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The Portfolio Optimization Problem
The generic problem:

m“i,n Risk(w)
s.t. Return(w) = R (1)
w'1 = 1

» |dea: minimize some notion of risk while preserving a guaranteed
return level.



The Portfolio Optimization Problem

The generic problem:

m“i,n Risk(w)
s.t. Return(w) = R (1)
w'1 = 1

» |dea: minimize some notion of risk while preserving a guaranteed
return level.
» Markowitz problem:
» Assume some distribution P for asset returns: X ~ P
» Risk = variance of portfolio return: Variance(w'X)
» Reward = mean of portfolio return: E(w’X)
There are variations in characterizing portfolio risk

We consider risk = conditional Value-at-Risk (CVaR) of the
portfolio.
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Conditional Value-at-Risk

» CVaR at level 95%: the average loss in the top 5%

» Tells you something about the loss tail
» Also coherent [[Pflug(2000), Acerbi and Tasche (2001)]

top 5%
of loss

}

CVaR at level 95%
=E[Loss|Loss>VaR{95%)]




CVaR Portfolio Optimization Problem

m“i,n CVaR(w; X, 5)

st. wu=R (2)
wil=1

d
» X: vector of asset returns = P
» solution: wy



The Empirical Problem

» But we don’t know P, the distribution of X
Suppose we observe iid data X, = Xi,..., X, ~ P.
Then solve the empirical problem:

v

v

m“iln mn(w; X, 5)
st. wp,=R
w1t=1

v

mn(w; X, B): unbiased nonparametric estimator

solution: W,

can be expressed as a LP [Rockafellar & Uryasev (2000)]
but solution is very fragile [Lim, Shanthikumar & Vahn (2011)]
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Example: Empirical Problem is Fragile

v

Model: X ~ NV (p, X)

Simulate 250 iid daily “observations” under the model

Solve the empirical problem for w,

Plot realized return vs. realized CVaR of w,

Repeat (Monte Carlo) to get a distribution for the empirical solution
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Example: why Empirical Problem is bad
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Research objective

» We want to shift closer to the population frontier with more
reliability, i.e. less fluctuation



Research objective

» We want to shift closer to the population frontier with more
reliability, i.e. less fluctuation

» Two methods:

» Nonparametric: performance-based regularization
» Parametric: alternative optimization for X ~ Ellip



Nonparametric method

» Only assumption is that we observe iid returns X
» Let’s look at a picture for intuition



Schematic of Population Problem

CVaR,(w)

a




Schematic of Empirical Problem

CVaR,(w)

D

CVaR (w)




Schematic of Empirical Problem

CVaR,(w)

b

CVaR (w)




Nonparametric: Performance-based Regularization

» What’s an appropriate penalty function?

» Let us consider penalizing the variance of C/\/a\Fx’n(w; Xn, ) and
Wik,
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» Let us consider penalizing the variance of C/\/a\Fu’n(w; Xn, ) and
Wik,

m“i,n @?H(W;X,B)
s.t. wWi,= R
w1t= 1
VARI(w) < U
VAR2(w) < Us

where W, VAR2 are sample variances of (ﬁ/ﬁn(w) and Wi,



Nonparametric: Performance-based Regularization

» What’s an appropriate penalty function?

» Let us consider penalizing the variance of C/\/a\an(w; Xn, ) and
Wik,

m“i,n @?n(w;){,ﬁ)
s.t. wWi,= R
w1t= 1
VARI(w) < U
VAR2(w) < Us

where W, VAR2 are sample variances of (ﬁ/ﬁn(w) and Wi,

» Theorem: The regularized problem with W\ﬁ, VAR2 penalty
functions is QCQP

» Hence, can be solved efficiently



Parametric: alternative optimization

> I X ~ Ellio(p, Y, %), i.e. X~ p+ YE/2U
» p is the mean vector,
U is unif. distributed on the p-dim sphere of radius 1
Y is a non-negative random variable independent of U.
Special case: Y = ||Z,||, Zp ~ N(0, Ip) then X ~ N (s, X).

vV vy



Parametric: alternative optimization

v

If X ~ Ellip(ps, Y, ), i.e. X ~ p+ YE/2U
» u is the mean vector,
U is unif. distributed on the p-dim sphere of radius 1
Y is a non-negative random variable independent of U.
Special case: Y = ||Z,||, Zp ~ N(0, Ip) then X ~ N (s, X).

vV vy

v

FACT:| CVaR(w;X,3) = CvVw'Xw — w'p
So Markowitz and mean-CVaR are equivalent in population (truth)

Why not solve empirical Markowitz instead of empirical
mean-CVaR?
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Evaluation of methods

» Want to compare location and variability of efficient frontiers:
» Empirical (Wp) vs Regularized (Weg) vs Markowitz (Wpar«)



Evaluation of methods

» Want to compare location and variability of efficient frontiers:
» Empirical (Wp) vs Regularized (Weg) vs Markowitz (Wpar«)

» Newsflash: we can do the comparison theoretically by comparing
the asymptotic distributions of the solutions. Stay tuned!



Evaluation of methods

v

Want to compare location and variability of efficient frontiers:
Empirical (W,) vs Regularized (W,eg) vs Markowitz (Wpar«)

v

v

Newsflash: we can do the comparison theoretically by comparing
the asymptotic distributions of the solutions. Stay tuned!

\4

But, let’s just stay with comparison via Monte Carlo, as before



X ~ Gaussian

Gaussian Model
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X ~ Gaussian

Gaussian Model
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X ~ Gaussian

Gaussian Model
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Summary of results

v

Empirical < Regularization < Markowitz

Both methods: we'’re closer to the population frontier with less
fluctuation!

For X ~ Ellip, similar result

v

v
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But can Regularization > Markowitz?



X ~ 1(0.95)Gaussian + 1(0.05)Neg.Exp

Mixture Model
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X ~ 1(0.95)Gaussian + 1(0.05)Neg.Exp

Mixture Model
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X ~ 1(0.95)Gaussian + 1(0.05)Neg.Exp

Mixture Model
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Conclusion

» Empirical portfolio optimization is BAD
» Can improve upon the empirical solution
» Nonparametric: regularization helps
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Conclusion

» Empirical portfolio optimization is BAD
» Can improve upon the empirical solution

» Nonparametric: regularization helps
» Parametric (more info): If X ~ Ellip, Markowitz is better

» Directions for future work:
» Performance-based regularization of the empirical Markowitz
problem?
» Consider different penalty functions
» Combine with known statistical methods of variance reduction (e.g.
bootstrapping, sub-sampling)
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