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Separable TV minization

[) Total Variation Minimization and parametric max-flow

@ Both continuous and discrete point of view
o Separable cases: Rudin-Osher-Fatemi, curve evolution
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Generalized perimeters and Coarea-Formula

@ Ildea: J is a "generalized perimeter”
Let Q c RN. Let 7 be nonnegative, defined on measurable subsets
of Q be such that
e J is l.s.c. with respect to the L' convergence
o J(AUuB)+ J(AnB) < J(A)+ J(B) [Submodular Lovasz 82]
e J0)=J(Q)=0
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Generalized perimeters and Coarea-Formula

@ Ildea: J is a "generalized perimeter”
Let Q c RN. Let 7 be nonnegative, defined on measurable subsets
of Q be such that

e J is l.s.c. with respect to the L' convergence
o J(AUB)+J(AnB) < J(A)+ J(B) [Submodular Lovasz 82]
o J0)=T(Q)=0
@ Idea: J is a "Total Variation”
Extensionto any u € L'(Q) — J(u)
by the Generalized coarea formula [Choquet,Lovasz,Visintin]:

J(u) = /_OO J({u>A})dA

where {u > A} = {x € Q|u(x) > A} (level sets)
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@ Proposition (Bouchitté)
J is 1-homogeneous, convex, I.s.c., Ve J(- + ¢) = J(+)

@ Conversely:
If J is a convex, |.s.c., nonnegative functional wich satisfies the
generalized coarea formula
then A — J(xa) is a “generalized perimeter” in our sense.
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@ Proposition (Bouchitté)
J is 1-homogeneous, convex, |.s.c., Ve J(- + ¢) = J(+)
@ Conversely:
If J is a convex, |.s.c., nonnegative functional wich satisfies the
generalized coarea formula
then A — J(xa) is a “generalized perimeter” in our sense.

A matter of wording

@ Same concepts but different words:
e Analysis / Level sets / Coarea formula
o Combinatorics / unary representation / Lovasz extension
o Game Theory/Fuzzy Logic / a«—cut / Choquet Integral

@ Similarity with Mathematical Morphology [ Guichard Morel], "stack filters”
e J = monotone filter on sets
e J = monotone filter on functions
e Example: J = |- —v]|1 + TV(:) is morphological [D. 05]
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o Total variation/Perimeter: P(A,Q) = [, |Dxa| with

/ Du| = sup{/ udive : v € CR(QRY), [(x)] < 1 VX}
Q Q
@ Nonlocal functionals (k nonnegative) [Buades et al. 05]:
W) = [ kG)lutx) - uly)| oy
QxQ

@ Discrete energies of the form (computational point of view)

J(u) = wylu; — uj|
i

@ Note that y/uZ + uZ is NOT submodular
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Comparison Principle

@ We minimize the following energy wrt. A (with v € L'(Q))
EAIV) = T(A) — / v dx
A

Lemmav <v=ACA
@ Several approaches for the proof

e Stochastically-based [D. Sigelle 04]
e Variational approach [Chambolle 05] + the simplest
o Algorithmically-based [Gallo-Grigoriadis-Tarjan 89]
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ROF Comparison Principle

@ Let u minimize Rudin-Osher-Fatemi (ROF)

E(ulv) = J(u) + ;/Q(u— v)? dx .

Then: for any s, {u > A} and {u > A} are the minimal and maximal
solution of

m/ln E(A,v =)

@ If u, U respectively minimize E(u|v) and £(u'|V’) then
v<Vv=u<Uu.
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ROF Comparison Principle

@ Let u minimize Rudin-Osher-Fatemi (ROF)

E(ulv) = J(u) + ;/Q(u— v)? dx .

Then: for any s, {u > A} and {u > A} are the minimal and maximal
solution of

m/ln E(A,v =)

@ If u, U respectively minimize E(u|v) and £(U'|v’) then
v<Vv =u<Uu.
@ Optimization point of view:
e To minimize £(-|v) — Minimize the associated ROF pb and threshold
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ROF Comparison Principle

@ Let u minimize Rudin-Osher-Fatemi (ROF)

E(ulv) = J(u) + ;/Q(u— v)? dx .

Then: for any s, {u > A} and {u > A} are the minimal and maximal
solution of

m/ln E(A,v =)

@ If u, U respectively minimize E(u|v) and £(U'|v’) then
v<Vv =u<Uu.
@ Optimization point of view:
e To minimize £(-|v) — Minimize the associated ROF pb and threshold

e To minimize ROF E(:|v) — Solve a series a £(:|\ — v) and
reconstruct u from its level sets
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Minimizing ROF via maximum-flow (1/4)

@ Reduction of ROF to series a "generalized perimeter” functionals
@ Pairwise interactions perimeters J(A) = >_, ; w;|0; — 0|
. 1 ifieA
where 0 = 1,4, i.e., 6; = )
0 otherwise.

