Network flows for image processing Part II-Bis: Total Variation and Applications

Jerome Darbon
CNRS / CMLA-ENS Cachan
Mathematics Department UCLA

Variational Methods and Compressive Sensing in Imaging
Fields Institute, Toronto, May 2012

Acknowledgements

Joint work with:

- Marc Sigelle (Telecom Paris)
- Antonin Chambolle (Ecole Polytechnique)

Separable TV minization

I) Total Variation Minimization and parametric max-flow

- Both continuous and discrete point of view
- Separable cases: Rudin-Osher-Fatemi, curve evolution

Generalized perimeters and Coarea-Formula

- Idea: \mathcal{J} is a "generalized perimeter" Let $\Omega \subset \mathbb{R}^{N}$. Let \mathcal{J} be nonnegative, defined on measurable subsets of Ω be such that
- \mathcal{J} is l.s.c. with respect to the L^{1} convergence
- $\mathcal{J}(A \cup B)+\mathcal{J}(A \cap B) \leq \mathcal{J}(A)+\mathcal{J}(B)$ [Submodular Lovasz 82]
- $\mathcal{J}(\emptyset)=\mathcal{J}(\Omega)=0$
- Idea: J is a "Total Variation"

Extension to any $u \in L^{1}(\Omega) \rightarrow J(u)$
by the Generalized coarea formula [Choquet,Lovasz, Visintin]:

where $\{u>\lambda\}=\{x \in \Omega \mid u(x)>\lambda\}$ (level sets)

Generalized perimeters and Coarea-Formula

- Idea: \mathcal{J} is a "generalized perimeter" Let $\Omega \subset \mathbb{R}^{N}$. Let \mathcal{J} be nonnegative, defined on measurable subsets of Ω be such that
- \mathcal{J} is l.s.c. with respect to the L^{1} convergence
- $\mathcal{J}(A \cup B)+\mathcal{J}(A \cap B) \leq \mathcal{J}(A)+\mathcal{J}(B)$ [Submodular Lovasz 82]
- $\mathcal{J}(\emptyset)=\mathcal{J}(\Omega)=0$
- Idea: J is a "Total Variation"

Extension to any $u \in L^{1}(\Omega) \rightarrow J(u)$ by the Generalized coarea formula [Choquet,Lovasz,Visintin]:

$$
J(u)=\int_{-\infty}^{\infty} \mathcal{J}(\{u>\lambda\}) d \lambda
$$

where $\{u>\lambda\}=\{x \in \Omega \mid u(x)>\lambda\}$ (level sets)

- Proposition (Bouchitté)
J is 1 -homogeneous, convex, I.s.c., $\forall c J(\cdot+c)=J(\cdot)$
- Conversely:

If J is a convex, l.s.c., nonnegative functional wich satisfies the generalized coarea formula then $A \mapsto J\left(\chi_{A}\right)$ is a "generalized perimeter" in our sense.

- Same concepts but different words:
- Analysis / Level sets / Coarea formula
- Combinatorics / unary representation / Lovasz extension - Game Theory/Fuzzy Logic / α-cut / Choquet Integral
- Similarity with Mathematical Morphology [Guichard Morel], "stack filters" - $\mathcal{J} \equiv$ monotone filter on sets
- $J \equiv$ monotone filter on functions
- Example: $J \equiv\|\cdot-v\|_{1}+T V(\cdot)$ is morphological [D. 05]
- Proposition (Bouchitté)
J is 1-homogeneous, convex, I.s.c., $\forall c J(\cdot+c)=J(\cdot)$
- Conversely:

If J is a convex, I.s.c., nonnegative functional wich satisfies the generalized coarea formula then $A \mapsto J\left(\chi_{A}\right)$ is a "generalized perimeter" in our sense.

