Modeling the temporal architecture of sleep-wake transition dynamics

Victoria Booth, Depts of Mathematics and Anesthesiology, University of Michigan

Cecilia Diniz Behn, Dept of Mathematics, Gettysburg College

Human sleep temporal architecture

- ▶ NREM-REM cycling (~90 min cycle length)
- Healthy sleep is fragmented by brief wake bouts
- Human sleep recordings from SHHS (dceweb1.case.edu/serc)

Rat sleep temporal architecture

- Polyphasic
- Highly fragmented with variable state dynamics
 - Rat sleep in the light period recordings courtesy of George Mashour (Anesthesiology, U of Michigan)

Anatomy and physiology of sleep-wake regulation

- High activity in LC/DR/TMN and LDT/PPT promotes wake
- Wake characterized by high expression of norepinephrine (NE), serotonin (5-HT) and acetylcholine (ACh) to thalamus and cortical regions

Sleep states characterized by low activity in LC/DR/TMN.

VLPO neurons have high activity during sleep and GABAergic projections to LC/DR/TMN

In REM sleep, cholinergic populations reactivate. ACh in thalamus and brainstem induce REM characteristics.

Sleep-wake flip-flop switch

- Mutual inhibitory synaptic projections between wakeactive populations and VLPO suggests bistable flip-flop switch
- Dynamics of mutual inhibition could account for:
 - Fast transitions between states
 - Stability of sleep and wake states

▶ Saper CB et al, The sleep switch: hypothalamic control of sleep and wakefulness, TINS 2001

Reciprocal Interaction model for REM sleep cycling

- Monoaminergic inhibition from LC/DR inhibits REM-on subpopulation of LDT/PPT
- Cholinergic excitation from LDT/PPT activates LC/DR to terminate REM-on activity
- McCarley RW and Massaquoi SG, A limit cycle model of the REM sleep oscillator, Am J Physiol 1986

REM-on/REM-off flip-flop switch

- ▶ REM-on: Sublaterodorsal nucleus (SLD), precoeruleus (PC)
- ▶ REM-off: Ventrolateral periaqueductal grey matter (vIPAG), lateral pontine tegmentum (LPT)
- Mutual GABAergic projections between REM-on and REM-off populations

Lu, Sherman, Devor, Saper, A putative flip-flop switch for control of REM sleep, *Nature*, 2006.

GABAergic-glutamatergic hypothesis for REM generation

 REM-on: Sublaterodorsal nucleus (SLD), dorsal paragigantocellular reticular nucleus (DPGi), Ventrolateral periaqueductal grey matter (vIPAG)

 REM-off: Deep mesencephalic reticular nucleus (DPMe)

Inhibitory projections are distributed among populations

Luppi et al, Paradoxical (REM) sleep genesis: The switch from an aminergic—cholinergic to a GABAergic—glutamatergic hypothesis, *J Phyiol Paris*, 2007.

Multiple time scales of sleep-wake dynamics

- Daily 24 hour rhythm of wake and sleep
 - Mediated by Suprachiasmatic Nucleus (SCN)
- 2. Homeostatic sleep drive (< 24h)
 - Mediated by adenosine

Proposed neuronal sleep-wake regulatory networks

All based on underlying deterministic network

Rat sleep temporal architecture

- Can deterministic network model replicate actual sleep-wake temporal architecture?
 - Rat sleep in the light period recordings courtesy of George Mashour (Anesthesiology, U of Michigan)

How to model neuronal sleep-wake regulatory networks?

Why a firing rate model?

- Population activity levels determine behavioral state
- Rhythms of firing in these populations appear to be less important than the neuromodulatory environments they create
- Time scale of sleep-wake behavior much longer than ms time scale of individual neuronal activity
- Variable of interest: $F_X(t)$ = average firing rate of neurons in population X in Hz

Firing rate model formalism

Dependence of total NT release on presynaptic firing rate

Dependence of postsynaptic firing rate on total NT concentration

Neurotransmitter/population firing rate model formalism

What sleep-wake regulatory network to model?

