Network flows for image processing Part II-Bis: Total Variation and Applications

Jerome Darbon

CNRS / CMLA-ENS Cachan Mathematics Department UCLA

Variational Methods and Compressive Sensing in Imaging

Fields Institute, Toronto, May 2012

Joint work with:

- Marc Sigelle (Telecom Paris)
- Antonin Chambolle (Ecole Polytechnique)

I) Total Variation Minimization and parametric max-flow

- Both continuous and discrete point of view
- Separable cases: Rudin-Osher-Fatemi, curve evolution

Idea: J is a "generalized perimeter"

Let $\Omega \subset \mathbb{R}^N$. Let \mathcal{J} be nonnegative, defined on measurable subsets of Ω be such that

- *J* is l.s.c. with respect to the *L*¹ convergence
- $\mathcal{J}(A \cup B) + \mathcal{J}(A \cap B) \leq \mathcal{J}(A) + \mathcal{J}(B)$ [Submodular Lovasz 82]
- $\mathcal{J}(\emptyset) = \mathcal{J}(\Omega) = 0$
- Idea: J is a "Total Variation"

Extension to any $u \in L^1(\Omega) \rightarrow J(u)$

by the Generalized coarea formula [Choquet,Lovasz,Visintin]:

$$J(u) = \int_{-\infty}^{\infty} \mathcal{J}(\{u > \lambda\}) \, d\lambda$$

where $\{u > \lambda\} = \{x \in \Omega | u(x) > \lambda\}$ (level sets)

Idea: J is a "generalized perimeter"

Let $\Omega \subset \mathbb{R}^N$. Let \mathcal{J} be nonnegative, defined on measurable subsets of Ω be such that

- *J* is l.s.c. with respect to the *L*¹ convergence
- $\mathcal{J}(A \cup B) + \mathcal{J}(A \cap B) \leq \mathcal{J}(A) + \mathcal{J}(B)$ [Submodular Lovasz 82]
- $\mathcal{J}(\emptyset) = \mathcal{J}(\Omega) = 0$
- Idea: J is a "Total Variation"

Extension to any $u \in L^1(\Omega) \rightarrow J(u)$ by the Generalized coarea formula [Choquet,Lovasz,Visintin]:

$$J(u) = \int_{-\infty}^{\infty} \mathcal{J}(\{u > \lambda\}) \, d\lambda$$

where $\{u > \lambda\} = \{x \in \Omega | u(x) > \lambda\}$ (level sets)

Links

Proposition (Bouchitté)

J is 1-homogeneous, convex, l.s.c., $\forall c J(\cdot + c) = J(\cdot)$

• Conversely:

If J is a convex, l.s.c., nonnegative functional wich satisfies the generalized coarea formula

then $A \mapsto J(\chi_A)$ is a "generalized perimeter" in our sense.

A matter of wording

- Same concepts but different words:
 - Analysis / Level sets / Coarea formula
 - Combinatorics / unary representation / Lovasz extension
 - Game Theory/Fuzzy Logic / α-cut / Choquet Integral

Similarity with Mathematical Morphology [Guichard Morel], "stack filters"

- $\mathcal{J} \equiv$ monotone filter on sets
- $J \equiv$ monotone filter on functions
- Example: $J \equiv \|\cdot v\|_1 + TV(\cdot)$ is morphological [D. 05]

Links

Proposition (Bouchitté)

J is 1-homogeneous, convex, l.s.c., $\forall c J(\cdot + c) = J(\cdot)$

• Conversely:

If J is a convex, l.s.c., nonnegative functional wich satisfies the generalized coarea formula

then $A \mapsto J(\chi_A)$ is a "generalized perimeter" in our sense.

