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Portfolio Default Risk Models

• Modeling portfolio default risk is a key topic in credit risk management.

• Structural firm value approach (Black and Scholes (1973) and Mer-
ton (1974)) and reduced form intensity-based approach (Jarrow and
Turnbull (1995) and Madan and Unal (1998)).

• Intensity approach widely used in modeling portfolio default risk.

• Bottom-up models and top-down models.

• Bottom-up models focus on modeling default intensities of individ-
ual reference entities and their aggregation to form a portfolio de-
fault intensity. (Duffie and Garleanu (2001), Jarrow and Yu (2001),
Schönbucher and Schubert (2001), Giesecke and Goldberg (2004), etc.)

• Major applications are valuation of portfolio credit derivatives such as
CDOs and and basket CDSs.
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Basket Credit Default Swaps

• The kth to default basket CDS is a popular type of multi-name credit
derivatives.

• Protection buyer of a kth to default basket CDS pays periodic premi-
ums to protection seller according to some pre-determined swap rates
until occurrence of kth default in a reference pool or maturity.

• Protection seller of kth to default basket CDS pays to protection buyer
amount of loss due to kth default in the pool when it occurs.

• Key to valuing these derivatives is to know portfolio loss distribution.
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Literatures

• Different approaches have been proposed in literature for evaluat-
ing kth default basket CDS under intensity-based default contagion
model.

• Herbertsson & Rootze (2006) introduce a matrix-analytic approach to
value kth to default basket CDS.

• Yu (2007) adopts total hazard construction method to generate default
times with a broad class of correlation structure.

• Zheng & Jiang (2009) use total hazard construction to derive joint
distribution of default times and an analytical formula for basket CDS
rates in a homogeneous case.
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Model Setup

• Let (Ω,F , {Ft}t≥0, P ) be a complete filtered probability space, where
we assume P is a risk-neutral martingale measure, and {Ft}t≥0 is a
filtration satisfying usual conditions.

•We consider a portfolio with n credit entities. For each i = 1, 2, ∙ ∙ ∙ , n,
let τi be default time of name i. Write Ni(t) = 1{τi≤t} for a single
jump process associated with default time τi, and {Ft}t≥0 is right-
continuous, P -completed, natural filtration generated by Ni.

• Suppose {Xt}t≥0 is state process, which represents common factor
process for joint defaults. Write {FX

t }t≥0 for right-continuous, P -
completed, natural filtration generated by process {Xt}t≥0.

• For each t ≥ 0, write

Ft = F
X
t ∨ F

1
t ∨ . . . ∨ F

n
t .

Here Ft represents minimal σ-algebra containing information about
processes X and {Ni}ni=1 up to and including time t.
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•We assume that for each i = 1, 2, ∙ ∙ ∙ , n, Ni possesses a nonnegative,
{Ft}t≥0-predictable, intensity process λi satisfying

E
(∫ t
0 λi(s)ds

)

<∞, t ≥ 0,

such that compensated process:

Mi(t) := Ni(t)−
∫ t∧τi
0 λi(s)ds , t ≥ 0 ,

is an ({Ft}t≥0, P )-martingale.

•We further assume that stochastic process X is “exogenous”, i.e., con-
ditional on whole path of X , λi are {

∨
iF i

t}t≥0-predictable.

• To model interaction we consider following intensity rate process:

λi(t) = ai(t) +
∑

j 6=i
bij(t)e

−dij(t−τj)1{τj≤t}, i = 1, 2, . . . , n, (1)

where ai(t) and bij(t) are FX-adapted processes, and dij are nonneg-
ative constants representing rates of decay.
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Homogeneous Case

• Contagion intensity process:

λi(t) = a





1 +

∑

j 6=i
ce−d(t−τj)1{τj≤t}





 , i = 1, 2, . . . , n , (2)

where a positive and c, d nonnegative constants.

• Suppose, for each i = 1, 2, ∙ ∙ ∙ , n, τ i denotes ith default time.

• Let λk+1(t) be (k + 1)th default rate at time t that triggers τk+1

• Then λk+1(t) will be sum of default rates of surviving entities after τk:

λk+1(t) = a(1 +
k∑

i=1
ce−d(t−τ

i))(n− k),

where τk < t ≤ τk+1.
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•We have

P (τk+1 > t | τ i, i = 1, . . . , k) = exp{−
∫ t
τk λ

k+1(s)ds},

where t ≥ τk, which implies,

fτk+1|τ i,i=1,...,k(t) = a(1+
k∑

i=1
ce−d(t−τ

i))(n−k) exp{−
∫ t
τk a(1+

k∑

i=1
ce−d(s−τ

i))(n−k)ds},

(3)
where fτ1(t) = nae

−nat.

