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Separable TV minization

I) Total Variation Minimization and parametric max-flow
Both continuous and discrete point of view
Separable cases: Rudin-Osher-Fatemi, curve evolution
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Generalized perimeters and Coarea-Formula

Idea: J is a ”generalized perimeter”
Let Ω ⊂ RN . Let J be nonnegative, defined on measurable subsets
of Ω be such that

J is l.s.c. with respect to the L1 convergence
J (A ∪ B) + J (A ∩ B) ≤ J (A) + J (B) [Submodular Lovasz 82]
J (∅) = J (Ω) = 0

Idea: J is a ”Total Variation”
Extension to any u ∈ L1(Ω) → J(u)
by the Generalized coarea formula [Choquet,Lovasz,Visintin]:

J(u) =

∫ ∞
−∞
J ({u > λ}) dλ

where {u > λ} = {x ∈ Ω |u(x) > λ} (level sets)
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Links

Proposition (Bouchitté)
J is 1-homogeneous, convex, l.s.c., ∀c J(·+ c) = J(·)
Conversely:
If J is a convex, l.s.c., nonnegative functional wich satisfies the
generalized coarea formula
then A 7→ J(χA) is a “generalized perimeter” in our sense.

A matter of wording
Same concepts but different words:

Analysis / Level sets / Coarea formula
Combinatorics / unary representation / Lovasz extension
Game Theory/Fuzzy Logic / α−cut / Choquet Integral

Similarity with Mathematical Morphology [ Guichard Morel], ”stack filters”
J ≡ monotone filter on sets
J ≡ monotone filter on functions
Example: J ≡ ‖ · −v‖1 + TV (·) is morphological [D. 05]
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Examples

Total variation/Perimeter: P(A,Ω) =
∫
Ω |DχA| with∫

Ω
|Du| = sup

{∫
Ω

udivψ : ψ ∈ C∞c (Ω;RN) , |ψ(x)| ≤ 1 ∀x
}

Nonlocal functionals (k nonnegative) [Buades et al. 05]:

J(u) =

∫
Ω×Ω

k(x , y)|u(x)− u(y)|dxdy

Discrete energies of the form (computational point of view)

J(u) =
∑
i,j

wij |ui − uj |

Note that
√

u2
x + u2

y is NOT submodular
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Comparison Principle

We minimize the following energy wrt. A (with v ∈ L1(Ω))

E(A|v) = J (A)−
∫

A
v dx

Lemma v ′ < v ⇒ A′ ⊆ A
Several approaches for the proof

Stochastically-based [D. Sigelle 04]
Variational approach [Chambolle 05]← the simplest
Algorithmically-based [Gallo-Grigoriadis-Tarjan 89]
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ROF Comparison Principle

Let u minimize Rudin-Osher-Fatemi (ROF)

E(u|v) = J(u) +
1
2

∫
Ω

(u − v)2 dx .

Then: for any s, {u > λ} and {u ≥ λ} are the minimal and maximal
solution of

min
A
E(A, v − λ)

If u, u′ respectively minimize E(u|v) and E(u′|v ′) then
v ≤ v ′ ⇒ u ≤ u′.
Optimization point of view:

To minimize E(·|v)→ Minimize the associated ROF pb and threshold
To minimize ROF E(·|v)→ Solve a series a E(·|λ− v) and
reconstruct u from its level sets

Jerome Darbon, Fields Institute Toronto May 2012 10
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Minimizing ROF via maximum-flow (1/4)

Reduction of ROF to series a ”generalized perimeter” functionals
Pairwise interactions perimeters J (A) =

∑
i,j wij |θi − θj |

where θ = 1lA, i.e., θi =

{
1 if i ∈ A
0 otherwise.

Each binary problem to solve has the form

min
θ

∑
i,j

wij |θi − θj |+
∑

i

(λ− vi)θi

→ Perimeter + data fidelity
⇒ Globally solvable using maximum-flow/minimum-cut
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Minimizing ROF via maximum-flow (2/4)

Strategies of reconstruction, i.e., order for the series of {λl}
Dyadic (dichotomy/bitonic) search:
→ ‖û − u∗‖∞ ≤ ε in O(log2 ε) [D. Sigelle 06]
A much better idea: Re-use the maximum-flow result

Inclusion property says:
the set a nodes connected to the source is increasing (as λ ↗ )
equivalent to capacity arcs ”Source → nodes” ↗ (parametric max-flow)
equivalent to convexity of data fidelity of TV problems

• [Gallo-Grigoriadis-Tarjan 89] showed
the comparison principle
time complexity of a parametric max-flow = time of a one max-flow

Algo Parametric: lowest to greastest
Algo Parametric: dyadic search [Chambolle D. 06/07] [Hochbaum 01]
→ Solution ε = 0 in strongly polynomial time (log 1

ε becomes log n)

DEMO
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Minimizing ROF via maximum-flow Time results (3/4)
1

2λ‖u − v‖2l2 , 8-neighbors, 256 gray-levels
original, λ = 10, λ = 20, λ = 60
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Minimizing ROF via maximum-flow Time results (4/4)

1
2λ‖u − v‖2l2 , 8-neighbors, 256 gray-levels, Intel Core 2 Duo 2.4 Gz

PR: Push/relabel FIFO max-flow algorithm
BK: [Boykov Kolmogorov 04] max-flow algorithm (efficient for sparse graph)

Images (size) Approach λ = 10 λ = 20 λ = 60
Parametric PR 5.32 9.24 12.67
Parametric BK 2.97 3.25 4.04

Girl (2562) Dyadic Parametric PR 1.49 2.05 3.42
Chambolle/Darbon-Sigelle 0.55 0.72 1.08
Dyadic Parametric BK 0.42 0.55 0.81
Parametric PR 41.14 71.39 140.79
Parametric BK 11.90 13.19 17.08

Girl (5122) Dyadic Parametric PR 10.15 12.92 22.17
Chambolle/Darbon-Sigelle 2.34 3.05 5.01
Dyadic Parametric BK 1.86 2.54 4.19
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Geometric evolutions (1/2)

Goal: Computing anisotropic mean curvature flows
Almgren-Taylor-Wang’s implicit approach [93]:

− Given a time-step h > 0
− A current set An−1 ≈ A((n − 1)h), the curve is ∂An−1

− Find the new curve evolved by mean curvature by solving

min
A
J (A) +

1
h

∫
A

dAn−1(x) dx

where J is an isotropic or anisotropic perimeter and dA the signed
distance to ∂A.
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Geometric evolutions (2/2)

Parametric-based approach
a) minimize an approximation of min E(u,dAn−1) (around the level 0)
c) find the new set An = {u ≥ 0}.
DEMO
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Crystal Growth

Solving Stefan’s equation system using [Almgren 93]
(→solve one step evolution + update temperature)
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