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Introduction

 Understanding general anesthesia is interesting, important
and of immediate medical relevance.

 The study of general anesthesia provides insights into the
dynamics of the comatose brain.
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Outline

e Part 1: Frontal alpha rhythm associated with loss of
consciousness under propofol-anesthesia

 Part 2: Neuronal and metabolic dynamics of burst

suppression



EEG Study of Propofol Anesthesia

 Recap from yesterday: Spectral signatures associated with
loss of consciousness during propofol general anesthesia
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e EEG recorded during gradual propofol infusion
e Subjects are performing an auditory task
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Dominant frequency bands associated
with experiment: Early LOC
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Diffuse activity from 15-20 Hz




Dominant frequency bands associated
with experiment: LOC
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Consolidation of power into “alpha”




Dominant frequency bands associated
with experiment: Deepest LOC
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Well-defined “alpha” oscillation
with simultaneous <1Hz activity



Waveform morphology
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Coherent Alpha Rhythms
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Biophysical modeling: Network mechanisms

Previous modeling studies:

®* Propofol and cortex
— Low dose paradoxical excitation (McCarthy, Kopell & Brown, 2009)

® Thalamus & Alpha rhythms

— Spindles: (Destexhe & Sejnowski, 2001 ,Timofeev & Bazhenov , 2005)

Investigate effects of propofol on thalamocortical networks:

® Perturb dynamics in a manner consistent with propofol; Investigate cortical
coherence via thalamus
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Network schematic and features

® Network structure schematic

® Disparate cortical populations
(Pyramidal cells, FS/LTS interneurons)

® Thalamic population (Thalamocortical
relay cells, Reticular cells)
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Modeling the effects of propofol

® Propofol acts primarily through potentiation of the GABA,
synaptic current
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®* Increase maximal conductance and decay-
time
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IGABA —X(V—EGABA)
X =2(1+tanh(V/4))(1—x) —x
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Simulation results

" Model produces weak gamma
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Simulation results
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" Slowing of cortical rhythms as
GABAa increases
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Simulation results
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Simulation results

® No coherence at baseline and small
dose levels
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Simulation results
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® At 3x baseline, coherence is
exhibited between the cortical
populations
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Network mechanisms for enhanced ‘alpha’
oscillation: Thalamic entrainment
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Traveling Peak

Traveling Peak Frequency and Bandwidth
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Summary and Interpretations
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®* A propofol-alpha rhythm...

1. Increased cortical inhibition causes a
slowing of higher frequency rhythms

2. Increased thalamic inhibition causes
persistent alpha-band oscillations

" Thalamic gate vs. thalamocortical dynamics

" Related to pathological states such as alpha coma
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Outline

e Part 1: Frontal alpha rhythm associated with loss of
consciousness under propofol-anesthesia

 Part 2: Neuronal and metabolic dynamics of burst

suppression




What is burst suppression? : The anesthesia
story (so far...)

* Awake brain activity ‘Inactivated’ alpha
(No drug) (Surgical anesthesia)

pre-
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What happens
if we go
deeper??

Depth of Anesthesia
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What is burst suppression? : The anesthesia story (so
far...)

Deeper anesthesia Isoelectric
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What is burst suppression? : The anesthesia story
(deeper levels...)
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What is burst suppression? : More properties...

Burst suppression is not strictly periodic and varies in propensity
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Burst suppression is not exclusive to general anesthesia.
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Conditions associated with burst suppression

Deep general anesthesia

e Hypothermia

* Hypoxic-ischemic events, Post-anoxic

coma

e Infant encephalopathy
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Multiple etiologies for a common phenomenon. Suggests a
fundamental dynamic change.
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Spectrum during burst suppression
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A link between burst-suppression etiologies

Deep general anesthesia o 9

Hypothermia 0

Hypoxic-ischemic events, Post-anoxic
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Model structure

 We consider the cortical component of
our alpha model.
e Add the ATP-gated potassium current:

IK,’H'P = OKarp~ (1’ - Eh’) .
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ATP dynamics in small network

e Sodium-ATP dynamics cause alternating periods of activity and quiescence
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Consistency with previous studies

Kroeger & Amzica, J. Neurosci. 2007
Behavioral/Systems/Cognitive
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Hypersensitivity of the Anesthesia-Induced Comatose Brain | [y
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Decreased sensitivity to external stimulation after the occurrence of a burst
Bursts are correlated with fluctuations in calcium

Cardiac dynamics: ATP and oxidative stress leads to arrhythmias

Our model is compatible and provides a unified link to each of the etiologies

Yields predictions that can guide and focus more detailed experimental studies...
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Freq (Hz)

Model predictions

Regional variations in burst suppression. Neural and metabolic inhomogeneity.

Dynamic changes within each burst. e.g. Drift in frequency.
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e Alpha frequency drifts
16 within bursts
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e Starts high and ‘fades’ out

12

=]

e Due to gradual increase in K-
ATP conductance through the
course of the burst

oo

[=3]

.

M

1 Time (s) 40



Verifying predictions

Examining burst suppression in intracranial data:
Regional timing differences across ECoG grid

unpublished



Verifying predictions

Examining burst suppression in intracranial data:
Drift in alpha peak

unpublished



Summary

* A neurophysiological-metabolic model has been developed to
suggest mechanisms of burst suppression

e The model provides a unified link between etiologies of brain
inactivation

e Lots of opportunities for future investigation

e NIRS and EEG
e Coma and other pathologies
e Neonatal development
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