• One can apply (3) to derive joint pdf of τ 1, τ 2, . . . , τ k+1 by using re-
cursion:

fτ1,τ2,...,τ k+1(t1, t2, . . . , tk+1) = fτk+1|τ i=ti,i=1,...,k(tk+1)fτ1,τ2,...,τ k(t1, t2, . . . , tk) ,

where t1 < t2 < . . . < tk+1.

• Unconditional density function of τk is given by integral:

fτk(t) =
∫ t
0

∫ tk−1
0 ∙ ∙ ∙

∫ t2
0 fτ1,τ2,...,τ k−1,τk(t1, t2, . . . , tk−1, t)dt1 ∙ ∙ ∙ dtk−2dtk−1

(4)
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Example 1 If n = 2, then joint density function of τ 1 and τ 2 is:

fτ1,τ2(t1, t2) =






2a2(1 + ce−d(t2−t1)) exp{−a(t1 + t2) + ac
d
(e−d(t2−t1) − 1)}, t1 ≤ t2

0, t1 > t2.

Unconditional density function of τ 1 is given by

fτ1(t) = 2ae
−2at,

and unconditional density function of τ 2 is:

fτ2(t) = 2a
2
∫ t
0 (1 + ce

−d(t−t1)) exp{−a(t + t1) +
ac

d
(e−d(t−t1) − 1)}dt1.

Proposition 1 Suppose there are n entities in our portfolio, where
contagion intensity process follows

λi(t) = a





1 +

∑

j 6=i
c1{τj≤t}





 , i = 1, 2, . . . , n . (5)

Then unconditional density functions of τk, k = 1, 2, . . . , n, satisfy
following recursive formula:

fτk+1(t) = a(1 + kc)(n− k)
∫ t
0 fτk(u)e

−a(1+kc)(n−k)(t−u)du, (6)
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where initial condition is:

fτ1(t) = nae
−nat.

Corollary 1 Assume that c 6= 1/i for i = 1, 2, . . . , n − 1. Then un-
conditional density function of τk is given by:

fτk(t) =
k−1∑

j=0
αk,jae

−βjat, (7)

where coefficients are given by:





αk+1,j =






αk,jβk

βk − βj
, j = 0, 1, . . . , k − 1

−
k−1∑

u=0

αk,uβk

βk − βu
, j = k

βj = (n− j)(1 + jc)

and α1,0 = n.
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Stochastic Intensity

Proposition 2 Suppose contagion stochastic intensity process follows
(2) with constant intensity rate a replaced by an “exogenous” stochas-
tic process X(t). Then unconditional density functions of τk, k =
1, 2, . . . , n, given realization of (X(s))0≤s<∞, satisfy following recur-
sive formula:

fτk+1|(X(s))0≤s<∞(t) = (n− k)(1 + kc)X(t)
∫ t
0 fτk|(X(s))0≤s<∞(u)e

−(n−k)(1+kc)
∫ t
u X(s)dsdu,

(8)

for k = 1, 2, . . . , n− 1, where fτ1|(X(s))0≤s<∞(t) = nX(t)e
−n

∫ t
0X(u)du.

Corollary 2 Assume that c 6= 1/i for i = 1, 2, . . . , n−1. Then density
function of τk, given FX

∞ is given by

fτk|(X(s))0≤s<∞(t) =
k−1∑

j=0
αk,jX(t)e

−βj
∫ t
0X(u)du, (9)

where αk,j and βj are given in Corollary 1.
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Multi-state Stochastic Intensity Process

• Assume stochastic intensity process X(t) alternates between x1 and
x2, so that

X(t) =






x1, when exogenous state lies in 1
x2, when exogenous state lies in 2.

• Let ηi denote rate of leaving state i and πi random time to leave state
i, where πi is an exponential random variable, i.e.,

P (πi > t) = e−ηit, i = 1, 2.

• In this case, we consider a two-state, Markov regime-switching, intensity-
based model for portfolio default risk.

• Let Ti(t) be total time between 0 and t during which X(s) = x1,
starting from X(0) = xi.