Minimal 3-state sleep-wake regulation network

- Sleep homeostat, H, drives slow transitions between wake and sleep states
- H modulates activation of NREM population mimicking action of adenosine on VLPO

Reduced sleep-wake regulatory network model

Wake:
$$F_W' = \frac{F_{W\infty}[g_{N,W} C_{N\infty}(F_N) + g_{R,W} C_{R\infty}(F_R) + g_{W,W} C_{W\infty}(F_W)]}{\tau_W}$$

NREM:
$$F_N := \frac{F_{N\infty(h)}[g_{W,N} C_{W\infty}(F_W) + g_{N,N} C_{N\infty}(F_N)]}{\tau_N}$$

REM:
$$F_R' = \frac{F_{R\infty}[g_{W,R} C_{W\infty}(F_W) + g_{N,R} C_{N\infty}(F_N) + g_{R,R} C_{R\infty}(F_R)]}{\tau_R}$$

$$h' = \begin{cases} \frac{1-h}{\tau_2} & \text{when } F_W \ge \theta_W \\ \frac{-h}{\tau_1} & \text{when } F_W < \theta_W \end{cases} \qquad C_{X\infty}(F_X) = \tanh(F_X / \gamma_X)$$

$$F_{X\infty}(c) = \frac{X_{\max}}{2} (1 + \tanh((c - \beta_X) / \alpha_X))$$

Minimal 3-state sleep-wake regulation network

Consider dynamics of isolated reciprocal interaction subnetwork

Reciprocal Interaction network admits stable limit cycle solutions

 By Poincare-Bendixson Theorem, stable cycling exists when all fixed points are unstable

Minimal 3-state sleep-wake regulation network

 Consider dynamics of isolated mutual inhibition subnetwork

Action of homeostatic sleep drive

NREM:
$$F_N' = \frac{[F_{N\infty(h)}[g_{W,N} C_{W\infty}(F_W) + g_{N,N} C_{N\infty}(F_N)]}{\tau_N}$$

$$h' = \begin{cases} \frac{1-h}{\tau_2} & \text{when } F_W \ge \theta_W \\ \frac{-h}{\tau_1} & \text{when } F_W < \theta_W \end{cases}$$

$$\mathsf{F}_\mathsf{N^\infty}$$

$$F_{N\infty}(c) = \frac{N_{\text{max}}}{2} (1 + \tanh((c - \beta_N(h)) / \alpha_N))$$

Hysteresis loop cycling in mutual inhibition subnetwork

- Exploit slowly varying h(t) for a Fast-Slow Decomposition
 - Let h be a parameter and compute steady state solutions for values of h = [0,1]

Sleep homeostat h acts on slower time scale

Condition for existence of hysteresis-loop cycling

Discontinuity in h(t) introduces discontinuity in F_N
 nullcline

Hysteresis-loop cycling possible if no intersection of discontinuous F_N nullcline and F_W nullcline

Minimal 3-state sleep-wake regulation network

- Analyze interaction of W-NREM flip-flop and REM-wake reciprocal interaction
- ▶ Consider dynamics as half-activation threshold for REM population, β_R , is varied

Dynamics as activation threshold of REM population, β_R , is decreased

• High β_R : REM population doesn't activate;

▶ Low β_R : REM population activates transiently at NREM-to-wake transition

Dynamics as activation threshold of REM population, β_R , is decreased

▶ Lower β_R : Periodic REM cycling during NREM, with brief post-REM wake activation

Network structure provides for wake – NREM – REM transition dynamics

- Wake to NREM transition occurs due to homeostatic activation of NREM population
 - REM population receives inhibition from Wake and increasing inhibition from NREM as it activates
 - NREM is activated when Wake inactivates

Network structure provides for wake – NREM – REM transition dynamics

- NREM to wake transition occurs due to homeostatic inactivation of NREM population
 - Inhibition to REM population decreases as NREM inactivates
 - Wake inhibition to REM increases as it activates

- High β_R : Stable wake and NREM states form Z-shaped steady state curve; trajectory follows hysteresis loop
- Wake: h increases; Sleep: h decreases

▶ Low β_R : REM exhibits high-amplitude transient at saddle-node point on NREM stable branch

Lower β_R : Stable branch of periodic high-amplitude REM / low-amplitude wake oscillations appears over small h interval

Lower β_R : Periodic branch replaces steady NREM state branch, REM oscillations occur during entire sleep state

Bifurcation diagram in β_R and h

Hatching indicates bistability with steady wake state

Rat sleep temporal architecture

- Can this network generate actual sleep-wake dynamics?
 - Rat sleep in the light period recordings courtesy of George Mashour (Anesthesiology, U of Michigan)

Neuronal population and neurotransmitter interaction network for sleep-wake regulation

Neuronal population and neurotransmitter interaction network for sleep-wake regulation

