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Context and motivations

Image Processing as optimization problems
restoration

noisy image restoration

image taken from [D. Sigelle 06]
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Context and motivations

Image Processing as optimization problems
restoration, segmentation

original image segmentation

image taken from [D. 05]
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Context and motivations

Image Processing as optimization problems
restoration, segmentation

E(u|f , λ) = D(u, f )︸ ︷︷ ︸
Data Fidelity

+λ R(u)︸ ︷︷ ︸
a priori/Regularisation

Several millions variables, can be non-convex
Convex Continuous framework: Stopping criteria

E(uε|v , λ)− E(u∗, λ) ≤ ε .

→ Optimal first-order approach [Nesterov 83,07], [Beck-et al 08],...
→ Convergence in O(ε−1), O(ε−

1
2 )

→ non-polynomial (→ log 1
ε )

Refine the class of functionals
Quid ε = 0 ? (by definition: algorithm ≡ finite number of iterations)

Jerome Darbon, Fields Institute Toronto May 2012 6
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Context and motivations

Image Processing as optimization problems
restoration, segmentation

E(u|f , λ) = D(u, f )︸ ︷︷ ︸
Data Fidelity

+λ R(u)︸ ︷︷ ︸
a priori/Regularisation

Several millions variables, generally non-convex
Fast algorithm, and exact solutions for rigorous framework
→ [Winkler 03] Dissociation models/algorithms

Discrete Framework→ Markov Random Fields (MRFs)
Optimization techniques : stochastic methods and combinatorics
→ energies formulated as a network flow
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Context and motivations

Combinatorics→ exact optimization
binary energies→ maximum flow/minimum-cut

Fast algorithms for sparse graphs
Seminal approach due to [Picard Ratliff Networks 75]

Focus on binary cases
→ segmentation object/background with a perimeter prior
Used in Statistical physics in the 80’s (Ferromagnetic Ising model)
Re-discovered by [Boykov et al. 01], . . . ”Graph-cuts” and extended

→ Extension to non-binary cases
Picture taken from Boykov et al. PAMI 01
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Outline of the Talks

1 Binary optimization and Graph-cut
2 Total Variation optimization and applications

Remarks:
discrete world : finite number of labels
finite dimension Rn

Jerome Darbon, Fields Institute Toronto May 2012 9
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Outline of this talk

1 Minimum-cuts in networks and interger programming
Definition: cuts, capacity, s-t minimum-cut, maximum-flow
maximum-flow / s,t mimum-cut duality
Ideas on algorithms for computing maximum-flows
Mapping binary optimizations to s-t minimum-cuts
Application to imaging : Ising Chan-Vese model

Jerome Darbon, Fields Institute Toronto May 2012 10
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Maximum flow/Minimum cuts in networks: Definitions

• Consiger a graph (network) G = [V,A]
• V = {v0, . . . , vn+1}
• Directed arc from vi to vj with capacity cij

• Let v0 and vn+1 represent the source and the sink, respectively

Definition

A cut separating v0 and vn+1 is defined as a node partition (S, S̄)
where v0 ∈ S, vn+1 ∈ S̄, S ∪ S̄ = V and S ∩ S̄ = ∅

image taken from [Boykov et al PAMI 01]
Jerome Darbon, Fields Institute Toronto May 2012 11
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Duality and maximum flows (1/3)

Definition

The capacity of a cut C(S, S̄) can be defined as:

C(S, S̄) =
∑
i∈I

∑
j∈Ī

cij ,

where I = {i |vi ∈ S} and Ī = {j |vj ∈ S̄}

• Goal: Minimize the capactity of the cut (s-t minimum-cut problem)

Jerome Darbon, Fields Institute Toronto May 2012 12
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Duality and maximum flows (2/3)

• Goal: Minimize the capactity of the cut (s-t minimum-cut problem)
• Assumption: All the capacities are nonnegative

=⇒ solved problem (polynomial time)

Max-flow/Min-cut Theorem (Duality)
The maximum value of the flow from a source node to a sink node in a
capacitated network equals the minimum capacity among all s-t cuts

Result independently discovered by
• [Ford and Fulkerson 1956]
• [Elias, Feinstein, Shannon 1956]

Jerome Darbon, Fields Institute Toronto May 2012 13



beamer-tu-logo

beamer-ur-logo

Duality and maximum flows (3/3)

Computing maximum flows is a special linear program:

maximize f

s. t. 0 ≤ xij ≤ cij ← feasibility of the flow∑
j:(i,j)∈A xij +

∑
j:(j,i)∈A xji =


f for i = v0
0 for all i ∈ V \ {v0, vn+1}
−f for all i = vn+1

the vector x is a flow and the value f ∈ IR is the value of the flow.
Ideas for optimizing

Maintain a feasible and ”divergence free” flow
Or maintain feasibility and allow to break ”divergence free” constraint

Jerome Darbon, Fields Institute Toronto May 2012 14
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Algorithms for computing maximum flows

Assumption (recall): capacities are nonnegative
Mainly two classes for computing maximum flows:

Augmenting Path class: augment flow along paths from source to
sink while maintaining mass balance constraints.
Preflow-push class: flood the network so that some nodes have
excesses. Send excess toward the sink or backward the source.