•We then draw exponential random variables ξ1 with intensity η1 and
ξ2 with intensity η2 independent of X .

12



• Therefore

T1(t)=̂






ξ1 + T2(t− ξ1), ξ1 ≤ t
t, ξ1 > t

, T2(t)=̂






T1(t− ξ2), ξ2 ≤ t
0, ξ2 > t

,

(10)
where “=̂” means “equals in distribution”.

• Let
ψi(l, t) = E(e

−lTi(t)), i = 1, 2, l ∈ R.

By (10), we have





ψ1(l, t) =
∫ t
0 η1e

−(η1+l)uψ2(l, t− u)du + e−(η1+l)t,
ψ2(l, t) =

∫ t
0 η2e

−η2uψ1(l, t− u)du + e−η2t.

• Taking Laplace transform on both sides gives:





L(ψ1(l, t))(∙, s) = 1
l+s+η1

+ η1
l+s+η1

L(ψ2(l, t))(∙, s),
L(ψ2(l, t))(∙, s) = 1

s+η2
+ η2

s+η2
L(ψ1(l, t))(∙, s).

• Therefore,

L(ψ1(l, t))(∙, s) =
s + η1 + η2

s2 + sη1 + sη2 + sl + lη2
.
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• By taking inverse Laplace transform of above equation, we have

ψ1(l, t) =






e−αt[cos(
√
ωt) + β√

ω
sin(
√
ωt)], ω > 0

e−αt(1 + βt), ω = 0

e−αt[cosh(
√
−ωt) + β√

−ω sinh(
√
−ωt)], ω < 0.

Here

α =
η1 + η2 + l

2
, β =

η1 + η2 − l
2

, ω = lη2 − α
2.

• Similarly we have

L(ψ2(l, t))(∙, s) =
s + η1 + η2 + l

s2 + sη1 + sη2 + sl + lη2
,

and

ψ2(l, t) =






e−αt[cos(
√
ωt) + α√

ω
sin(
√
ωt)], ω > 0

e−αt(1 + αt), ω = 0
e−αt[cosh(

√
−ωt) + α√

−ω sinh(
√
−ωt)], ω < 0

•We proceed with derivation of unconditional density function of τk.
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Given X(0) = xi,

E(e−L
∫ t
0X(s)ds) = E(e−L(x1Ti(t)+x2(t−Ti(t)))) = e−Lx2tψi(L(x1 − x2), t), L > 0 .

Then

E(X(t)e−L
∫ t
0X(s)ds) = −

1

L

d(e−Lx2tψi(L(x1 − x2), t))
dt

.

• Combining results in Corollary 2, unconditional density function of τk

can be obtained: when X(0) = xi,

fτk(t) = −
k−1∑

j=0

αk,j

βj

d(e−βjx2tψi(βj(x1 − x2), t))
dt

. (11)
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Heterogeneous Case

• For simplicity of discussion, we consider a two-group of entities.

• First group(G1) consists n1 obligors and λi(t) denotes default rate of
name i in G1 at time t, while second group(G2) consists n2 obligors
and λ̃i(t) denotes default rate of name i in G2 at time t.

• Interacting intensity process of two-group case is assumed as follows:





λi(t) = a





1 + b

∑

j 6=i
1{τj≤t} + c

∑

j
1{τ̃j≤t}





 ,

λ̃i(t) = ã





1 + b̃

∑

j
1{τj≤t} + c̃

∑

j 6=i
1{τ̃j≤t}





 ,

(12)

where τj and τ̃j denote default time of name j in G1 and G2, respec-
tively, a, ã are positive constants and b, c, b̃, c̃ are nonnegative con-
stants.

• Let Ni be number of defaults in G1 right after ith default of our
portfolio, where N 0 is assigned to be 0.
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Proposition 3 Suppose our portfolio has two groups of entities G1
and G2, where G1 and G2 consist of n1 and n2 obligors respectively,
and n = n1 + n2. For each t ≥ 0, let λi(t) and λ̃i(t) denote default
rates of name i in G1 and G2 at time t, respectively. These default
rates follow (12). For each i = 1, 2, ∙ ∙ ∙ , n, let Ni denote number of
defaults in G1 right after ith default of our portfolio. Then recursive
formula of joint distribution of τk and Nk is given by:

