Network flows for image processing Part I: Binary optimization and Graph-cut

Jérôme Darbon
CNRS / CMLA-ENS Cachan
Mathematics Department UCLA

Variational Methods and Compressive Sensing in Imaging
Fields Institute, Toronto, May 2012

Acknowledgements

- Joint work with
- M. Sigelle (Telecom ParisTech/ENST)

Context and motivations

- Image Processing as optimization problems
- restoration

noisy image

restoration
image taken from [D. Sigelle 06]

Context and motivations

- Image Processing as optimization problems
- restoration

noisy image

restoration
image taken from [D. Sigelle 06]

Context and motivations

- Image Processing as optimization problems
- restoration, segmentation

original image

segmentation
image taken from [D. 05]

Context and motivations

- Image Processing as optimization problems
- restoration, segmentation

$$
E(u \mid f, \lambda)=\underbrace{D(u, f)}_{\text {Data Fidelity }}+\lambda \underbrace{R(u)}_{\text {a priori/Regularisation }}
$$

- Several millions variables, can be non-convex
- Convex Continuous framework: Stopping criteria

$$
E\left(u^{\epsilon} \mid v, \lambda\right)-E\left(u^{*}, \lambda\right) \leq \epsilon .
$$

\rightarrow Optimal first-order approach [Nesterov 83,07], [Beck-et al 08],...
\rightarrow Convergence in $O\left(\epsilon^{-1}\right), O\left(\epsilon^{-\frac{1}{2}}\right)$
\rightarrow non-polynomial $\left(\rightarrow \log \frac{1}{\epsilon}\right.$)

- Refine the class of functionals
- Quid $\epsilon=0$? (by definition: algorithm \equiv finite number of iterations)

Context and motivations

- Image Processing as optimization problems
- restoration, segmentation

$$
E(u \mid f, \lambda)=\underbrace{D(u, f)}_{\text {Data Fidelity }}+\lambda \underbrace{R(u)}_{\text {a priori/Regularisation }}
$$

- Several millions variables, generally non-convex
- Fast algorithm, and exact solutions for rigorous framework
\rightarrow [Winkler 03] Dissociation models/algorithms
- Discrete Framework \rightarrow Markov Random Fields (MRFs) Optimization techniques : stochastic methods and combinatorics \rightarrow energies formulated as a network flow

Context and motivations

- Combinatorics \rightarrow exact optimization binary energies \rightarrow maximum flow/minimum-cut

- Fast algorithms for sparse graphs
- Seminal approach due to [Picard Ratliff Networks 75]
- Focus on binary cases
- \rightarrow segmentation object/background with a perimeter prior
- Used in Statistical physics in the 80's (Ferromagnetic Ising model)
- Re-discovered by [Boykov et al. 01], ..."Graph-cuts" and extended
\rightarrow Extension to non-binary cases

Outline of the Talks

(Binary optimization and Graph-cut
(2) Total Variation optimization and applications

Remarks:

- discrete world : finite number of labels
- finite dimension \mathbb{R}^{n}

Outline of this talk

(1) Minimum-cuts in networks and interger programming

- Definition: cuts, capacity, s-t minimum-cut, maximum-flow
- maximum-flow / s,t mimum-cut duality
- Ideas on algorithms for computing maximum-flows
- Mapping binary optimizations to s-t minimum-cuts
- Application to imaging : Ising Chan-Vese model

Maximum flow/Minimum cuts in networks: Definitions

- Consiger a graph (network) $\mathrm{G}=[\mathrm{V}, \mathrm{A}]$
- $V=\left\{v_{0}, \ldots, v_{n+1}\right\}$
- Directed arc from v_{i} to v_{j} with capacity $c_{i j}$
- Let v_{0} and v_{n+1} represent the source and the sink, respectively

Definition

A cut separating v_{0} and v_{n+1} is defined as a node partition (S, \bar{S}) where $v_{0} \in S, v_{n+1} \in \bar{S}, S \cup \bar{S}=V$ and $S \cap \bar{S}=\emptyset$

Duality and maximum flows (1/3)