A matter of wording

- Same concepts but different words:
 - Analysis / Level sets / Coarea formula
 - Combinatorics / unary representation / Lovasz extension
 - Game Theory/Fuzzy Logic / α-cut / Choquet Integral
- Similarity with Mathematical Morphology [Guichard Morel], "stack filters"
 - $\mathcal{J} \equiv$ monotone filter on sets
 - $J \equiv$ monotone filter on functions
 - Example: $J \equiv \|\cdot v\|_1 + TV(\cdot)$ is morphological [D. 05]

• Total variation/Perimeter: $P(A, \Omega) = \int_{\Omega} |D\chi_A|$ with

$$\int_{\Omega} |\mathcal{D}u| \ = \ \sup\left\{\int_{\Omega} u \text{div}\psi \ : \ \psi \in \textit{C}^{\infty}_{\textit{c}}(\Omega;\mathbb{R}^{\textit{N}}) \, , |\psi(x)| \leq 1 \, \, \forall x \right\}$$

Nonlocal functionals (k nonnegative) [Buades et al. 05]:

$$J(u) = \int_{\Omega \times \Omega} k(x, y) |u(x) - u(y)| \, dx dy$$

Discrete energies of the form (computational point of view)

$$J(u) = \sum_{i,j} w_{ij} |u_i - u_j|$$

• Note that
$$\sqrt{u_x^2 + u_y^2}$$
 is NOT submodular

• We minimize the following energy wrt. A (with $v \in L^1(\Omega)$)

$$\mathcal{E}(A|v) = \mathcal{J}(A) - \int_A v \, dx$$

Lemma $v' < v \Rightarrow A' \subseteq A$

- Several approaches for the proof
 - Stochastically-based [D. Sigelle 04]
 - Variational approach [Chambolle 05] ← the simplest
 - Algorithmically-based [Gallo-Grigoriadis-Tarjan 89]

ROF Comparison Principle

• Let u minimize Rudin-Osher-Fatemi (ROF)

$$E(u|v) = J(u) + \frac{1}{2}\int_{\Omega}(u-v)^2 dx$$

Then: for any *s*, $\{u > \lambda\}$ and $\{u \ge \lambda\}$ are the minimal and maximal solution of

$$\min_{\boldsymbol{A}} \mathcal{E}(\boldsymbol{A}, \boldsymbol{v} - \lambda)$$

- If u, u' respectively minimize E(u|v) and E(u'|v') then v ≤ v' ⇒ u ≤ u'.
- Optimization point of view:
 - To minimize $\mathcal{E}(\cdot|v) \rightarrow$ Minimize the associated ROF pb and threshold
 - To minimize ROF $E(\cdot|v) \rightarrow$ Solve a series a $\mathcal{E}(\cdot|\lambda v)$ and reconstruct *u* from its level sets

ROF Comparison Principle

• Let u minimize Rudin-Osher-Fatemi (ROF)

$$E(u|v) = J(u) + \frac{1}{2}\int_{\Omega}(u-v)^2 dx$$

Then: for any *s*, $\{u > \lambda\}$ and $\{u \ge \lambda\}$ are the minimal and maximal solution of

$$\min_{\boldsymbol{A}} \mathcal{E}(\boldsymbol{A}, \boldsymbol{v} - \lambda)$$

- If u, u' respectively minimize E(u|v) and $\mathcal{E}(u'|v')$ then $v \leq v' \Rightarrow u \leq u'$.
- Optimization point of view:
 - To minimize $\mathcal{E}(\cdot|v) \rightarrow$ Minimize the associated ROF pb and threshold
 - To minimize ROF $E(\cdot|v) \rightarrow$ Solve a series a $\mathcal{E}(\cdot|\lambda v)$ and reconstruct *u* from its level sets

