Network flows for image processing Part I: Binary optimization and Graph-cut

Jérôme Darbon

CNRS / CMLA-ENS Cachan Mathematics Department UCLA

Variational Methods and Compressive Sensing in Imaging

Fields Institute, Toronto, May 2012

Acknowledgements

- Joint work with
 - M. Sigelle (Telecom ParisTech/ENST)

- Image Processing as optimization problems
 - restoration

noisy image

restoration

image taken from [D. Sigelle 06]

- Image Processing as optimization problems
 - restoration

noisy image

restoration

image taken from [D. Sigelle 06]

- Image Processing as optimization problems
 - restoration, segmentation

original image

segmentation

image taken from [D. 05]

- Image Processing as optimization problems
 - restoration, segmentation

$$E(u|f,\lambda) = \underbrace{D(u,f)}_{ ext{Data Fidelity}} + \lambda \underbrace{R(u)}_{ ext{Regularisation}}$$

- Several millions variables, can be non-convex
- Convex Continuous framework: Stopping criteria

$$E(u^{\epsilon}|v,\lambda) - E(u^*,\lambda) \leq \epsilon$$
.

- → Optimal first-order approach [Nesterov 83,07], [Beck-et al 08],...
- ightarrow Convergence in $O(\epsilon^{-1})$, $O(\epsilon^{-\frac{1}{2}})$
- ightarrow non-polynomial (ightarrow log $rac{1}{\epsilon}$)
- Refine the class of functionals
- Quid $\epsilon = 0$? (by definition: algorithm \equiv finite number of iterations)

- Image Processing as optimization problems
 - restoration, segmentation

$$E(u|f,\lambda) = \underbrace{D(u,f)}_{ ext{Data Fidelity}} + \lambda \underbrace{R(u)}_{ ext{a priori/Regularisation}}$$

- Several millions variables, generally non-convex
- Fast algorithm, and exact solutions for rigorous framework
 → [Winkler 03] Dissociation models/algorithms
- Discrete Framework → Markov Random Fields (MRFs)
 Optimization techniques: stochastic methods and combinatorics
 → energies formulated as a network flow

 Combinatorics → exact optimization binary energies → maximum flow/minimum-cut

- Fast algorithms for sparse graphs
- Seminal approach due to [Picard Ratliff Networks 75]
 - Focus on binary cases
 - ullet ightarrow segmentation object/background with a perimeter prior
 - Used in Statistical physics in the 80's (Ferromagnetic Ising model)
 - Re-discovered by [Boykov et al. 01], ... "Graph-cuts" and extended
- → Extension to non-binary cases

Outline of the Talks

- Binary optimization and Graph-cut
- Total Variation optimization and applications

Remarks:

- discrete world : finite number of labels
- finite dimension \mathbb{R}^n

Outline of this talk

- Minimum-cuts in networks and interger programming
 - Definition: cuts, capacity, s-t minimum-cut, maximum-flow
 - maximum-flow / s,t mimum-cut duality
 - Ideas on algorithms for computing maximum-flows
 - Mapping binary optimizations to s-t minimum-cuts
 - Application to imaging: Ising Chan-Vese model

Maximum flow/Minimum cuts in networks: Definitions

- Consiger a graph (network) G = [V,A]
- $V = \{v_0, \dots, v_{n+1}\}$
- Directed arc from v_i to v_j with capacity c_{ij}
- Let v_0 and v_{n+1} represent the source and the sink, respectively

Definition

A cut separating v_0 and v_{n+1} is defined as a node partition (S, \bar{S}) where $v_0 \in S$, $v_{n+1} \in \bar{S}$, $S \cup \bar{S} = V$ and $S \cap \bar{S} = \emptyset$

Duality and maximum flows (1/3)

Definition

The capacity of a cut $C(S, \bar{S})$ can be defined as:

$$\mathcal{C}(\mathcal{S}, \bar{\mathcal{S}}) = \sum_{i \in I} \sum_{j \in \bar{I}} c_{ij} \ ,$$

where $I = \{i | v_i \in S\}$ and $\bar{I} = \{j | v_j \in \bar{S}\}$

Goal: Minimize the capacity of the cut (s-t minimum-cut problem)

Duality and maximum flows (2/3)

- Goal: Minimize the capacity of the cut (s-t minimum-cut problem)
- Assumption: All the capacities are nonnegative ⇒ solved problem (polynomial time)

Max-flow/Min-cut Theorem (Duality)