fτk+1,Nk+1(t,m + 1) = ζ̃k,m+1
∫ t
0 fτk,Nk(u,m + 1)e−(ζk,m+1+ζ̃k,m+1)(t−u)du

+ζk,m
∫ t
0 fτk,Nk(u,m)e−(ζk,m+ζ̃k,m)(t−u)du,

(13)
where 





fτk,Nk(t,m) = −
dP (τk > t,Nk = m)

dt
,

ζk,m = a(n1 −m)[1 + bm + c(k −m)],
ζ̃k,m = ã(n2 − (k −m))[1 + b̃m + c̃(k −m)],

and fτ1,N1(t, 1) = n1ae
−(n1a+n2ã)t, fτ1,N1(t, 0) = n2ãe

−(n1a+n2ã)t, and
fτ1,N1(t,m) = 0 for m 6= 0, 1.
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Corollary 3 Assume that βk,m 6= βi,j for 1 ≤ k ≤ n,max{0, k−n2} ≤
m ≤ min{k, n1} and i = 0, . . . , k−1, j = 0, . . . ,m. Then joint density
function of τk and Nk is given by:

fτk,Nk(t,m) =
k−1∑

i=0

m∑

j=0
αk,m,i,je

−βi,jt, (14)

where coefficients are given by recursive formula:





αk+1,m+1,i,j =






αk,m+1,i,jζ̃k,m+1

βk,m+1 − βi,j
+
αk,m,i,jζk,m

βk,m − βi,j
, i = 0, 1, . . . , k − 1, j = 0, . . . ,m

αk,m+1,i,jζ̃k,m+1

βk,m+1 − βi,j
, i = 0, 1, . . . , k − 1, j = m + 1

−
k−1∑

u=0

m+1∑

v=0

αk,m+1,u,vζ̃k,m+1

βk,m+1 − βu,v
, i = k, j = m + 1

−
k−1∑

u=0

m∑

v=0

αk,m,u,vζk,m

βk,m − βu,v
, i = k, j = m

0, otherwise

βi,j = ζi,j + ζ̃i,j
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and boundary conditions are as follows:

α1,0,0,0 = n2ã, α1,1,0,0 = n1a, α1,1,0,1 = 0, α1,m,i,j = 0,m 6= 0, 1,

and

αk+1,0,i,0 =






ζ̃k,0αk,0,i,0

βk,0 − βi,0
, i = 0. . . . , k − 1

−
k−1∑

u=0

ζ̃k,0αk,0,u,0

βk,0 − βu,0
, i = k.

As a result, unconditional density function of τk is given by

fτk(t) =
min{k,n1}∑

m=max{0,k−n2}
fτk,Nk(t,m).

19



Evaluation of Basket CDS Rates

• Consider a kth to default basket CDS with maturity T .

• Assume Sk is kth swap rate, and R is recovery rate and r is annualized
riskless interest rate.

• Protection buyer A pays a periodic fee SkΔi to protection seller B at
time ti, i = 1, 2, . . . , N , where 0 = t0 < t1 < . . . < tN = T and
Δi = ti − ti−1.

• If kth default happens in interval [tj, tj+1], A will also pay B accrued
default premium up to τk.

• On the other hand, if τk ≤ T , B will pay A loss occurred at τk, that
is, 1−R.

• Swap rate Sk is given by

Sk =
(1−R)E(e−rτ

k
1{τk≤T})

∑N
i=1E(Δie

−rti1{τk>ti} + (τ
k − ti−1)e−rτ

k1{ti−1<τk≤ti})
. (15)
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Test 1 (Exponential Decay Case)

Basket CDS rates with exponential decay intensity-based default model
(n = 2, k = 2, T = 3,Δ = 0.5, R = 0.5, r = 0.05)

c 0.2 1 5

a d

0.1 0.001 0.0134 0.0211 0.0479

0.01 0.0134 0.0210 0.0477

0.1 0.0132 0.0203 0.0459

1 0.0123 0.0160 0.0322

10 0.0115 0.0120 0.0147

100 0.0114 0.0114 0.0117

1 0.001 0.3654 0.4961 0.7529

0.01 0.3651 0.4955 0.7526

0.1 0.3626 0.4898 0.7502

1 0.3464 0.4390 0.7184

10 0.3262 0.3447 0.4392

100 0.3222 0.3242 0.3342
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Test 2 (Markov Regime-Switching Case)