ROF Comparison Principle

• Let u minimize Rudin-Osher-Fatemi (ROF)

$$E(u|v) = J(u) + \frac{1}{2}\int_{\Omega}(u-v)^2 dx$$

Then: for any *s*, $\{u > \lambda\}$ and $\{u \ge \lambda\}$ are the minimal and maximal solution of

$$\min_{\boldsymbol{A}} \mathcal{E}(\boldsymbol{A}, \boldsymbol{v} - \lambda)$$

- If u, u' respectively minimize E(u|v) and $\mathcal{E}(u'|v')$ then $v \leq v' \Rightarrow u \leq u'$.
- Optimization point of view:
 - To minimize $\mathcal{E}(\cdot|v) \rightarrow$ Minimize the associated ROF pb and threshold
 - To minimize ROF E(·|v) → Solve a series a E(·|λ − v) and reconstruct u from its level sets

- Reduction of ROF to series a "generalized perimeter" functionals
- Pairwise interactions perimeters $\mathcal{J}(A) = \sum_{i,j} w_{ij} |\theta_i \theta_j|$ where $\theta = \mathbb{1}_A$, i.e., $\theta_i = \begin{cases} 1 & \text{if } i \in A \\ 0 & \text{otherwise.} \end{cases}$
- Each binary problem to solve has the form

$$\min_{\theta} \sum_{i,j} w_{ij} |\theta_i - \theta_j| + \sum_i (\lambda - v_i) \theta_i$$

- \rightarrow Perimeter + data fidelity
- ⇒ Globally solvable using maximum-flow/minimum-cut

- Strategies of reconstruction, i.e., order for the series of $\{\lambda_l\}$
 - Dyadic (dichotomy/bitonic) search:

$o \|\hat{u} - u^*\|_\infty \leq \epsilon \text{ in } \mathcal{O}(\log_2 \epsilon)$ [D. Sigelle 06]

- A much better idea: Re-use the maximum-flow result
 - Inclusion property says:
 - the set a nodes connected to the source is increasing (as $\lambda \nearrow$)
 - equivalent to capacity arcs "Source \rightarrow nodes" \nearrow (parametric max-flow)
 - equivalent to convexity of data fidelity of TV problems
 - [Gallo-Grigoriadis-Tarjan 89] showed
 - the comparison principle
 - time complexity of a parametric max-flow = time of a one max-flow
 - Algo Parametric: lowest to greastest
 - Algo Parametric: dyadic search [Chambolle D. 06/07] [Hochbaum 01] \rightarrow Solution $\epsilon = 0$ in *strongly* polynomial time (log $\frac{1}{\epsilon}$ becomes log *n*)

Strategies of reconstruction, i.e., order for the series of $\{\lambda_l\}$

• Dyadic (dichotomy/bitonic) search:

 $o \|\hat{u} - u^*\|_\infty \leq \epsilon \text{ in } O(\log_2 \epsilon)$ [D. Sigelle 06]

- A much better idea: Re-use the maximum-flow result
 - Inclusion property says:
 - the set a nodes connected to the source is increasing (as $\lambda \nearrow$)
 - equivalent to capacity arcs "Source \rightarrow nodes" \nearrow (parametric max-flow)
 - equivalent to convexity of data fidelity of TV problems
 - [Gallo-Grigoriadis-Tarjan 89] showed
 - the comparison principle
 - time complexity of a parametric max-flow = time of a one max-flow
 - Algo Parametric: lowest to greastest
 - Algo Parametric: dyadic search [Chambolle D. 06/07] [Hochbaum 01] \rightarrow Solution $\epsilon = 0$ in *strongly* polynomial time (log $\frac{1}{\epsilon}$ becomes log *n*)

Strategies of reconstruction, i.e., order for the series of $\{\lambda_l\}$

• Dyadic (dichotomy/bitonic) search:

 $o \|\hat{u} - u^*\|_\infty \leq \epsilon \text{ in } O(\log_2 \epsilon)$ [D. Sigelle 06]