Time complexity (n=# nodes, m=# arcs):
Labelling: O(nmC)
Sucessive shortest path: O(n2m)
FIFO preflow-push: O(n3)
Highest preflow-push: O(n2√m)
Excess scaling: O(nm + n2 log C)

where C = maxij ci j

→In practice time complexity is ”quasi”-linear for ”regular” graph
using an augmenting-path based algorithm [Kolomogorov Boykov PAMI 03]

Jerome Darbon, Fields Institute Toronto May 2012 15
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Generic Augmenting Path algorithms

• Simple ideas on flows
Arc (i , j) has capacity cij

Suppose an arc carries xij units of flow
We can still send cij − xij flow from i to j through (i , j)
We can send xij unit of flow from j to i
i.e., we cancel the existing flow on the arc

• Residual graph
Given a flow x
the residual graph is defined as follows:

Replace each arc (i , j) in the original network by two arcs (i , j) and
(j , i)
The arc (i,j) and residual capacity rij = cij − xij
The arc (j,i) and residual capacity rji = xij

Jerome Darbon, Fields Institute Toronto May 2012 16
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Generic Augmenting Path algorithms

•Generic Algorithm
While there is a directed path from Source to Sink in residual graph

Identify an augmenting path P from Source to Sink
δ = min{rij : (i , j) ∈ P}
augment δ units of flow along P and compute residual graph

• Draw an example
• How to identify an augmenting path is important

for convergence toward the optimal
for time complexity
for image processing, use the [Kolomogorov-Boykov Pami 03]
algorithm→ quasi linear-time in practice

Jerome Darbon, Fields Institute Toronto May 2012 17
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S-t minimum cuts and Binary Optimization (1/6)

We follow the approach of [Picard and Ratliff 1975]
As noted by [Hammer 1965], any cut separating v0 and vn+1 can
be represented by a vector

(1, x1, x2, . . . , xn,0)

where xj ∈ {0,1} for j = 1,2, . . . ,n and by defining
S = {vi |xi = 1} and S̄ = {vi |xi = 0}
Every vector of the previous form represents some cut (S, S̄).
The capacity of a cut represented by x0 = 1,xn+1 = 0 and
X = (x1, . . . , xn) can be represented as

C(X ) =
n+1∑
i=0

n+1∑
j=0

cijxi(1− xj) ,

where x0 = 1,xn+1 = 0.
Jerome Darbon, Fields Institute Toronto May 2012 18
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S-t minimum cuts and Binary Optimization (2/6)

Capacity of a cut (recall):

C(X ) =
n+1∑
i=0

n+1∑
j=0

cijxi(1− xj) ,

Now substitute x0 = 1 and xn+1 = 0 and use that x2 = x for
binary variables, we have:

C(X ) =
n+1∑
j=0

c0j +
n+1∑
j=1

(
cj,n+1 − c0j +

n∑
i=1

cji

)
xj

−
n∑

i=1

n∑
j=1

cijxixj

Jerome Darbon, Fields Institute Toronto May 2012 19
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S-t minimum cuts and Binary Optimization (3/6)

Now consider any boolean function of the form (recall)

F (X ) =
n∑

j=1

pjxj −
n∑

i=1

n∑
j=1

qijxixj + K

Theorem [Picard and Ratliff 1975]
A network G with arc capacities cij satisfying

1 cij + cji = qij + qji for i , j = 1, . . . ,n

2 cj,n+1 − c0j = pj −
∑n

i=1 qij for j = 1, . . . ,n

3 c0,n+1 = K −
∑n

j=1 c0j

has C(X ) = F (X ) for all X such that xj ∈ {0,1} for j=1,. . . ,n .