Definition

The capacity of a cut $C(S, \bar{S})$ can be defined as:

$$
C(S, \bar{S})=\sum_{i \in l} \sum_{j \in \bar{I}} c_{i j}
$$

where $I=\left\{i \mid v_{i} \in S\right\}$ and $\bar{l}=\left\{j \mid v_{j} \in \bar{S}\right\}$

- Goal: Minimize the capactity of the cut (s-t minimum-cut problem)
- Goal: Minimize the capactity of the cut (s-t minimum-cut problem)
- Assumption: All the capacities are nonnegative \Longrightarrow solved problem (polynomial time)

Max-flow/Min-cut Theorem (Duality)

The maximum value of the flow from a source node to a sink node in a capacitated network equals the minimum capacity among all s-t cuts

- Result independently discovered by
- [Ford and Fulkerson 1956]
- [Elias, Feinstein, Shannon 1956]
- Computing maximum flows is a special linear program:

$$
\left\{\begin{array}{l}
\text { maximize } f \\
\text { s. t. } 0 \leq x_{i j} \leq c_{i j} \leftarrow \text { feasibility of the flow } \\
\quad \sum_{j:(i, j) \in A} x_{i j}+\sum_{j:(j, i) \in A} x_{j i}=\left\{\begin{aligned}
f & \text { for } i=v_{0} \\
0 & \text { for all } i \in V \backslash\left\{v_{0}, v_{n+1}\right\} \\
-f & \text { for all } i=v_{n+1}
\end{aligned}\right.
\end{array}\right.
$$

the vector x is a flow and the value $f \in \mathbb{R}$ is the value of the flow. Ideas for optimizing

- Maintain a feasible and "divergence free" flow
- Or maintain feasibility and allow to break "divergence free" constraint

Algorithms for computing maximum flows

- Assumption (recall): capacities are nonnegative
- Mainly two classes for computing maximum flows:
- Augmenting Path class: augment flow along paths from source to sink while maintaining mass balance constraints.
- Preflow-push class: flood the network so that some nodes have excesses. Send excess toward the sink or backward the source.
- Time complexity ($\mathrm{n}=\#$ nodes, $\mathrm{m}=\#$ arcs):
- Labelling: $O(n m C)$
- Sucessive shortest path: $O\left(n^{2} m\right)$
- FIFO preflow-push: $O\left(n^{3}\right)$
- Highest preflow-push: $O\left(n^{2} \sqrt{m}\right)$
- Excess scaling: $O\left(n m+n^{2} \log C\right)$
where $C=\max _{i j} c_{i j}$
\rightarrow In practice time complexity is "quasi"-linear for "regular" graph
using an augmenting-path based algorithm [Kolomogorov Boykov PAMI 03]

Generic Augmenting Path algorithms

- Simple ideas on flows
- Arc (i, j) has capacity $c_{i j}$
- Suppose an arc carries $x_{i j}$ units of flow
- We can still send $c_{i j}-x_{i j}$ flow from i to j through (i, j)
- We can send $x_{i j}$ unit of flow from j to i
i.e., we cancel the existing flow on the arc
- Residual graph
- Given a flow x
- the residual graph is defined as follows:
- Replace each arc (i, j) in the original network by two arcs (i, j) and (j, i)
- The arc (i,j) and residual capacity $r_{i j}=c_{i j}-x_{i j}$
- The arc (j,i) and residual capacity $r_{j i}=x_{i j}$

Generic Augmenting Path algorithms

- Generic Algorithm
- While there is a directed path from Source to Sink in residual graph
- Identify an augmenting path P from Source to Sink
- $\delta=\min \left\{r_{i j}:(i, j) \in P\right\}$
- augment δ units of flow along P and compute residual graph
- Draw an example
- How to identify an augmenting path is important
- for convergence toward the optimal
- for time complexity
- for image processing, use the [Kolomogorov-Boykov Pami 03] algorithm \rightarrow quasi linear-time in practice

S-t minimum cuts and Binary Optimization (1/6)

