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Context and motivations

@ Image Processing as optimization problems
@ restoration

noisy image restoration

image taken from [D. Sigelle 06]
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Context and motivations

@ Image Processing as optimization problems
e restoration, segmentation

original image segmentation
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Context and motivations

@ Image Processing as optimization problems
o restoration, segmentation

E(ulff,\)= D(u,f) +X R(u)
N—— —~—
Data Fidelity  a priori/Regularisation

@ Several millions variables, can be non-convex
@ Convex Continuous framework: Stopping criteria

E(uf|v,\) — E(u",\) <e .

— Optimal first-order approach [Nesterov 83,07], [Beck-et al 08]....
— Convergence in O(e~"), O(¢"2)
— non-polynomial (— log 1)

@ Refine the class of functionals

@ Quid e = 0 ? (by definition: algorithm = finite number of iterations)
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Context and motivations

@ Image Processing as optimization problems
e restoration, segmentation

E(ulff,\)= D(u,f) +X R(u)
~—— S~~~
Data Fidelity  a priori/Regularisation

@ Several millions variables, generally non-convex
@ Fast algorithm, and exact solutions for rigorous framework
— [Winkler 03] Dissociation models/algorithms

@ Discrete Framework — Markov Random Fields (MRFs)
Optimization techniques : stochastic methods and combinatorics
— energies formulated as a network flow
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Context and motivations

@ Combinatorics — exact optimization
binary energies— maximum flow/minimum-cut

source

@ Fast algorithms for sparse graphs
@ Seminal approach due to [Picard Ratliff Networks 75]
e Focus on binary cases
e — segmentation object/background with a perimeter prior
e Used in Statistical physics in the 80’s (Ferromagnetic Ising model)
o Re-discovered by [Boykov et al. 01], ... ”Graph-cuts” and extended
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Outline of the Talks

@ Binary optimization and Graph-cut
@ Total Variation optimization and applications
Remarks:
@ discrete world : finite number of labels
@ finite dimension R”
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Outline of this talk

@ Minimum-cuts in networks and interger programming

o Definition: cuts, capacity, s-t minimum-cut, maximum-flow
maximum-flow / s,t mimum-cut duality
Ideas on algorithms for computing maximum-flows
Mapping binary optimizations to s-t minimum-cuts
Application to imaging : Ising Chan-Vese model
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Maximum flow/Minimum cuts in networks: Definitions

Consiger a graph (network) G = [V,A]

V= {V07---7Vn+1}
Directed arc from v; to v; with capacity c;

e Let vy and v, 1 represent the source and the sink, respectively

A cut separating vy and vy 1 is defined as a node partition (S, S)
where vp € S, Vpi1 €S, SUS=VandSNS=10

source source
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Duality and maximum flows (1/3)

The capacity of a cut C(S, S) can be defined as:

C(S,8)=>> ¢,

i€l jel

where | = {i|lv; € S} and | = {j|v; € S}

e Goal: Minimize the capactity of the cut (s-t minimum-cut problem)
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Duality and maximum flows (2/3)

e Goal: Minimize the capactity of the cut (s-t minimum-cut problem)
e Assumption: All the capacities are nonnegative
= solved problem (polynomial time)
Max-flow/Min-cut Theorem (Duality)

The maximum value of the flow from a source node to a sink node in a
capacitated network equals the minimum capacity among all s-t cuts

@ Result independently discovered by

e [Ford and Fulkerson 1956]
e [Elias, Feinstein, Shannon 1956]
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Duality and maximum flows (3/3)

@ Computing maximum flows is a special linear program:

;

maximize f

s. 1. 0 < x; < ¢; <« feasibility of the flow
f fori=w

YipeaXit 2jgneaXi=9q 0 forallie V\{vo,vays}
—f foralli= vpiq

the vector x is a flow and the value f € R is the value of the flow.
Ideas for optimizing

e Maintain a feasible and "divergence free” flow

e Or maintain feasibility and allow to break "divergence free” constraint
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Algorithms for computing maximum flows