The maximum value of the flow from a source node to a sink node in a capacitated network equals the minimum capacity among all s-t cuts

- Result independently discovered by
 - [Ford and Fulkerson 1956]
 - [Elias, Feinstein, Shannon 1956]

Duality and maximum flows (3/3)

Computing maximum flows is a special linear program:

$$\begin{cases} \text{ maximize } f \\ \text{ s. t. } 0 \leq x_{ij} \leq c_{ij} & \leftarrow \text{ feasibility of the flow} \\ \sum_{j:(i,j) \in A} x_{ij} + \sum_{j:(j,i) \in A} x_{ji} = \begin{cases} f & \text{for } i = v_0 \\ 0 & \text{for all } i \in V \setminus \{v_0, v_{n+1}\} \\ -f & \text{for all } i = v_{n+1} \end{cases}$$

the vector x is a flow and the value $f \in \mathbb{R}$ is the value of the flow. Ideas for optimizing

- Maintain a feasible and "divergence free" flow
- Or maintain feasibility and allow to break "divergence free" constraint

Algorithms for computing maximum flows

- Assumption (recall): capacities are nonnegative
- Mainly two classes for computing maximum flows:
 - Augmenting Path class: augment flow along paths from source to sink while maintaining mass balance constraints.
 - Preflow-push class: flood the network so that some nodes have excesses. Send excess toward the sink or backward the source.
- Time complexity (n=# nodes, m=# arcs):
 - Labelling: O(nmC)
 - Sucessive shortest path: O(n²m)
 - FIFO preflow-push: $O(n^3)$
 - Highest preflow-push: $O(n^2\sqrt{m})$
 - Excess scaling: $O(nm + n^2 \log C)$

where $C = \max_{ij} c_i j$

→In practice time complexity is "quasi"-linear for "regular" graph using an augmenting-path based algorithm [Kolomogorov Boykov PAMI 03]

Generic Augmenting Path algorithms

- Simple ideas on flows
 - Arc (i, j) has capacity c_{ij}
 - Suppose an arc carries x_{ij} units of flow
 - We can still send $c_{ij} x_{ij}$ flow from i to j through (i, j)
 - We can send x_{ij} unit of flow from j to i
 i.e., we cancel the existing flow on the arc
- Residual graph
 - Given a flow x
 - the residual graph is defined as follows:
 - Replace each arc (i, j) in the original network by two arcs (i, j) and (j, i)
 - The arc (i,j) and residual capacity $r_{ij} = c_{ij} x_{ij}$
 - The arc (j,i) and residual capacity $r_{ji} = x_{ij}$

Generic Augmenting Path algorithms

- Generic Algorithm
 - While there is a directed path from Source to Sink in residual graph
 - Identify an augmenting path P from Source to Sink
 - $\bullet \ \delta = \min\{r_{ij} : (i,j) \in P\}$
 - ullet augment $\dot{\delta}$ units of flow along P and compute residual graph
- Draw an example
- How to identify an augmenting path is important
 - for convergence toward the optimal
 - for time complexity
 - \bullet for image processing, use the [Kolomogorov-Boykov Pami 03] algorithm \to quasi linear-time in practice

S-t minimum cuts and Binary Optimization (1/6)

- We follow the approach of [Picard and Ratliff 1975]
- As noted by [Hammer 1965], any cut separating v_0 and v_{n+1} can be represented by a vector

$$(1, x_1, x_2, \ldots, x_n, 0)$$

where $x_j \in \{0, 1\}$ for j = 1, 2, ..., n and by defining $S = \{v_i | x_i = 1\}$ and $\bar{S} = \{v_i | x_i = 0\}$

- Every vector of the previous form represents some cut (S, \bar{S}) .
- The capacity of a cut represented by $x_0 = 1, x_{n+1} = 0$ and $X = (x_1, ..., x_n)$ can be represented as

$$C(X) = \sum_{i=0}^{n+1} \sum_{j=0}^{n+1} c_{ij} x_i (1 - x_j) ,$$

where $x_0 = 1, x_{n+1} = 0$.