Minimizing F⇔ Finding a minimum s-t cut

Jerome Darbon, Fields Institute Toronto May 2012 20
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S-t minimum cuts and Binary Optimization (4/6)

Recall that finding a minimum s-t cut is is
Polynomial when capacities are positive

Theorem [Picard and Ratliff 1975]
If in the binary energy F

F (X ) =
n∑

j=1

pjxj −
n∑

i=1

n∑
j=1

qijxixj + K

we have qij ≥ 0 for i = 1, . . . ,n then one can build a network such that
the conditions of the previous th. are satisfied
all capacities are nonnegative (polynomial time)

• Statistical Phys.: MAP of Ferromagnetic Ising MRFs [Ogielsky 85]
• Binary Image restoration [Greig et al. 89]
• This is also called ”Graph-cut” [Boykov, Kolmogorov,... 01]

Jerome Darbon, Fields Institute Toronto May 2012 21
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S-t minimum cuts and Binary Optimization (5/6)

Thus we are able to solve exactly in polynomial time minimize
∑n

j=1 pjxj −
∑n

i=1
∑n

j=1 qijxixj

s. t. xj ∈ {0,1} for j ∈ 1, . . . ,n

where pj and qij are some real valued constants and qij ≥ 0.
From a Bayesian point of view this a binary Markov Random
Field (MRF) with pairwise interaction.
In statistical physics this model is known as the ferromagnetic
Ising model.

Jerome Darbon, Fields Institute Toronto May 2012 22
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S-t minimum cuts and Binary Optimization (6/6)

Application of the work of [Picard and Ratliff 1975]
• [Barahona 1985] and [Ogielski 1986] studies the ground state of

the Ising model from a stastical physics point of view.
• [Greig et al. 1989] studies binary image restoration via the Ising

model.

This kind of approach has been revived by the re-introduction of
combinatorial methods in image processing and computer vision.
The graph-cut approach of Boykov-Veksler-Zabih goes far
beyond since it copes with non-binary optimization.

Jerome Darbon, Fields Institute Toronto May 2012 23



beamer-tu-logo

beamer-ur-logo

Building the graph (1/2)

How do we build the graph for

E(x) =
n∑

i=1

pixi −
n∑

i=1

n∑
j=1

qijxixj

with qij ≥ 0
We proceed term by term (Draw it)

unary term: pixi
case pi ≥ 0
case pi < 0. pixi = −pi (1− xi ) + pi
capacity for (Source, i): c0,i = max(0, ci )
capacity for (i, Sink): ci,n+1 = max(0,−ci )

Pairwise term: −qijxixj

Jerome Darbon, Fields Institute Toronto May 2012 24
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Building the graph (1/2)

How do we build the graph for

E(x) =
n∑
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pixi −
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with qij ≥ 0
We proceed term by term (Draw it)

unary term: pixi
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Building the graph (2/2)

How do we build the graph for

E(x) =
n∑

i=1

pixi −
n∑

i=1

n∑
j=1

qijxixj

with qij ≥ 0
We proceed term by term (Draw it)

Pairwise term: −qijxixj

Note that ∀(x , y) ∈ {0,1}2 |x − y | = x + y − 2xy
⇒ −qijxiyj =

qij
2 |xi − xj | −

qij
2 (xi + xj)

Jerome Darbon, Fields Institute Toronto May 2012 27
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Building the graph (2/2)
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Relation to ”graph-cuts” and submodularity

Other combinatorial optimization schemes for binary energies
• ”Graph-cuts” [Boykov, Veksler, Zabih PAMI 01]:

Requires: R(α, β) ≤ R(α, γ) + R(γ, β) (triangle inequality)
• The latter is equivalent [Kolmogorov, Zabih PAMI 03] to:

R(0,0) + R(1,1) ≤ R(0,1) + R(1,0) (binary submodularity)
Necessary and sufficient condition

Proposition [D. DAM 09]

Assume E is a binary energy with pairwise interactions, i.e.,

E(x) =
∑

i fi(xi) +
∑

(i,j) gij(xi , xj) ,

with ∀i xi ∈ {0,1}. Then E is exactly minimisable in polynomial time iff
one of the following two equivalent assertions is satisfied:

• [Picard et al.], all interactions write as gij (x , y) = wijxy with wst ≤ 0 ,

• [Kolmogorov and Zabih], all pairwise interactions are submodular.