@ Assumption (recall): capacities are nonnegative
@ Mainly two classes for computing maximum flows:
e Augmenting Path class: augment flow along paths from source to
sink while maintaining mass balance constraints.
o Preflow-push class: flood the network so that some nodes have
excesses. Send excess toward the sink or backward the source.
@ Time complexity (n=# nodes, m=# arcs):
e Labelling: O(nmC)
e Sucessive shortest path: O(n?m)
FIFO preflow-push: O(n®)
Highest preflow-push: O(n?\/m)
e Excess scaling: O(nm + n?log C)
where C = max;; ¢jj

—In practice time complexity is "quasi’-linear for "regular” graph
using an augmen’[ing-path based algorithm [Kolomogorov Boykov PAMI 03]
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Generic Augmenting Path algorithms

e Simple ideas on flows
@ Arc (i, ) has capacity c;
@ Suppose an arc carries x;; units of flow
@ We can still send ¢;; — x; flow from i to j through (i, )

@ We can send x;; unit of flow from jto /
i.e., we cancel the existing flow on the arc

¢ Residual graph

@ Given a flow x
@ the residual graph is defined as follows:
e Replace each arc (/) in the original network by two arcs (/, j) and
(J,1)
e The arc (i,j) and residual capacity r; = ¢; — X;
e The arc (j,i) and residual capacity r; = x;
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Generic Augmenting Path algorithms

eGeneric Algorithm
@ While there is a directed path from Source to Sink in residual graph

o Identify an augmenting path P from Source to Sink
e 0 =min{r;: (i,j) € P}
e augment ¢ units of flow along P and compute residual graph

e Draw an example

e How to identify an augmenting path is important
@ for convergence toward the optimal
@ for time complexity

@ for image processing, use the [Kolomogorov-Boykov Pami 03]
algorithm — quasi linear-time in practice
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S-t minimum cuts and Binary Optimization (1/6)

@ We follow the approach of [Picard and Ratliff 1975]

@ As noted by [Hammer 1965], any cut separating vo and v, can
be represented by a vector

(1, X1, X2,...,Xn,0)
where x; € {0,1} forj=1,2,..., nand by defining
S={vilx;=1}and S = {v;|x; = 0}
@ Every vector of the previous form represents some cut (S, S).
@ The capacity of a cut represented by xo = 1,x,.1 = 0 and

X =(x1,...,Xn) can be represented as
n+1 n+1
CX) =) cix(1-x) ,
i=0 j=0

where xo = 1,x,.1 = 0.
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S-t minimum cuts and Binary Optimization (2/6)

@ Capacity of a cut (recall):

n+1 n+1

CX) =) cix(1—-x) ,

i=0 j=0

@ Now substitute xo = 1 and x,,.1 = 0 and use that x2 = x for
binary variables, we have:

n+1 n+1

c(X) = ZCO/“‘Z <Cjn+1 _COj+ZCjI) Xj
I

i=1 j=1
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S-t minimum cuts and Binary Optimization (3/6)

@ Now consider any boolean function of the form (recall)

Zp,x/ Z Z qixiXj + K

i=1 j=1

Theorem [Picard and Ratliff 1975]

A network G with arc capacities cj satisfying
Qcijtci=gqgj+qjforij=1,....n
Q cn1—cj=p—>iqqjforj=1,....n
Q coni=K- 27:1 Coj

has C(X) = F(X) for all X such that x; € {0,1} for j=1,...,n

@ Minimizing F < Finding a minimum s-t cut
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S-t minimum cuts and Binary Optimization (4/6)

@ Recall that finding @ minimum s-t cut is is
e Polynomial when capacities are positive

Theorem [Picard and Ratliff 1975]

If in the binary energy F

n n n
FOO =2 P =D D apx + K
j=1 i=1 j=1
we have g; > 0 fori=1,...,nthen one can build a network such that
@ the conditions of the previous th. are satisfied
@ all capacities are nonnegative (polynomial time)
e Statistical Phys.: MAP of Ferromagnetic Ising MRFs [Ogielsky 85]

e Binary Image restoration [Greig et al. 89]
e This is also called "Graph-cut” [Boykov, Kolmogoroy,... 01]
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S-t minimum cuts and Binary Optimization (5/6)

@ Thus we are able to solve exactly in polynomial time

minimize 77 4 pyx; — 3oLy o7Ly dxiX)
s.t. ;e {0,1}forjec1,...,n

where p; and g;; are some real valued constants and g;; > 0.
j i if

@ From a Bayesian point of view this a binary Markov Random
Field (MRF) with pairwise interaction.