A matter of wording

- Same concepts but different words:
- Analysis / Level sets / Coarea formula
- Combinatorics / unary representation / Lovasz extension
- Game Theory/Fuzzy Logic / $\alpha-$ cut / Choquet Integral
- Similarity with Mathematical Morphology [Guichard Morel], "stack filters"
- $\mathcal{J} \equiv$ monotone filter on sets
- $J \equiv$ monotone filter on functions
- Example: $J \equiv\|\cdot-v\|_{1}+T V(\cdot)$ is morphological [D. 05]

Examples

- Total variation/Perimeter: $P(A, \Omega)=\int_{\Omega}\left|D \chi_{A}\right|$ with

$$
\int_{\Omega}|D u|=\sup \left\{\int_{\Omega} u \operatorname{div} \psi: \psi \in C_{c}^{\infty}\left(\Omega ; \mathbb{R}^{N}\right),|\psi(x)| \leq 1 \forall x\right\}
$$

- Nonlocal functionals (k nonnegative) [Buades et al. 05]:

$$
J(u)=\int_{\Omega \times \Omega} k(x, y)|u(x)-u(y)| d x d y
$$

- Discrete energies of the form (computational point of view)

$$
J(u)=\sum_{i, j} w_{i j}\left|u_{i}-u_{j}\right|
$$

- Note that $\sqrt{u_{x}^{2}+u_{y}^{2}}$ is NOT submodular

Comparison Principle

- We minimize the following energy wrt. A (with $v \in L^{1}(\Omega)$)

$$
\mathcal{E}(A \mid v)=\mathcal{J}(A)-\int_{A} v d x
$$

Lemma $v^{\prime}<v \Rightarrow A^{\prime} \subseteq A$

- Several approaches for the proof
- Stochastically-based [D. Sigelle 04]
- Variational approach [Chambolle 05] \leftarrow the simplest
- Algorithmically-based [Gallo-Grigoriadis-Tarjan 89]

ROF Comparison Principle

- Let u minimize Rudin-Osher-Fatemi (ROF)

$$
E(u \mid v)=J(u)+\frac{1}{2} \int_{\Omega}(u-v)^{2} d x
$$

Then: for any $s,\{u>\lambda\}$ and $\{u \geq \lambda\}$ are the minimal and maximal solution of

$$
\min _{A} \mathcal{E}(A, v-\lambda)
$$

- If u, u^{\prime} respectively minimize $E(u \mid v)$ and $\mathcal{E}\left(u^{\prime} \mid v^{\prime}\right)$ then $v \leq v^{\prime} \Rightarrow u \leq u^{\prime}$.
- Optimization point of view:
- To minimize $\mathcal{E}(\cdot \mid v) \rightarrow$ Minimize the associated ROF pb and threshold - To minimize ROF $E(\cdot \mid v) \rightarrow$ Solve a series a $\mathcal{E}(\cdot \mid \lambda-v)$ and reconstruct u from its level sets

ROF Comparison Principle

- Let u minimize Rudin-Osher-Fatemi (ROF)

$$
E(u \mid v)=J(u)+\frac{1}{2} \int_{\Omega}(u-v)^{2} d x
$$

Then: for any $s,\{u>\lambda\}$ and $\{u \geq \lambda\}$ are the minimal and maximal solution of

$$
\min _{A} \mathcal{E}(A, v-\lambda)
$$

- If u, u^{\prime} respectively minimize $E(u \mid v)$ and $\mathcal{E}\left(u^{\prime} \mid v^{\prime}\right)$ then $v \leq v^{\prime} \Rightarrow u \leq u^{\prime}$.
- Optimization point of view:
- To minimize $\mathcal{E}(\cdot \mid v) \rightarrow$ Minimize the associated ROF pb and threshold reconstruct u from its level sets