Basket CDS rates in two-state stochastic intensity process case (n =
10, T = 3,Δ = 0.5, R = 0.5, r = 0.05, c = 3, X(0) = x1.)
Condition 1: x1 = 1, x2 = 1, η1 = 1, η2 = 1,
Condition 2: x1 = 1, x2 = 2, η1 = 1, η2 = 1,
Condition 3: x1 = 1, x2 = 2, η1 = 1, η2 = 2,
Condition 4: x1 = 1, x2 = 2, η1 = 2, η2 = 1.

k Condition 1 Condition 2 Condition 3 Condition 4

1 5.0242 5.2507 5.2409 5.4575
2 3.9288 4.1170 4.1087 4.2891
3 3.4456 3.6184 3.6106 3.7766
4 3.1369 3.3005 3.2930 3.4503
5 2.9035 3.0605 3.0532 3.2043
6 2.7070 2.8588 2.8516 2.9979
7 2.5270 2.6743 2.6672 2.8093
8 2.3473 2.4904 2.4833 2.6214
9 2.1459 2.2847 2.2775 2.4114
10 1.8608 1.9945 1.9870 2.1159
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Test 3 (Heterogeneous Case)

Basket CDS rates in heterogeneous case with 2 groups (n1 = 5, n2 =
5, T = 3,Δ = 0.5, R = 0.5, r = 0.05, a = ã = 1.)
Condition 1: b = b̃ = c = c̃ = 3, Condition 2: b = c̃ = 3, b̃ = c = 0.3,
Condition 3: b = b̃ = c = c̃ = 0.3, Condition 4: b = b̃ = 3, c = c̃ = 0.3.
Analytic approach takes less than one second to compute all swap rates of
one column with MATLAB on a computer with an Intel 3.2 GHz CPU,
while Monte Carlo approach takes more than 5 minutes to run 100,000
simulations.

k Condition 1 Condition 2 Condition 3 Condition 4

AP MC AP MC AP MC AP MC

1 5.0242 5.0265 5.0242 5.0352 5.0242 5.0205 5.0242 5.0463
2 3.9288 3.9352 3.4752 3.4692 2.7073 2.7167 3.2065 3.2167
3 3.4456 3.4510 2.8287 2.8245 1.9036 1.9123 2.5866 2.5922
4 3.1369 3.1417 2.4246 2.4209 1.4799 1.4860 2.2543 2.2567
5 2.9035 2.9062 2.1161 2.1135 1.2081 1.2095 2.0302 2.0333
6 2.7070 2.7068 1.8376 1.8366 1.0112 1.0116 1.8554 1.8549
7 2.5270 2.5270 1.6445 1.6392 0.8550 0.8535 1.7036 1.7013
8 2.3473 2.3477 1.4821 1.4757 0.7203 0.7205 1.5582 1.5545
9 2.1459 2.1440 1.3215 1.3171 0.5921 0.5920 1.4015 1.3985
10 1.8608 1.8625 1.1169 1.1096 0.4451 0.4448 1.1889 1.1851
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Sensitivity Study

To study sensitivities of swap rates, we first find recursively derivatives of
pdf in homogeneous case with intensity (5). Note that

∂fτk(t)

∂a
=

k−1∑

j=0
αk,j(1− βjat)e

−βjat,

and
∂fτk(t)

∂c
=

k−1∑

j=0
(α
′

k,j − αk,j(n− j)jat)ae
−βjat,

where





α
′

k+1,j =






αk,jγ
′

k,j + α
′

k,jγk,j, j = 0, 1, . . . , k − 1

−
k−1∑

u=0
αk,uγ

′

k,u + α
′

k,uγk,u, j = k

γk,j =
βk

βk − βj
,

γ
′

k,j =
∂γk,j

∂c
,

and α
′

1,0 = 0, αk,j and βj are given in Corollary 1.
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Summary

•We propose a simple and efficient method to derive kth default time
distribution under interacting intensity default contagion model.

• Our method gives recursive formulas for order default time distribution
and further derive analytic solutions in a group of homogeneous entities
and also two group of heterogeneous entities.

• In homogeneous case, we further include exponential decay, in which
we give joint distribution of order default time, and further obtain kth
default time distribution.

•We also work on stochastic intensity process in a homogeneous sit-
uation, an give pricing formula under a two-state, Markov regime-
switching stochastic intensity model.

• In addition, our proposed method can study sensitivities of swap rates
to a change in underlying parameters easily when compare to simula-
tion method.
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