@ In statistical physics this model is known as the ferromagnetic
Ising model.
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S-t minimum cuts and Binary Optimization (6/6)

@ Application of the work of [Picard and Ratliff 1975]
e [Barahona 1985] and [Ogielski 1986] studies the ground state of
the Ising model from a stastical physics point of view.
e [Greig et al. 1989] studies binary image restoration via the Ising
model.
@ This kind of approach has been revived by the re-introduction of
combinatorial methods in image processing and computer vision.

@ The graph-cut approach of Boykov-Veksler-Zabih goes far
beyond since it copes with non-binary optimization.
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Building the graph (1/2)

How do we build the graph for

n n n
E(x) = ZP:’X/ - ZZ QjiXiX;
i—1

i=1 j=1

with g; > 0
We proceed term by term (Draw it)
@ unary term: p;x;
e casep; >0
e case p; < 0. pix; = —p;(1 — X;) + p;
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Building the graph (1/2)

How do we build the graph for

Zplxl Z Z Qi XiXj

i=1 j=1

with g; > 0
We proceed term by term (Draw it)
@ unary term: p;x;
e casep; >0
e case p; < 0. pix; = —p;(1 — X;) + p;
e capacity for (Source, i): ¢y ; = max(0, ¢;)
e capacity for (i, Sink): ¢; nr1 = max(0, —¢;)
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Building the graph (1/2)

How do we build the graph for

Zplxl Z Z Qi XiXj

i=1 j=1

with g; > 0
We proceed term by term (Draw it)
@ unary term: p;x;
e casep; >0
e case p; < 0. pix; = —p;(1 — X;) + p;
capacity for (Source, i): ¢y ; = max(0, ¢;)
e capacity for (i, Sink): ¢; nr1 = max(0, —¢;)

@ Pairwise term: —q;x;X;
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Building the graph (2/2)

How do we build the graph for

Z pixi — Z Z qjXiX;

i=1 j=1

with g; > 0
We proceed term by term (Draw it)

@ Pairwise term: —q;x;X;
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Building the graph (2/2)

How do we build the graph for

Z pixi — Z Z qjXiX;

i=1 j=1

with g; > 0
We proceed term by term (Draw it)

@ Pairwise term: —qjiX;X;
@ Note that V(x,y) € {0,1}2 |x —y| = x +y — 2xy
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Building the graph (2/2)

How do we build the graph for

Z pixi — Z Z qjXiX;

i=1 j=1
with g; > 0
We proceed term by term (Draw it)
@ Pairwise term: —q;x;X;
@ Note that V(x,y) € {0,1}2 |x —y| = x +y — 2xy
= —qyxiy; = F1x — x| — F(% + x)
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Relation to "graph-cuts” and submodularity

Other combinatorial optimization schemes for binary energies
e "Graph-cuts” [Boykov, Veksler, Zabih PAMI 01]:
Requires: R(«, 8) < R(a,v) + R(v, 8) (triangle inequality)
e The latter is equivalent [Kolmogorov, Zabih PAMI 03] to:
R(0,0) + R(1,1) < R(0,1) + R(1,0) (binary submodularity)
Necessary and sufficient condition

Proposition [D. DAM 09]

Assume E is a binary energy with pairwise interactions, i.e.,

E(x) = X2 filxi) + X)) 9i(Xi, %)

with Vi x; € {0,1}. Then E is exactly minimisable in polynomial time iff
one of the following two equivalent assertions is satisfied:

e [Picard et al.], all interactions write as gjj(x,y) = wjxy with wg <0 ,

e [Kolmogorov and Zabih], all pairwise interactions are submodular.
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Imaging Problems