- We follow the approach of [Picard and Ratliff 1975]
- As noted by [Hammer 1965], any cut separating v_{0} and v_{n+1} can be represented by a vector

$$
\left(1, x_{1}, x_{2}, \ldots, x_{n}, 0\right)
$$

where $x_{j} \in\{0,1\}$ for $j=1,2, \ldots, n$ and by defining $S=\left\{v_{i} \mid x_{i}=1\right\}$ and $\bar{S}=\left\{v_{i} \mid x_{i}=0\right\}$

- Every vector of the previous form represents some cut (S, \bar{S}).
- The capacity of a cut represented by $x_{0}=1, x_{n+1}=0$ and $X=\left(x_{1}, \ldots, x_{n}\right)$ can be represented as

$$
C(X)=\sum_{i=0}^{n+1} \sum_{j=0}^{n+1} c_{i j} x_{i}\left(1-x_{j}\right),
$$

where $x_{0}=1, x_{n+1}=0$.

S-t minimum cuts and Binary Optimization (2/6)

- Capacity of a cut (recall):

$$
C(X)=\sum_{i=0}^{n+1} \sum_{j=0}^{n+1} c_{i j} x_{i}\left(1-x_{j}\right),
$$

- Now substitute $x_{0}=1$ and $x_{n+1}=0$ and use that $x^{2}=x$ for binary variables, we have:

$$
\begin{aligned}
C(X)= & \sum_{j=0}^{n+1} c_{0 j}+\sum_{j=1}^{n+1}\left(c_{j, n+1}-c_{0 j}+\sum_{i=1}^{n} c_{j i}\right) x_{j} \\
& -\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} x_{i} x_{j}
\end{aligned}
$$

S-t minimum cuts and Binary Optimization (3/6)

- Now consider any boolean function of the form (recall)

$$
F(X)=\sum_{j=1}^{n} p_{j} x_{j}-\sum_{i=1}^{n} \sum_{j=1}^{n} q_{i j} x_{i} x_{j}+K
$$

Theorem [Picard and Ratliff 1975]

A network G with arc capacities $c_{i j}$ satisfying
(1) $c_{i j}+c_{j i}=q_{i j}+q_{j i}$ for $i, j=1, \ldots, n$
(2) $c_{j, n+1}-c_{0 j}=p_{j}-\sum_{i=1}^{n} q_{i j}$ for $j=1, \ldots, n$
(3) $c_{0, n+1}=K-\sum_{j=1}^{n} c_{0 j}$
has $C(X)=F(X)$ for all X such that $x_{j} \in\{0,1\}$ for $j=1, \ldots, n$.

- Minimizing $\mathrm{F} \Leftrightarrow$ Finding a minimum s-t cut

S-t minimum cuts and Binary Optimization (4/6)

- Recall that finding a minimum s-t cut is is
- Polynomial when capacities are positive

Theorem [Picard and Ratliff 1975]

If in the binary energy F

$$
F(X)=\sum_{j=1}^{n} p_{j} x_{j}-\sum_{i=1}^{n} \sum_{j=1}^{n} q_{i j} x_{i} x_{j}+K
$$

we have $q_{i j} \geq 0$ for $i=1, \ldots, n$ then one can build a network such that

- the conditions of the previous th. are satisfied
- all capacities are nonnegative (polynomial time)
- Statistical Phys.: MAP of Ferromagnetic Ising MRFs [Ogielsky 85]
- Binary Image restoration [Greig et al. 89]
- This is also called "Graph-cut" [Boykov, Kolmogorov,... 01]

S-t minimum cuts and Binary Optimization (5/6)

- Thus we are able to solve exactly in polynomial time

$$
\left\{\begin{array}{l}
\operatorname{minimize} \sum_{j=1}^{n} p_{j} x_{j}-\sum_{i=1}^{n} \sum_{j=1}^{n} q_{i j} x_{i} x_{j} \\
\text { s. t. } x_{j} \in\{0,1\} \text { for } j \in 1, \ldots, n
\end{array}\right.
$$

where p_{j} and $q_{i j}$ are some real valued constants and $q_{i j} \geq 0$.

- From a Bayesian point of view this a binary Markov Random Field (MRF) with pairwise interaction.
- In statistical physics this model is known as the ferromagnetic Ising model.