Jerome Darbon, Fields Institute Toronto May 2012 30
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Imaging Problems

Using the reformulation, the regularization term takes the
following form ∑

i

∑
j

wij |xj − xi |

This can be seen as a discrete perimeter
Draw picture

Jerome Darbon, Fields Institute Toronto May 2012 31
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Imaging Problems: Markov Random Field (ISING)

Binary segmentation (object/background)
Solve for u ∈ {0,1}n

E(u) =
∑

j

wij |uj − ui |

+
∑

i

uiDi ← Data term for assigning 1

+
∑

i

(1− ui)EI ← Data term for assigning 0

(1)

Jerome Darbon, Fields Institute Toronto May 2012 32
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Chan-Vese Model/Active contours without edges

The binary Mumford-Shah Model or Chan-Vese consists of
approximating a signal with two constants with a prior on the boundary

E(Ω1, µ0, µ1|v) = β Per (Ω1)

+

∫
Ω\Ω1

f (µ0, v(x))dx

+

∫
Ω1

f (µ1, v(x))dx ,

f is typically ‖ · ‖pLp

Issues:
Non-convex problem
Fast algorithm
Exact solution to:

1 measure the quality of the model,
2 measure the quality of an approximation algorithm

Analysis of the solutionsJerome Darbon, Fields Institute Toronto May 2012 33
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Chan-Vese Model: Naive Algorithm

Discretization

E(u, µ0, µ1) = β
∑
(i,j)

wij |uj − ui |

+
∑

i

(1− ui) {f (µ1, vi)− f (µ0, vi)}

+
∑

i

f (µ0, vi) .

Set µ0 and µ1, O(L2) possible configurations
Optimize for u via Graph-cut [Boykov et al. 01], [Picard Ratliff 75]

Jerome Darbon, Fields Institute Toronto May 2012 34



beamer-tu-logo

beamer-ur-logo

Chan-Vese Model: An inclusion Property

Goal: reduce the number (O(L2)) of maximum flows
Idea: show an inclusion property of the solution
Discretization (Recall)

E(u, µ0, µ1) = β
∑
(i,j)

wij |ui − uj |

+
∑

i

(1− ui) {f (µ1, vi)− f (µ0, vi)}

+
∑

i

f (µ0, vi) .

A variable which measures the difference between µ0 and µ1:

µ1 = µ0 + K .

Jerome Darbon, Fields Institute Toronto May 2012 35



beamer-tu-logo

beamer-ur-logo

Chan-Vese Model: An inclusion Property

Thus we have

E(u, µ0, µ1) = β
∑
(i,j)

wij |ui − uj |

+
∑

i

ui {f (µ0, vi)− f (µ0 + K , vi)}+ Constant

Assume K is fixed and define

Ek (u, µ0) = E(u, µ0,K )

Jerome Darbon, Fields Institute Toronto May 2012 36
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Chan-Vese Model: An inclusion Property

Assume K is fixed and define (Recall)

Ek (u, µ0) = E(u, µ0,K )

Theorem
Assume Data fidelity f is convex and assume µ̂0 ≤ µ̃0. Let us defined
the binary images û and ũ as minimizers of EK (·, µ̂0) and EK (·, µ̃0)
respectively, i.e:

û ∈ min{u|EK (u, µ̂0)} ,

ũ ∈ min{u|EK (u, µ̃0)} .

Then we have the following inclusion:

û � ũ . (2)

Jerome Darbon, Fields Institute Toronto May 2012 37
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Chan-Vese Model: Algorithm

∀s ∈ S ûs ← 0
for (K = 0; K < L; + + K )

Reset connected component map
for (µ0 = 0; (µ0 + K ) < L;µ0 ← µ0 + 1)

u′ ← argmin
u

EK (u, µ0)

if (EK (u′, µ0) < EK (û, µ0))
û ← u′

update connected component map
return û

Jerome Darbon, Fields Institute Toronto May 2012 38
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Chan-Vese Model: Experiments

(Original) (β = 10)

Jerome Darbon, Fields Institute Toronto May 2012 39
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Chan-Vese Model: Experiments

(a) β = 25

Jerome Darbon, Fields Institute Toronto May 2012 40
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Chan-Vese Model: Experiments

β = 25 β = 30

Jerome Darbon, Fields Institute Toronto May 2012 41
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Chan-Vese Model: Time results

Time results in seconds (on a 3GHz Pentium IV) for cameraman
Direct approach in ”(·)”
And inclusion-based

Size β = 5 β = 10 β = 15
322 4.16 (13.1) 4.4 (13.8) 4.8 (14.6)
642 17.1 (54.3) 17.8 (57.5) 18.5 (60.7)
1282 72.57(243.3) 77.2 (254.6) 81.1 (268.4)
2562 364.8 (1813.4) 382.2 (1851.7) 414.3 (2081.6)

Note: each binary binary takes about 0.02s for a 2562 image

Jerome Darbon, Fields Institute Toronto May 2012 42
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Conclusion

Binary optimzation using maximum-flows
We can deal with problems of the form
Perimeter + unary recall term
polynomial time and linear time in practice

How can we extend to non-binary problems?

Jerome Darbon, Fields Institute Toronto May 2012 43