@ Using the reformulation, the regularization term takes the

following form
> > wilx— xi
i

@ This can be seen as a discrete perimeter
@ Draw picture
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Imaging Problems: Markov Random Field (ISING)

@ Binary segmentation (object/background)
@ Solve for u e {0,1}"

E(u) = > wyly—uj
J

+ Z u;D; < Data term for assigning 1
i
+> (1 — u;)E; « Data term for assigning 0

]

(1)
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Chan-Vese Model/Active contours without edges

@ The binary Mumford-Shah Model or Chan-Vese consists of
approximating a signal with two constants with a prior on the boundary

E(Q1, po, p1lv) = B Per()
+ | o T, V()3

+ [ f(, v(x))dx
Q4

o fistypically | - ||,
@ [ssues:
@ Non-convex problem

e Fast algorithm
@ Exact solution to:

@ measure the quality of the model,
@ measure the quality of an approximation algorithm

Jerome Darbon, Fields Institute Toronto May 2012



Chan-Vese Model: Naive Algorithm

@ Discretization

E(upo,pn) = B wlu;— uj
(i)
+Z(1 —u) {f(p1,vi) — f(po, vi)}

1
+ f(posvi) -
j

@ Set 19 and u1, O(L?) possible configurations
@ Optimize for u via Graph-cut [Boykov et al. 01], [Picard Ratliff 75]
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Chan-Vese Model: An inclusion Property

@ Goal: reduce the number (O(L?)) of maximum flows
@ |dea: show an inclusion property of the solution
@ Discretization (Recall)

E(u,po, 1) = ﬁz wjilu; — uj

(i)
+Z(1 — up) {f(p1, vi) = f(po, vi)}
+Z f(po, Vi) -

@ A variable which measures the difference between pg and ju1:

po=po+ K .
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Chan-Vese Model: An inclusion Property

@ Thus we have

E(u, po, 1) = BZ wii| Ui — ujl
)
+ Z ui {f(po, vi) — f(uo + K, v;)} + Constant
i

@ Assume K is fixed and define

Ek(u7 :U’O) = E(U7 Ho, K)
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Chan-Vese Model: An inclusion Property

@ Assume K is fixed and define (Recall)

Ek(“:MO) = E(“a“Oa K)

Theorem

Assume Data fidelity f is convex and assume g < ug. Let us defined
the binary images U and U as minimizers of EX (-, ig) and EX(-, 1ip)
respectively, i.e:

U € min{ulE"(u,10)}

U e min{u|EX(u, i)} .

Then we have the following inclusion:

0=<1. (2)
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Chan-Vese Model: Algorithm

Vse Sils«+ 0
for(K=0;K < L;++ K)
Reset connected component map
for (1o = 0; (1o + K) < L; pio < pio + 1)
U’ < argmin EX(u, uo)

u
if (E*(U, o) < EX(8, o))
O« u
update connected component map
return U
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Chan-Vese Model: Experiments

(Original)
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Chan-Vese Model: Experiments
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Chan-Vese Model: Experiments
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Chan-Vese Model: Time resulis

Time results in seconds (on a 3GHz Pentium 1V) for cameraman
Direct approach in ”(-)”
And inclusion-based

Size B=5 B3=10 3 =15
322 4.16 (13.1) 4.4 (13.8) 4.8 (14.6)
642 17.1 (54.3) 17.8 (57.5) 18.5 (60.7)

1282 7257(243.3) 77.2(254.6)  81.1 (268.4)
2562 364.8 (1813.4) 382.2 (1851.7) 414.3 (2081.6)

Note: each binary binary takes about 0.02s for a 2562 image
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Conclusion

@ Binary optimzation using maximum-flows

@ We can deal with problems of the form
Perimeter + unary recall term
e polynomial time and linear time in practice

@ How can we extend to non-binary problems?
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