Sleep-wake regulatory network model

$$f_{LC}' = \frac{f_{LC\infty}(g_{A-LC} c_A - g_{N-LC} c_N - g_{G-LC} c_G + \eta) - f_{LC}}{\tau_{LC}}$$

$$f_{DR}' = \frac{f_{DR\infty}(g_{A-DR} c_A - g_{S-DR} c_S - g_{G-DR} c_G + \eta) + f_{DR}}{\tau_{DR}}$$

$$f_{\mathit{VLPO}} ' = \frac{f_{\mathit{VLPO}^{\infty}}(-g_{\mathit{N-VLPO}} \ c_{\mathit{N}} - g_{\mathit{S-VLPO}} \ c_{\mathit{S}} - g_{\mathit{G-VLPO}} \ c_{\mathit{G}}) - f_{\mathit{VLPO}}}{\tau_{\mathit{VLPO}}}$$

$$f_{R}' = \frac{f_{R\infty}(g_{A-R} c_{A} - g_{N-R} c_{N} - g_{S-R} c_{S} - g_{G-R} c_{G}) - f_{R}}{\tau_{R}}$$

$$f_{\mathit{WR}} ' = \frac{f_{\mathit{WR}\infty}(g_{\mathit{A-WR}} \ c_{\mathit{A}} - g_{\mathit{G-WR}} \ c_{\mathit{G}}) - f_{\mathit{WR}}}{\tau_{\mathit{WR}}}$$

$$\frac{dc_N}{dt} = \underbrace{\frac{\sigma_N c_{N\infty}(f_{LC}) - c_N}{\tau^N}}_{S_{\infty}}$$

$$\frac{dc_S}{dt} = \underbrace{\frac{\sigma_S c_{S\infty}(f_{DR}) - c_S}{\tau^S}}_{S_{\infty}}$$

$$\frac{dc_G}{dt} = \frac{\sigma_G c_{G\infty}(f_{VLPO}) - c_G}{\tau^G}$$

$$\frac{dc_{AR}}{dt} = \frac{\sigma_{AR}c_{AR\infty}(f_R) - c_{AR}}{\tau^A}$$

$$\frac{dc_{\scriptscriptstyle AWR}}{dt} = \frac{\sigma_{\scriptscriptstyle AWR}c_{\scriptscriptstyle AWR\infty}(f_{\scriptscriptstyle WR}) - c_{\scriptscriptstyle AWR}}{\tau^{\scriptscriptstyle A}}$$

$$h' = \left\{ \frac{(h_{\text{max}} - h) / \tau_{hw}}{-(h - h_{\text{min}}) / \tau_{hs}} \text{ during wake} \right\}$$

Stochastic elements in model

- Variable neurotransmitter release
 - simulating stochasticity of synaptic transmission

- Variable homeostatic sleep drive
 - simulating stochasticity of adenosine levels & action
- Random excitatory inputs to populations
 - simulating excitatory afferent activity from other brain regions

Simulated rat sleep-wake behavior

Simulations fit to general characteristics of wake, NREM sleep, and REM sleep

Percent time spent in state

• Experimental data from Blanco-Centurion et al., J. Neurosci., 2007 of 12-hr rat sleep recording during light period

Mean bout duration

Mean number of bouts

• Experimental data from Blanco-Centurion et al., J. Neurosci., 2007 of 12-hr rat sleep recording during light period

Temporal dynamics of sleep-wake patterning

in different species

Lo C et al. PNAS 2004; 101:17545-17548

Sleep durations - exponential

10⁻⁴

100

Duration t (min)

150

200

Full model can generate bout length distributions with appropriate characteristics

Power law-like wake bout distribution

- With only transmitter variability, wake bout distribution is bimodal
 - Homeostatically controlled long wake bouts
 - Post-REM short wake bouts

Power law-like wake bout distribution

 Variability in homeostat levels introduces more variance in durations of long wake bouts

Power law-like wake bout distribution

- Random inputs to wake populations generate many brief wake bouts
 - Contribute to initial power-law profile

Exponential sleep (NREM & REM) bout distribution

- Longest sleep bout durations show exponential distribution
 - variable termination of sleep states by wake
- Randomly initiated brief wake bouts fragment sleep
 - contribute to initial exponential profile

Current work: Analyzing model fit to bout distributions from experimental data

Investigating diverse sleep properties using the model

- Simulate experiments that manipulate sleep-wake network by microinjection of neurotransmitter agonists/antagonists (Diniz Behn and Booth, J Neurophysiol, 2010)
- Investigate circadian modulation of sleep-wake patterning and bi-directional coupling between sleep-wake network and the SCN (Fleshner et al, Phil Trans Royal Soc A, 2011)
- Comparative analysis of sleep-wake dynamics generated by different network structures, i.e. mutual inhibition network for REM generation (Diniz Behn et al, submitted)

Acknowledgments

Cecilia Diniz Behn, Gettysburg College

UM Dept of Mathematics

- Danny Forger
- Justin Dunmyre
- Michelle Fleshner
- Aparna Ananthasubramanian
- Rebecca Gleit

UM Dept of Anesthesiology

- George Mashour
- Ralph Lydic

- AFOSR Program in Chronobiology
- NSF DMS-1121361

Thank you!