ROF Comparison Principle

- Let u minimize Rudin-Osher-Fatemi (ROF)

$$
E(u \mid v)=J(u)+\frac{1}{2} \int_{\Omega}(u-v)^{2} d x
$$

Then: for any $s,\{u>\lambda\}$ and $\{u \geq \lambda\}$ are the minimal and maximal solution of

$$
\min _{A} \mathcal{E}(A, v-\lambda)
$$

- If u, u^{\prime} respectively minimize $E(u \mid v)$ and $\mathcal{E}\left(u^{\prime} \mid v^{\prime}\right)$ then

$$
v \leq v^{\prime} \Rightarrow u \leq u^{\prime}
$$

- Optimization point of view:
- To minimize $\mathcal{E}(\cdot \mid v) \rightarrow$ Minimize the associated ROF pb and threshold
- To minimize ROF $E(\cdot \mid v) \rightarrow$ Solve a series a $\mathcal{E}(\cdot \mid \lambda-v)$ and reconstruct u from its level sets

Minimizing ROF via maximum-flow (1/4)

- Reduction of ROF to series a "generalized perimeter" functionals
- Pairwise interactions perimeters $\mathcal{J}(A)=\sum_{i, j} w_{i j}\left|\theta_{i}-\theta_{j}\right|$
where $\theta=\mathbb{1}_{A}$, i.e., $\theta_{i}= \begin{cases}1 & \text { if } i \in A \\ 0 & \text { otherwise. }\end{cases}$
- Each binary problem to solve has the form

$$
\min _{\theta} \sum_{i, j} w_{i j}\left|\theta_{i}-\theta_{j}\right|+\sum_{i}\left(\lambda-v_{i}\right) \theta_{i}
$$

\rightarrow Perimeter + data fidelity
\Rightarrow Globally solvable using maximum-flow/minimum-cut

Minimizing ROF via maximum-flow (2/4)

Strategies of reconstruction, i.e., order for the series of $\left\{\lambda_{1}\right\}$

- Dyadic (dichotomy/bitonic) search:
$\rightarrow\left\|\hat{u}-u^{*}\right\|_{\infty} \leq \epsilon$ in $O\left(\log _{2} \epsilon\right.$) [D. Sigelle 06]

Minimizing ROF via maximum-flow (2/4)

Strategies of reconstruction, i.e., order for the series of $\left\{\lambda_{l}\right\}$

- Dyadic (dichotomy/bitonic) search:
$\rightarrow\left\|\hat{u}-u^{*}\right\|_{\infty} \leq \epsilon$ in $O\left(\log _{2} \epsilon\right)$ [D. Sigelle 06]
- A much better idea: Re-use the maximum-flow result
- Inclusion property says:
- the set a nodes connected to the source is increasing (as $\lambda \nearrow$)
- equivalent to capacity arcs "Source \rightarrow nodes" \nearrow (parametric max-flow)
- equivalent to convexity of data fidelity of TV problems
- [Gallo-Grigoriadis-Tarjan 89] showed
- the comparison principle
- time complexity of a parametric max-flow = time of a one max-flow
- Algo Parametric: Iowest to greastest
- Algo Parametric: dyadic search [Chambolle D. 06/07] [Hochbaum 01]

Solution $\epsilon=0$ in strongly polynomial time ($\log \frac{1}{\epsilon}$ becomes $\log n$)

Minimizing ROF via maximum-flow (2/4)

Strategies of reconstruction, i.e., order for the series of $\left\{\lambda_{l}\right\}$

- Dyadic (dichotomy/bitonic) search:
$\rightarrow\left\|\hat{u}-u^{*}\right\|_{\infty} \leq \epsilon$ in $O\left(\log _{2} \epsilon\right)$ [D. Sigelle 06]
- A much better idea: Re-use the maximum-flow result
- Inclusion property says:
- the set a nodes connected to the source is increasing (as $\lambda \nearrow$)
- equivalent to capacity arcs "Source \rightarrow nodes" \nearrow (parametric max-flow)
- equivalent to convexity of data fidelity of TV problems
- [Gallo-Grigoriadis-Tarjan 89] showed
- the comparison principle
- time complexity of a parametric max-flow = time of a one max-flow
- Algo Parametric: lowest to greastest
- Algo Parametric: dyadic search [Chambolle D. 06/07] [Hochbaum 01] \rightarrow Solution $\epsilon=0$ in strongly polynomial time ($\log \frac{1}{\epsilon}$ becomes $\log n$)