- A much better idea: Re-use the maximum-flow result
 - Inclusion property says:
 - the set a nodes connected to the source is increasing (as $\lambda \nearrow$)
 - equivalent to capacity arcs "Source \rightarrow nodes" \nearrow (parametric max-flow)
 - equivalent to convexity of data fidelity of TV problems
 - [Gallo-Grigoriadis-Tarjan 89] showed
 - the comparison principle
 - time complexity of a parametric max-flow = time of a one max-flow
 - Algo Parametric: lowest to greastest
 - Algo Parametric: dyadic search [Chambolle D. 06/07] [Hochbaum 01]
 - \rightarrow Solution $\epsilon = 0$ in *strongly* polynomial time (log $\frac{1}{\epsilon}$ becomes log *n*)

Strategies of reconstruction, i.e., order for the series of $\{\lambda_l\}$

• Dyadic (dichotomy/bitonic) search:

 $o \|\hat{u} - u^*\|_\infty \leq \epsilon \text{ in } O(\log_2 \epsilon)$ [D. Sigelle 06]

- A much better idea: Re-use the maximum-flow result
 - Inclusion property says:
 - the set a nodes connected to the source is increasing (as $\lambda \nearrow$)
 - equivalent to capacity arcs "Source \rightarrow nodes" \nearrow (parametric max-flow)
 - equivalent to convexity of data fidelity of TV problems
 - [Gallo-Grigoriadis-Tarjan 89] showed
 - the comparison principle
 - time complexity of a parametric max-flow = time of a one max-flow
 - Algo Parametric: lowest to greastest
 - Algo Parametric: dyadic search [Chambolle D. 06/07] [Hochbaum 01]
 - \rightarrow Solution $\epsilon = 0$ in *strongly* polynomial time (log $\frac{1}{\epsilon}$ becomes log *n*)

Minimizing ROF via maximum-flow Time results (3/4)

 $\frac{1}{2\lambda} \|u - v\|_{l^2}^2$, 8-neighbors, 256 gray-levels original, $\lambda = 10$, $\lambda = 20$, $\lambda = 60$

Jerome Darbon, Fields Institute Toronto May 2012

Minimizing ROF via maximum-flow Time results (4/4)

 $\frac{1}{2\lambda} \|u - v\|_{l^2}^2$, 8-neighbors, 256 gray-levels, Intel Core 2 Duo 2.4 Gz

PR: Push/relabel FIFO max-flow algorithm

BK: [Boykov Kolmogorov 04] max-flow algorithm (efficient for sparse graph)

Images (size)	Approach	$\lambda = 10$	$\lambda = 20$	$\lambda = 60$
Girl (256 ²)	Parametric PR	5.32	9.24	12.67
	Parametric BK	2.97	3.25	4.04
	Dyadic Parametric PR	1.49	2.05	3.42
	Chambolle/Darbon-Sigelle	0.55	0.72	1.08
	Dyadic Parametric BK	0.42	0.55	0.81
<i>Girl</i> (512 ²)	Parametric PR	41.14	71.39	140.79
	Parametric BK	11.90	13.19	17.08
	Dyadic Parametric PR	10.15	12.92	22.17
	Chambolle/Darbon-Sigelle	2.34	3.05	5.01
	Dyadic Parametric BK	1.86	2.54	4.19

Geometric evolutions (1/2)

- Goal: Computing anisotropic mean curvature flows
- Almgren-Taylor-Wang's implicit approach [93]:
 - Given a time-step h > 0
 - A current set $A^{n-1} \approx A((n-1)h)$, the curve is ∂A^{n-1}
 - Find the new curve evolved by mean curvature by solving

$$\min_{A} \mathcal{J}(A) + \frac{1}{h} \int_{A} d_{A^{n-1}}(x) \, dx$$

where \mathcal{J} is an isotropic or anisotropic perimeter and d_A the signed distance to ∂A .

- Parametric-based approach
 a) minimize an approximation of min *E*(*u*, *d*_{Aⁿ⁻¹}) (around the level 0)
 c) find the new set *Aⁿ* = {*u* ≥ 0}.
- DEMO

Crystal Growth

Solving Stefan's equation system using [Almgren 93] (→solve one step evolution + update temperature)