@ Each binary problem to solve has the form
min Z w;jl6; — ;] + Z()\ —v)b;
If i

— Perimeter + data fidelity
= Globally solvable using maximum-flow/minimum-cut
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Minimizing ROF via maximum-flow (2/4)

Strategies of reconstruction, i.e., order for the series of {)\}

@ Dyadic (dichotomy/bitonic) search:
— |0 — U*]|o < €in O(log, €) [D. Sigelle 06]
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Minimizing ROF via maximum-flow (2/4)

Strategies of reconstruction, i.e., order for the series of {)\}

@ Dyadic (dichotomy/bitonic) search:
— |8 — U*||o < €in O(log, €) [D. Sigelle 06]
@ A much better idea: Re-use the maximum-flow result
@ Inclusion property says:

@ the set a nodes connected to the source is increasing (as A ")
@ equivalent to capacity arcs "Source — nodes” * (parametric max-flow)
@ equivalent to convexity of data fidelity of TV problems
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Minimizing ROF via maximum-flow (2/4)

Strategies of reconstruction, i.e., order for the series of {)\}

@ Dyadic (dichotomy/bitonic) search:
— |8 — U*||o < €in O(log, €) [D. Sigelle 06]
@ A much better idea: Re-use the maximum-flow result
@ Inclusion property says:

@ the set a nodes connected to the source is increasing (as A ")
@ equivalent to capacity arcs "Source — nodes” * (parametric max-flow)
@ equivalent to convexity of data fidelity of TV problems

e [Gallo-Grigoriadis-Tarjan 89] showed
@ the comparison principle
@ time complexity of a parametric max-flow = time of a one max-flow
o Algo Parametric: lowest to greastest
o Algo Parametric: dyadic search [Chambolle D. 06/07] [Hochbaum 01]
— Solution € = 0 in strongly polynomial time (log % becomes log n)
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Minimizing ROF via maximum-flow (2/4)

Strategies of reconstruction, i.e., order for the series of {)\}

@ Dyadic (dichotomy/bitonic) search:
— |8 — U*||o < €in O(log, €) [D. Sigelle 06]
@ A much better idea: Re-use the maximum-flow result
@ Inclusion property says:

@ the set a nodes connected to the source is increasing (as A ")
@ equivalent to capacity arcs "Source — nodes” * (parametric max-flow)
@ equivalent to convexity of data fidelity of TV problems

e [Gallo-Grigoriadis-Tarjan 89] showed

@ the comparison principle
@ time complexity of a parametric max-flow = time of a one max-flow

o Algo Parametric: lowest to greastest
o Algo Parametric: dyadic search [Chambolle D. 06/07] [Hochbaum 01]
— Solution € = 0 in strongly polynomial time (log % becomes log n)

DEMO
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Minimizing ROF via maximum-flow Time results (3/4)

axllu — v||2, 8-neighbors, 256 gray-levels
original, A = 10, A = 20, A = 60
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Minimizing ROF via maximum-flow Time results (4/4)

axllu — V|3, 8-neighbors, 256 gray-levels, Intel Core 2 Duo 2.4 Gz

PR: Push/relabel FIFO max-flow algorithm
BK: [Boykov Kolmogorov 04] max-flow algorithm (efficient for sparse graph)

Images (size) | Approach A=10 A=20 X=60
Parametric PR 5.32 9.24 12.67
Parametric BK 2.97 3.25 4.04

Girl (2562) Dyadic Parametric PR 1.49 2.05 3.42
Chambolle/Darbon-Sigelle  0.55 0.72 1.08
Dyadic Parametric BK 0.42 0.55 0.81
Parametric PR 4114 71.39 140.79
Parametric BK 1190 13.19 17.08

Girl (512?) Dyadic Parametric PR 10.15 12,92 22.17
Chambolle/Darbon-Sigelle  2.34 3.05 5.01
Dyadic Parametric BK 1.86 2.54 419

Jerome Darbon, Fields Institute Toronto May 2012



Geometric evolutions (1/2)

@ Goal: Computing anisotropic mean curvature flows
@ Almgren-Taylor-Wang’s implicit approach [93]:

— Given a time-step h > 0
— Acurrent set A" =~ A((n — 1)h), the curve is A"
— Find the new curve evolved by mean curvature by solving

mlnj(A h/dAn 1

where 7 is an isotropic or anisotropic perimeter and d, the signed
distance to JA.
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Geometric evolutions (2/2)

@ Parametric-based approach
a) minimize an approximation of min E(u, ds»-1) (around the level 0)
c) find the new set A" = {u > 0}.

e DEMO
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Crystal Growth

Solving Stefan’s equation system using [Almgren 93]
(—solve one step evolution + update temperature)

+
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