S-t minimum cuts and Binary Optimization (6/6)

- Application of the work of [Picard and Ratliff 1975]
- [Barahona 1985] and [Ogielski 1986] studies the ground state of the Ising model from a stastical physics point of view.
- [Greig et al. 1989] studies binary image restoration via the Ising model.
- This kind of approach has been revived by the re-introduction of combinatorial methods in image processing and computer vision.
- The graph-cut approach of Boykov-Veksler-Zabih goes far beyond since it copes with non-binary optimization.

Building the graph (1/2)

How do we build the graph for

$$
E(x)=\sum_{i=1}^{n} p_{i} x_{i}-\sum_{i=1}^{n} \sum_{j=1}^{n} q_{i j} x_{i} x_{j}
$$

with $q_{i j} \geq 0$
We proceed term by term (Draw it)

- unary term: $p_{i} x_{i}$
- case $p_{i} \geq 0$
- case $p_{i}<0 . p_{i} x_{i}=-p_{i}\left(1-x_{i}\right)+p_{i}$
- capacity for (Source, i): $c_{0, i}=\max \left(0, c_{i}\right)$
- capacity for (i, Sink): $c_{i, n+1}=\max \left(0,-c_{i}\right)$
- Pairwise term: $-q_{i j} x_{i} x_{j}$

Building the graph (1/2)

How do we build the graph for

$$
E(x)=\sum_{i=1}^{n} p_{i} x_{i}-\sum_{i=1}^{n} \sum_{j=1}^{n} q_{i j} x_{i} x_{j}
$$

with $q_{i j} \geq 0$
We proceed term by term (Draw it)

- unary term: $p_{i} x_{i}$
- case $p_{i} \geq 0$
- case $p_{i}<0 . p_{i} x_{i}=-p_{i}\left(1-x_{i}\right)+p_{i}$
- capacity for (Source, i): $c_{0, i}=\max \left(0, c_{i}\right)$
- capacity for (i, Sink): $c_{i, n+1}=\max \left(0,-c_{i}\right)$
- Pairwise term: $-q_{i j} x_{i} x_{j}$

Building the graph (1/2)

How do we build the graph for

$$
E(x)=\sum_{i=1}^{n} p_{i} x_{i}-\sum_{i=1}^{n} \sum_{j=1}^{n} q_{i j} x_{i} x_{j}
$$

with $q_{i j} \geq 0$
We proceed term by term (Draw it)

- unary term: $p_{i} x_{i}$
- case $p_{i} \geq 0$
- case $p_{i}<0 . p_{i} x_{i}=-p_{i}\left(1-x_{i}\right)+p_{i}$
- capacity for (Source, i): $c_{0, i}=\max \left(0, c_{i}\right)$
- capacity for (i, Sink): $c_{i, n+1}=\max \left(0,-c_{i}\right)$
- Pairwise term: $-q_{i j} x_{i} x_{j}$

Building the graph (2/2)

How do we build the graph for

$$
E(x)=\sum_{i=1}^{n} p_{i} x_{i}-\sum_{i=1}^{n} \sum_{j=1}^{n} q_{i j} x_{i} x_{j}
$$

with $q_{i j} \geq 0$
We proceed term by term (Draw it)

- Pairwise term: $-q_{i j} x_{i} x_{j}$

Building the graph (2/2)

How do we build the graph for

$$
E(x)=\sum_{i=1}^{n} p_{i} x_{i}-\sum_{i=1}^{n} \sum_{j=1}^{n} q_{i j} x_{i} x_{j}
$$

with $q_{i j} \geq 0$
We proceed term by term (Draw it)

- Pairwise term: $-q_{i j} x_{i} x_{j}$
- Note that $\forall(x, y) \in\{0,1\}^{2}|x-y|=x+y-2 x y$

Building the graph (2/2)

How do we build the graph for

$$
E(x)=\sum_{i=1}^{n} p_{i} x_{i}-\sum_{i=1}^{n} \sum_{j=1}^{n} q_{i j} x_{i} x_{j}
$$

with $q_{i j} \geq 0$
We proceed term by term (Draw it)