Minimizing ROF via maximum-flow (2/4)

Strategies of reconstruction, i.e., order for the series of $\left\{\lambda_{l}\right\}$

- Dyadic (dichotomy/bitonic) search:
$\rightarrow\left\|\hat{u}-u^{*}\right\|_{\infty} \leq \epsilon$ in $O\left(\log _{2} \epsilon\right)$ [D. Sigelle 06]
- A much better idea: Re-use the maximum-flow result
- Inclusion property says:
- the set a nodes connected to the source is increasing (as $\lambda \nearrow$)
- equivalent to capacity arcs "Source \rightarrow nodes" \nearrow (parametric max-flow)
- equivalent to convexity of data fidelity of TV problems
- [Gallo-Grigoriadis-Tarjan 89] showed
- the comparison principle
- time complexity of a parametric max-flow = time of a one max-flow
- Algo Parametric: lowest to greastest
- Algo Parametric: dyadic search [Chambolle D. 06/07] [Hochbaum 01] \rightarrow Solution $\epsilon=0$ in strongly polynomial time ($\log \frac{1}{\epsilon}$ becomes $\log n$)
DEMO

Minimizing ROF via maximum-flow Time results (3/4)

$\frac{1}{2 \lambda}\|u-v\|_{L_{2}}^{2}, 8$-neighbors, 256 gray-levels original, $\lambda=10, \lambda=20, \lambda=60$

Minimizing ROF via maximum-flow Time results (4/4)

$\frac{1}{2 \lambda}\|u-v\|_{1 / 2}^{2}, 8$-neighbors, 256 gray-levels, Intel Core 2 Duo 2.4 Gz
PR: Push/relabel FIFO max-flow algorithm
BK: [Boykov Kolmogorov 04] max-flow algorithm (efficient for sparse graph)

Images (size)	Approach	$\lambda=10$	$\lambda=20$	$\lambda=60$
Girl $\left(\mathbf{2 5 6}{ }^{2}\right)$	Parametric PR	5.32	9.24	12.67
	Parametric BK	2.97	3.25	4.04
	Dyadic Parametric PR	1.49	2.05	3.42
	Chambolle/Darbon-Sigelle	0.55	0.72	1.08
	Dyadic Parametric BK	0.42	0.55	0.81
Girl $\left(512^{2}\right)$	Parametric PR	41.14	71.39	140.79
	Parametric BK	11.90	13.19	17.08
	Dyadic Parametric PR	10.15	12.92	22.17
	Chambolle/Darbon-Sigelle	2.34	3.05	5.01
	Dyadic Parametric BK	1.86	2.54	4.19

Geometric evolutions (1/2)

- Goal: Computing anisotropic mean curvature flows
- Almgren-Taylor-Wang's implicit approach [93]:
- Given a time-step $h>0$
- A current set $A^{n-1} \approx A((n-1) h)$, the curve is ∂A^{n-1}
- Find the new curve evolved by mean curvature by solving

$$
\min _{A} \mathcal{J}(A)+\frac{1}{h} \int_{A} d_{A^{n-1}}(x) d x
$$

where \mathcal{J} is an isotropic or anisotropic perimeter and d_{A} the signed distance to ∂A.

Geometric evolutions (2/2)

- Parametric-based approach
a) minimize an approximation of $\min E\left(u, d_{A^{n-1}}\right)$ (around the level 0)
c) find the new set $A^{n}=\{u \geq 0\}$.
- DEMO

Crystal Growth

Solving Stefan's equation system using [Almgren 93] (\rightarrow solve one step evolution + update temperature)