S-t minimum cuts and Binary Optimization (2/6)

Capacity of a cut (recall):

$$C(X) = \sum_{i=0}^{n+1} \sum_{j=0}^{n+1} c_{ij} x_i (1 - x_j) ,$$

• Now substitute $x_0 = 1$ and $x_{n+1} = 0$ and use that $x^2 = x$ for binary variables, we have:

$$C(X) = \sum_{j=0}^{n+1} c_{0j} + \sum_{j=1}^{n+1} \left(c_{j,n+1} - c_{0j} + \sum_{i=1}^{n} c_{ji} \right) x_{j}$$
$$- \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{i} x_{j}$$

S-t minimum cuts and Binary Optimization (3/6)

Now consider any boolean function of the form (recall)

$$F(X) = \sum_{j=1}^{n} p_{j} x_{j} - \sum_{i=1}^{n} \sum_{j=1}^{n} q_{ij} x_{i} x_{j} + K$$

Theorem [Picard and Ratliff 1975]

A network G with arc capacities cii satisfying

- **1** $c_{ij} + c_{ji} = q_{ij} + q_{ji}$ for i, j = 1, ..., n
- 2 $c_{j,n+1} c_{0j} = p_j \sum_{i=1}^n q_{ij}$ for j = 1, ..., n

has C(X) = F(X) for all X such that $x_j \in \{0, 1\}$ for $j=1, \ldots, n$.

Minimizing F ⇔ Finding a minimum s-t cut

S-t minimum cuts and Binary Optimization (4/6)

- Recall that finding a minimum s-t cut is is
 - Polynomial when capacities are positive

Theorem [Picard and Ratliff 1975]

If in the binary energy F

$$F(X) = \sum_{j=1}^{n} p_{j} x_{j} - \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{q}_{ij} x_{i} x_{j} + K$$

we have $q_{ij} \ge 0$ for i = 1, ..., n then one can build a network such that

- the conditions of the previous th. are satisfied
- all capacities are nonnegative (polynomial time)
- Statistical Phys.: MAP of Ferromagnetic Ising MRFs [Ogielsky 85]
- Binary Image restoration [Greig et al. 89]
- This is also called "Graph-cut" [Boykov, Kolmogorov,... 01]

S-t minimum cuts and Binary Optimization (5/6)

• Thus we are able to solve exactly in polynomial time

$$\begin{cases} \text{ minimize } \sum_{j=1}^{n} p_j x_j - \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{q}_{ij} x_i x_j \\ \text{s. t. } x_j \in \{0, 1\} \text{ for } j \in 1, \dots, n \end{cases}$$

where p_i and q_{ij} are some real valued constants and $q_{ij} \ge 0$.

- From a Bayesian point of view this a binary Markov Random Field (MRF) with pairwise interaction.
- In statistical physics this model is known as the ferromagnetic Ising model.

S-t minimum cuts and Binary Optimization (6/6)

- Application of the work of [Picard and Ratliff 1975]
 - [Barahona 1985] and [Ogielski 1986] studies the ground state of the Ising model from a stastical physics point of view.
 - [Greig et al. 1989] studies binary image restoration via the Ising model.
- This kind of approach has been revived by the re-introduction of combinatorial methods in image processing and computer vision.
- The graph-cut approach of Boykov-Veksler-Zabih goes far beyond since it copes with non-binary optimization.

Building the graph (1/2)

How do we build the graph for

$$E(x) = \sum_{i=1}^{n} p_i x_i - \sum_{i=1}^{n} \sum_{j=1}^{n} q_{ij} x_i x_j$$

with $q_{ij} \geq 0$

- unary term: $p_i x_i$
 - case $p_i \ge 0$
 - case $p_i < 0$. $p_i x_i = -p_i (1 x_i) + p_i$
 - capacity for (Source, i): $c_{0,i} = \max(0, c_i)$
 - capacity for (i, Sink): $c_{i,n+1} = \max(0, -c_i)$
- Pairwise term: -q_{ij}x_ix_j

Building the graph (1/2)

How do we build the graph for

$$E(x) = \sum_{i=1}^{n} p_i x_i - \sum_{i=1}^{n} \sum_{j=1}^{n} q_{ij} x_i x_j$$

with $q_{ij} \geq 0$

- unary term: p_ix_i
 - case $p_i \ge 0$
 - case $p_i < 0$. $p_i x_i = -p_i (1 x_i) + p_i$
 - capacity for (Source, i): $c_{0,i} = \max(0, c_i)$
 - capacity for (i, Sink): $c_{i,n+1} = \max(0, -c_i)$
- Pairwise term: -q_{ij}x_ix_j

Building the graph (1/2)