- Pairwise term: $-q_{i j} x_{i} x_{j}$
- Note that $\forall(x, y) \in\{0,1\}^{2}|x-y|=x+y-2 x y$
$\Rightarrow-q_{i j} x_{i} y_{j}=\frac{q_{i j}}{2}\left|x_{i}-x_{j}\right|-\frac{q_{i j}}{2}\left(x_{i}+x_{j}\right)$

Relation to "graph-cuts" and submodularity

Other combinatorial optimization schemes for binary energies

- "Graph-cuts" [Boykov, Veksler, Zabih PAMI 01]: Requires: $\boldsymbol{R}(\alpha, \beta) \leq \boldsymbol{R}(\alpha, \gamma)+\boldsymbol{R}(\gamma, \beta) \quad$ (triangle inequality)
- The latter is equivalent [Kolmogorov, Zabih PAMI 03] to:
$R(0,0)+R(1,1) \leq R(0,1)+R(1,0)$ (binary submodularity)
Necessary and sufficient condition

Proposition [D. DAM 09]

Assume E is a binary energy with pairwise interactions, i.e.,

$$
E(x)=\sum_{i} f_{i}\left(x_{i}\right)+\sum_{(i, j)} g_{i j}\left(x_{i}, x_{j}\right),
$$

with $\forall i x_{i} \in\{0,1\}$. Then E is exactly minimisable in polynomial time iff one of the following two equivalent assertions is satisfied:

- [Picard et al.], all interactions write as $g_{j}(x, y)=w_{i j} x y$ with $w_{s t} \leq 0$,
- [Kolmogorov and Zabih], all pairwise interactions are submodular.
- Using the reformulation, the regularization term takes the following form

$$
\sum_{i} \sum_{j} w_{i j}\left|x_{j}-x_{i}\right|
$$

- This can be seen as a discrete perimeter
- Draw picture

Imaging Problems: Markov Random Field (ISING)

- Binary segmentation (object/background)
- Solve for $u \in\{0,1\}^{n}$

$$
\begin{aligned}
E(u)= & \sum_{j} w_{i j}\left|u_{j}-u_{i}\right| \\
& +\sum_{i} u_{i} D_{i} \leftarrow \text { Data term for assigning } 1 \\
& +\sum_{i}\left(1-u_{i}\right) E_{l} \leftarrow \text { Data term for assigning } 0
\end{aligned}
$$

Chan-Vese Model/Active contours without edges

- The binary Mumford-Shah Model or Chan-Vese consists of approximating a signal with two constants with a prior on the boundary

$$
\begin{aligned}
E\left(\Omega_{1}, \mu_{0}, \mu_{1} \mid v\right)= & \beta \operatorname{Per}\left(\Omega_{1}\right) \\
& +\int_{\Omega \backslash \Omega_{1}} f\left(\mu_{0}, v(x)\right) d x \\
& +\int_{\Omega_{1}} f\left(\mu_{1}, v(x)\right) d x
\end{aligned}
$$

- f is typically $\|\cdot\|_{L^{p}}^{p}$
- Issues:
- Non-convex problem
- Fast algorithm
- Exact solution to:
(1) measure the quality of the model,
(2) measure the quality of an approximation algorithm

Chan-Vese Model: Naive Algorithm

- Discretization

$$
\begin{aligned}
E\left(u, \mu_{0}, \mu_{1}\right)= & \beta \sum_{(i, j)} w_{i j}\left|u_{j}-u_{i}\right| \\
& +\sum_{i}\left(1-u_{i}\right)\left\{f\left(\mu_{1}, v_{i}\right)-f\left(\mu_{0}, v_{i}\right)\right\} \\
& +\sum_{i} f\left(\mu_{0}, v_{i}\right)
\end{aligned}
$$

- Set μ_{0} and $\mu_{1}, O\left(L^{2}\right)$ possible configurations
- Optimize for u via Graph-cut [Boykov et al. 01], [Picard Ratliff 75]

