-night for a person
- ☐ Hypotheses:
 - » thalamus reduces sensory input to the neocortex during sleep, maintaining sleep when confronted with noise
 - » The degree of this scrutiny during sleep varies by individual
 - » Spindle serves as a marker for this phenomenon

Thalamus gaits sensory input

Thalamus

Reticular Formation

Thalamus generates spindles: mechanism

Three-neuron system:

- -Reticular neurons of the thalamus
 - Rhythmic sequences
- -Thalamocortical neurons (TC)
- -Corticothalamic neurons
 - Widespread synchronization

Automated spindle detection

The Empirically Derived Spindle Basis

Babadi, McKinney et al. IEEE Transactions in Biomedical Engineering. 2012

Bayesian Inference for Spindle Detection:

Using parametric model of transform coefficient distributions

Spindles separate from background:

Distribution of transform coefficients for 1st 2 basis elements

Spindles separate from background:

Distribution of transform coefficients for 1st 2 basis elements

Babadi, McKinney et al. IEEE Transactions in Biomedical Engineering. 2012

Bayesian Inference for Spindle Detection:

Using parametric model of transform coefficient distributions

Spindle Detection with DiBa

Spindle Detection with DiBa

Spindle rate is consistent across nights

Spindle rate is consistent across nights

The sleep survival curve

Sleep stability by spindle rate

Spindle rate predicts mean arousal threshold

Outline

Noise and Sleep
□ Background
Questions to be addressed
☐ Biological drivers of stable sleep
□ Sleep stages
□ Traits
☐ States
Closing
☐ Summary/Conclusions
☐ Future Directions
□ Discussion

Biomarkers of stable sleep

☐ States: Alpha power

Background:

- » Hallmark waking rhythm (vigilance)
- » Fluctuates in sleep

☐ Hypothesis:

- » oscillatory features of the EEG (alpha activity, 8-13 Hz) predict disruption of sleep from noises
- » ...and can do so in real time

The alpha rhythm

Raw signal, time domain, derived from occipital electrode

Frequency domain

Insomnia: Light sleeper = heavy alpha?

Alpha power fluctuates, even within a sleep stage

Probing sleep depth

Probing sleep depth: Pre-stimulus EEG

Alpha power modulates sleep fragility

How Stable Is Alpha Activity During Sleep?

Theories of Alpha

- □ Possible interpretations
 - ☐ Idling (i.e., more alpha means more inactive)
 - ☐ Vigilance (i.e., more alpha means more awake)
 - ☐ Inhibition (i.e., more alpha means less engaged)

Task-Irrelevant Inhibition

Figure 3. The alpha band activity during retention. A, Grand average of the TFRs of the

Jokisch and Jensen, J Neurosci 2007

Summary

Predicting sleep disruption through
 3 main determinants: Louder sounds and shallower sleep predict their sleep-disruptive effects Sounds cluster; less so in REM
 TRAIT: Sleep spindles Fixed properties of an individual's sleeping EEG More spindles predicts more stable sleep (thalamic gaiting?)
 STATE: Alpha activity Local, moment-to-moment, transient EEG characteristics More alpha predicts more vulnerable (unstable) moments of sleep
Implications for tracking and controlling sleep: offline or online measurements of depth

Future Directions, Traits

Modality specific finding?
☐ Light, vibration, temperature, etc
□ Olfaction
Source Localization and spatial resolution of spindles
Potential <u>biomarker</u> for an individual's susceptibility to noise ☐ Beyond days? ☐ Stable across lifecycle?
Potential <u>therapeutic target</u> (can they be modified?) ☐ Some sedating drugs adjust spindles ☐ Some diseases alter spindles (e.g., schizophrenia)
Relationship of spindles to <u>cognition</u>

Future Directions, States

Modality specific finding?
☐ Light, vibration, temperature, etc
□ Olfaction
α in wake vs. α sleep, a similar mechanism?
$\hfill\Box$ Does α in sleep represent task-irrelevant inhibition?
 high-density EEG to compare this effect in occipital cortex compared to auditory cortex
 Examine other frequency bands (gamma, etc), looking for inverse correlations between gamma and alpha (pulsed inhibition?)
☐ MEG and fMRI
Therapies to enhance sleep stability (dynamic stability)
□ Drug
☐ Brain-computer interface

Acknowledgements

Scott McKinney Orfeu Buxton

Thanh Dang-Vu Jo Solet

Margaret Merlino Andy Carballeira

Karen Gannon Shawn O'Connor

Matt Bianchi Dan Cooper

Emery Brown Vahid Tarokh

Patrick Purdon Behtash Babadi

Sleep Fragility Across More Frequencies

Bimodal Alpha

Arousal

No Arousal

Multimodal aspects of sensory input

- Visual <u>perception</u> (seeing)
 - ☐ Visual cortex activation
- ☐ Visual <u>imagery</u> (imagining seeing—mind's eye)
 - ☐ Visual cortex activation
 - ☐ Auditory cortex deactivation

Experiment

Background:
☐ Sensory processing is dampened in sleep
$\ \square$ Thalamus gaits sensory information to the brain
☐ Spindles are an EEG marker of thalamic activity during sleep
Hypothesis:
Do sleep spindles signal a dampening of noise perception by the thalamus during sleep?
☐ If so, does the amount of spindles predict sound tolerance in sleep?
Subjects:
\square 13 healthy subjects (median age = 24)
Method:
☐ Normal sleep (1 night): spindle counting
☐ Acoustically disrupted sleep (2 nights). 14 sounds
Predictor: sleep spindles on a baseline night (central electrodes)
Outcome measure: probability of arousal on a noisy night

Basner et al. ☐ Aircraft noise effects on sleep: Mechanisms, mitigation and research needs, ☐ in Noise and Health, April-June 2010, 12:47, 95-109.

A **D**ata-Dr**i**ven **Ba**yesian (**DiBa**) Algorithm for Sleep Spindle Detection

 Standard algorithms extract arbitrary, user-defined
features (e.g. 10.5-15 Hz activity)
☐ Their output is not intrinsically meaningful
\square More sophisticated, nonlinear algorithms are
computationally complex
☐ Can the been implemented in real time
□ Approach:
☐ KL transform (PCA)
☐ Bayesian Inference

An All-night Setting

Performance Analysis

N = 8 subjects
□ 5 females, 3 males
☐ Median age 22 years (range 20-46)
Rotating, leave-one-out design
26 hours of scored sleep data
☐ 3875 sleep spindle events
□ All sleep stages
□ 3% N1
□ 45% N2
□ 34% N3
□ 18% REM
Hit Rate: proportion of True spindles detected
False Alarm Rate: # of spurious spindles declared per second of spindleless sleep

Performance Analysis

Features of DiBa

DiBa probes for distinguishing contextual features of the sleep spindle
 Derived empirically from a large pool of observations from multiple individuals
$\ \square$ Can be adapted in a straightforward way to new populations
DiBa produces a soft output with intuitive significance
$\ \square$ The probability of a spindle $\ \square$ presence at each sample of the EEG
$\ \square$ Interpretation and parameter specification become more transparent
Low computational complexity
☐ Suitable for online implementation

Circadian Biology

