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The Portfolio Optimization Problem

The generic problem:

min
w

Risk(w)

s.t . Return(w) = R
w′1 = 1

(1)

▶ Idea: minimize some notion of risk while preserving a guaranteed
return level.

▶ Markowitz problem:
▶ Assume some distribution P for asset returns: X ∼ P
▶ Risk = variance of portfolio return: Variance(w′X)
▶ Reward = mean of portfolio return: E(w′X)

▶ There are variations in characterizing portfolio risk
▶ We consider risk = conditional Value-at-Risk (CVaR) of the

portfolio.
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Conditional Value-at-Risk

▶ CVaR at level 95%: the average loss in the top 5%
▶ Tells you something about the loss tail
▶ Also coherent [[Pflug(2000), Acerbi and Tasche (2001)]



CVaR Portfolio Optimization Problem

min
w

CVaR(w; X, �)

s.t . w⊤� = R
w⊤1 = 1

(2)

▶ X: vector of asset returns d
= P

▶ solution: w0



The Empirical Problem

▶ But we don’t know P, the distribution of X
▶ Suppose we observe iid data Xn = X1, . . . ,Xn ∼ P.
▶ Then solve the empirical problem:

min
w

ĈVaRn(w;X , �)

s.t . w′�̂n = R
w′1 = 1

(3)

▶ ĈVaRn(w; X, �): unbiased nonparametric estimator
▶ solution: ŵn

▶ can be expressed as a LP [Rockafellar & Uryasev (2000)]
▶ but solution is very fragile [Lim, Shanthikumar & Vahn (2011)]



Example: Empirical Problem is Fragile

▶ Model: X ∼ N (�,Σ)

▶ Simulate 250 iid daily “observations” under the model
▶ Solve the empirical problem for ŵn

▶ Plot realized return vs. realized CVaR of ŵn

▶ Repeat (Monte Carlo) to get a distribution for the empirical solution



Example: why Empirical Problem is bad
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Research objective

▶ We want to shift closer to the population frontier with more
reliability, i.e. less fluctuation

▶ Two methods:
▶ Nonparametric: performance-based regularization
▶ Parametric: alternative optimization for X ∼ Ellip
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Nonparametric method

▶ Only assumption is that we observe iid returns X
▶ Let’s look at a picture for intuition



Schematic of Population Problem



Schematic of Empirical Problem



Schematic of Empirical Problem



Nonparametric: Performance-based Regularization

▶ What’s an appropriate penalty function?

▶ Let us consider penalizing the variance of ĈVaRn(w;Xn, �) and
w′�̂n

min
w

ĈVaRn(w;X , �)

s.t . w′�̂n = R
w′1 = 1

V̂AR1(w) ≤ U1

V̂AR2(w) ≤ U2

where V̂AR1, V̂AR2 are sample variances of ĈVaRn(w) and w′�̂n

▶ Theorem: The regularized problem with V̂AR1, V̂AR2 penalty
functions is QCQP

▶ Hence, can be solved efficiently



Nonparametric: Performance-based Regularization

▶ What’s an appropriate penalty function?

▶ Let us consider penalizing the variance of ĈVaRn(w;Xn, �) and
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Parametric: alternative optimization

▶ If X ∼ Ellip(�,Y ,Σ), i.e. X ∼ � + Y Σ1/2U
▶ � is the mean vector,
▶ U is unif. distributed on the p-dim sphere of radius 1
▶ Y is a non-negative random variable independent of U.
▶ Special case: Y = ∣∣Zp∣∣, Zp ∼ N (0, Ip) then X ∼ N (�,Σ).

▶ FACT: CVaR(w; X, �) = C
√

w′Σw−w′�
▶ So Markowitz and mean-CVaR are equivalent in population (truth)
▶ Why not solve empirical Markowitz instead of empirical

mean-CVaR?
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Evaluation of methods

▶ Want to compare location and variability of efficient frontiers:
▶ Empirical (ŵn) vs Regularized (ŵreg) vs Markowitz (ŵMark )

▶ Newsflash: we can do the comparison theoretically by comparing
the asymptotic distributions of the solutions. Stay tuned!

▶ But, let’s just stay with comparison via Monte Carlo, as before
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X ∼ Gaussian
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Summary of results

▶ Empirical < Regularization ≤ Markowitz
▶ Both methods: we’re closer to the population frontier with less

fluctuation!
▶ For X ∼ Ellip, similar result
▶ But can Regularization > Markowitz?



X ∼ I(0.95)Gaussian + I(0.05)Neg.Exp
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Conclusion

▶ Empirical portfolio optimization is BAD
▶ Can improve upon the empirical solution

▶ Nonparametric: regularization helps
▶ Parametric (more info): If X ∼ Ellip, Markowitz is better

▶ Directions for future work:
▶ Performance-based regularization of the empirical Markowitz

problem?
▶ Consider different penalty functions
▶ Combine with known statistical methods of variance reduction (e.g.

bootstrapping, sub-sampling)
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