Chan-Vese Model: An inclusion Property

- Goal: reduce the number $\left(O\left(L^{2}\right)\right)$ of maximum flows
- Idea: show an inclusion property of the solution
- Discretization (Recall)

$$
\begin{aligned}
E\left(u, \mu_{0}, \mu_{1}\right)= & \beta \sum_{(i, j)} w_{i j}\left|u_{i}-u_{j}\right| \\
& +\sum_{i}\left(1-u_{i}\right)\left\{f\left(\mu_{1}, v_{i}\right)-f\left(\mu_{0}, v_{i}\right)\right\} \\
& +\sum_{i} f\left(\mu_{0}, v_{i}\right)
\end{aligned}
$$

- A variable which measures the difference between μ_{0} and μ_{1} :

$$
\mu_{1}=\mu_{0}+K
$$

Chan-Vese Model: An inclusion Property

- Thus we have

$$
\begin{aligned}
E\left(u, \mu_{0}, \mu_{1}\right)= & \beta \sum_{(i, j)} w_{i j}\left|u_{i}-u_{j}\right| \\
& +\sum_{i} u_{i}\left\{f\left(\mu_{0}, v_{i}\right)-f\left(\mu_{0}+K, v_{i}\right)\right\}+\text { Constant }
\end{aligned}
$$

- Assume K is fixed and define

$$
E^{k}\left(u, \mu_{0}\right)=E\left(u, \mu_{0}, K\right)
$$

Chan-Vese Model: An inclusion Property

- Assume K is fixed and define (Recall)

$$
E^{k}\left(u, \mu_{0}\right)=E\left(u, \mu_{0}, K\right)
$$

Theorem

Assume Data fidelity f is convex and assume $\widehat{\mu_{0}} \leq \widetilde{\mu_{0}}$. Let us defined the binary images \widehat{u} and \widetilde{u} as minimizers of $E^{K}\left(\cdot, \widehat{\mu_{0}}\right)$ and $E^{K}\left(\cdot, \widetilde{\mu_{0}}\right)$ respectively, i.e:

$$
\begin{aligned}
& \widehat{u} \in \min \left\{u \mid E^{K}\left(u, \widehat{\mu_{0}}\right)\right\}, \\
& \widetilde{u} \in \min \left\{u \mid E^{K}\left(u, \widetilde{\mu_{0}}\right)\right\}
\end{aligned}
$$

Then we have the following inclusion:

$$
\begin{equation*}
\hat{u} \preceq \tilde{u} . \tag{2}
\end{equation*}
$$

Chan-Vese Model: Algorithm

```
\foralls\inS 飣}\leftarrow
for (K=0;K<L;++K)
    Reset connected component map
    for ( }\mp@subsup{\mu}{0}{}=0;(\mp@subsup{\mu}{0}{}+K)<L; \mp@subsup{\mu}{0}{}\leftarrow\mp@subsup{\mu}{0}{}+1
    u'}\leftarrow\operatorname{argmin}\mp@subsup{E}{}{K}(u,\mp@subsup{\mu}{0}{}
    if (E}\mp@subsup{E}{}{K}(\mp@subsup{u}{}{\prime},\mp@subsup{\mu}{0}{})<\mp@subsup{E}{}{K}(\hat{u},\mp@subsup{\mu}{0}{})
        u}\leftarrow\mp@subsup{u}{}{\prime
    update connected component map
return û
```


Chan-Vese Model: Experiments

(Original)

$$
(\beta=10)
$$

Chan-Vese Model: Experiments

(a)
$\beta=25$

Chan-Vese Model: Experiments

Chan-Vese Model: Time results

Time results in seconds (on a 3GHz Pentium IV) for cameraman Direct approach in "(•)"
And inclusion-based

Size	$\beta=5$	$\beta=10$	$\beta=15$
32^{2}	$4.16(13.1)$	$4.4(13.8)$	$4.8(14.6)$
64^{2}	$17.1(54.3)$	$17.8(57.5)$	$18.5(60.7)$
128^{2}	$72.57(243.3)$	$77.2(254.6)$	$81.1(268.4)$
256^{2}	$364.8(1813.4)$	$382.2(1851.7)$	$414.3(2081.6)$

Note: each binary binary takes about 0.02 s for a 256^{2} image

Conclusion

- Binary optimzation using maximum-flows
- We can deal with problems of the form Perimeter + unary recall term
- polynomial time and linear time in practice
- How can we extend to non-binary problems?