How do we build the graph for

$$E(x) = \sum_{i=1}^{n} p_i x_i - \sum_{i=1}^{n} \sum_{j=1}^{n} q_{ij} x_i x_j$$

with $q_{ij} \geq 0$

- unary term: p_ix_i
 - case *p_i* ≥ 0
 - case $p_i < 0$. $p_i x_i = -p_i (1 x_i) + p_i$
 - capacity for (Source, i): $c_{0,i} = \max(0, c_i)$
 - capacity for (i, Sink): $c_{i,n+1} = \max(0, -c_i)$
- Pairwise term: $-q_{ij}x_ix_j$

Building the graph (2/2)

How do we build the graph for

$$E(x) = \sum_{i=1}^{n} p_i x_i - \sum_{i=1}^{n} \sum_{j=1}^{n} q_{ij} x_i x_j$$

with $q_{ij} \geq 0$

- Pairwise term: $-q_{ij}x_ix_j$
- Note that $\forall (x, y) \in \{0, 1\}^2 \ |x y| = x + y 2xy$

$$\Rightarrow -q_{ij}x_iy_j = \frac{q_{ij}}{2}|x_i - x_j| - \frac{q_{ij}}{2}(x_i + x_j)$$

Building the graph (2/2)

How do we build the graph for

$$E(x) = \sum_{i=1}^{n} p_i x_i - \sum_{i=1}^{n} \sum_{j=1}^{n} q_{ij} x_i x_j$$

with $q_{ij} \geq 0$

- Pairwise term: $-q_{ij}x_ix_j$
- Note that $\forall (x, y) \in \{0, 1\}^2 \ |x y| = x + y 2xy$

$$\Rightarrow -q_{ij}x_iy_j = \frac{q_{ij}}{2}|x_i - x_j| - \frac{q_{ij}}{2}(x_i + x_j)$$

Building the graph (2/2)

How do we build the graph for

$$E(x) = \sum_{i=1}^{n} p_i x_i - \sum_{i=1}^{n} \sum_{j=1}^{n} q_{ij} x_i x_j$$

with $q_{ij} \geq 0$

- Pairwise term: $-q_{ij}x_ix_j$
- Note that $\forall (x, y) \in \{0, 1\}^2 \ |x y| = x + y 2xy$

$$\Rightarrow -q_{ij}x_iy_j = \frac{q_{ij}}{2}|x_i-x_j| - \frac{q_{ij}}{2}(x_i+x_j)$$

Relation to "graph-cuts" and submodularity

Other combinatorial optimization schemes for binary energies

- "Graph-cuts" [Boykov, Veksler, Zabih PAMI 01]: Requires: $R(\alpha, \beta) \leq R(\alpha, \gamma) + R(\gamma, \beta)$ (triangle inequality)
- The latter is equivalent [Kolmogorov, Zabih PAMI 03] to: $R(0,0) + R(1,1) \le R(0,1) + R(1,0)$ (binary submodularity) Necessary and sufficient condition

Proposition [D. DAM 09]

Assume E is a binary energy with pairwise interactions, i.e.,

$$E(x) = \sum_{i} f_i(x_i) + \sum_{(i,j)} g_{ij}(x_i, x_j) ,$$

with $\forall i \ x_i \in \{0,1\}$. Then E is exactly minimisable in polynomial time iff one of the following two equivalent assertions is satisfied:

- [Picard et al.], all interactions write as $g_{ij}(x,y) = w_{ij}xy$ with $w_{st} \leq 0$,
- [Kolmogorov and Zabih], all pairwise interactions are submodular.

Imaging Problems

 Using the reformulation, the regularization term takes the following form

$$\sum_{i}\sum_{j}w_{ij}|x_{j}-x_{i}|$$

- This can be seen as a discrete perimeter
- Draw picture

Imaging Problems: Markov Random Field (ISING)

- Binary segmentation (object/background)
- Solve for $u \in \{0, 1\}^n$

$$E(u) = \sum_{j} w_{ij} |u_j - u_i|$$

 $+ \sum_{i} u_i D_i \leftarrow \text{Data term for assigning 1}$
 $+ \sum_{i} (1 - u_i) E_i \leftarrow \text{Data term for assigning 0}$

(1)

Chan-Vese Model/Active contours without edges

 The binary Mumford-Shah Model or Chan-Vese consists of approximating a signal with two constants with a prior on the boundary

$$E(\Omega_{1}, \mu_{0}, \mu_{1}|v) = \beta \operatorname{Per}(\Omega_{1}) + \int_{\Omega \setminus \Omega_{1}} f(\mu_{0}, v(x)) dx + \int_{\Omega_{1}} f(\mu_{1}, v(x)) dx ,$$

- f is typically $\|\cdot\|_{L^p}^p$
- Issues:
 - Non-convex problem
 - Fast algorithm
 - Exact solution to:
 - measure the quality of the model,
 - measure the quality of an approximation algorithm

Chan-Vese Model: Naive Algorithm

Discretization

$$E(u, \mu_0, \mu_1) = \beta \sum_{(i,j)} w_{ij} |u_j - u_i|$$

$$+ \sum_i (1 - u_i) \{ f(\mu_1, v_i) - f(\mu_0, v_i) \}$$

$$+ \sum_i f(\mu_0, v_i) .$$

- Set μ_0 and μ_1 , $O(L^2)$ possible configurations
- Optimize for u via Graph-cut [Boykov et al. 01], [Picard Ratliff 75]

Chan-Vese Model: An inclusion Property

- Goal: reduce the number $(O(L^2))$ of maximum flows
- Idea: show an inclusion property of the solution
- Discretization (Recall)

$$E(u, \mu_0, \mu_1) = \beta \sum_{(i,j)} w_{ij} |u_i - u_j|$$

$$+ \sum_i (1 - u_i) \{ f(\mu_1, v_i) - f(\mu_0, v_i) \}$$

$$+ \sum_i f(\mu_0, v_i) .$$

• A variable which measures the difference between μ_0 and μ_1 :

$$\mu_1 = \mu_0 + K$$
.

Chan-Vese Model: An inclusion Property

Thus we have

$$E(u, \mu_0, \mu_1) = \beta \sum_{(i,j)} w_{ij} |u_i - u_j| + \sum_{i} u_i \{ f(\mu_0, v_i) - f(\mu_0 + K, v_i) \} + Constant$$

Assume K is fixed and define

$$E^{k}(u,\mu_{0})=E(u,\mu_{0},K)$$

Chan-Vese Model: An inclusion Property

Assume K is fixed and define (Recall)

$$E^k(u,\mu_0)=E(u,\mu_0,K)$$

Theorem

Assume Data fidelity f is convex and assume $\widehat{\mu_0} \leq \widetilde{\mu_0}$. Let us defined the binary images \widehat{u} and \widetilde{u} as minimizers of $E^K(\cdot, \widehat{\mu_0})$ and $E^K(\cdot, \widehat{\mu_0})$ respectively, i.e:

$$\widehat{u} \in \min\{u|E^K(u,\widehat{\mu_0})\}$$
,
 $\widetilde{u} \in \min\{u|E^K(u,\widetilde{\mu_0})\}$.

Then we have the following inclusion:

$$\hat{u} \leq \tilde{u}$$
 . (2)

Chan-Vese Model: Algorithm

```
 \forall s \in S \ \hat{u}_s \leftarrow 0 \\ \text{for } (K = 0; K < L; + + K) \\ \text{Reset connected component map} \\ \text{for } (\mu_0 = 0; (\mu_0 + K) < L; \mu_0 \leftarrow \mu_0 + 1) \\ u' \leftarrow \underset{u}{\text{argmin }} E^K(u, \mu_0) \\ \text{if } (E^K(u', \mu_0) < E^K(\hat{u}, \mu_0)) \\ \hat{u} \leftarrow u' \\ \text{update connected component map} \\ \text{return } \hat{u}
```

Chan-Vese Model: Experiments

(Original)

 $(\beta = 10)$

Chan-Vese Model: Experiments

Chan-Vese Model: Experiments

$$\beta = 25$$

$$\beta = 30$$

Chan-Vese Model: Time results

Time results in seconds (on a 3GHz Pentium IV) for cameraman Direct approach in " (\cdot) " And inclusion-based

Size	$\beta = 5$	$\beta = 10$	$\beta = 15$
32 ²	4.16 (13.1)	4.4 (13.8)	4.8 (14.6)
64 ²	17.1 (54.3)	17.8 (57.5)	18.5 (60.7)
128 ²	72.57(243.3)	77.2 (254.6)	81.1 (268.4)
256 ²	364.8 (1813.4)	382.2 (1851.7)	414.3 (2081.6)

Note: each binary binary takes about 0.02s for a 256² image

Conclusion

- Binary optimzation using maximum-flows
 - We can deal with problems of the form Perimeter + unary recall term
 - polynomial time and linear time in practice
- How can we extend to non-binary problems?