Log-Robust Portfolio Management

Dr. Aurélie Thiele

Lehigh University

Joint work with Elcin Cetinkaya and Ban Kawas Research partially supported by the National Science Foundation Grant CMMI-0757983

Outline

Introduction

2

Portfolio Management without Short Sales

- Independent Assets
- Correlated Assets
- Numerical Experiments
- Conclusions

Portfolio Management with Short Sales

- Independent Assets
- Correlated Assets
- Numerical Experiments
- Conclusions

Motivation – The LogNormal Model

- Black and Scholes (1973).
- If there is no correlation, random stock price of asset *i* at time *T*, $S_i(T)$, is given by:

$$\ln \frac{S_i(T)}{S_i(0)} = \left(\mu_i - \frac{\sigma_i^2}{2}\right) T + \sigma_i \sqrt{T} Z_i.$$

where Z_i obeys a standard Gaussian distribution, i.e., $Z_i \sim N(0, 1)$, and:

- T: the length of the time horizon,
- $S_i(0)$: the initial (known) value of stock i,
 - μ_i : the drift of the process for stock *i*,
 - σ_i : the infinitesimal standard deviation of the process for stock *i*,
- Widely used in industry, especially for option pricing.

Motivation (Cont'd)

- Other distributions have been investigated by:
 - Fama (1965),
 - Blattberg and Gonedes (1974),
 - Kon (1984),
 - Jansen and deVries (1991),
 - Richardson and Smith (1993),
 - Cont (2001).
- In real life, the distribution of stock prices have fat tails (Jansen and deVries (1991), Cont (2001))

• Jansen and deVries (1991) states:

"Numerous articles have investigated the distribution of share prices, and find that the returns are **fat-tailed**. Nevertheless, there is still controversy about the amount of probability mass in the tails, and hence about the most appropriate distribution to use in modeling returns. This controversy has proven **hard to resolve**."

• The Gaussian distribution in the Log-Normal model leads the manager to take more risk than he is willing to accept.

- Numerous studies suggest that the continuously compounded rates of return are indeed the true drivers of uncertainty.
- There does not seem to be one good distribution for these rates of return.
- Managers want to protect their portfolio from adverse events.
- This makes **robust optimization** particularly well-suited for the problem at hand.

Robust Optimization

Robust Optimization:

- Models random variables as uncertain parameters belonging to known intervals.
- Optimizes the worst-case objective.
- All (independent) random variables are not going to reach their worst case simultaneously! They tend to cancel each other out. (Law of large numbers.)
- Key to the performance of the approach is to take the worst case over a "reasonable uncertainty set."
- Tractability of max-min approach depends on the ability to rewrite the problem as one big maximization problem using strong duality.
- Setting of choice: objective linear in the uncertainty.

Robust Optimization (Cont'd)

- Theory of Robust Optimization:
 - Ben-Tal and Nemirovski (1999),
 - Bertsimas and Sim (2004).
- Applications to Finance:
 - Bertsimas and Pachamanova (2008).
 - Fabozzi et. al. (2007).
 - Pachamanova (2006).
 - Erdogan et. al. (2004).
 - Goldfarb and Iyengar (2003).

8 / 56

- All the researchers who have applied robust optimization to portfolio management before us have modeled the **returns** $S_i(T)$ as the uncertain parameters.
- This matters because of the nonlinearity (exponential term) in the asset price equation.
- To the best of our knowledge, we are the first ones to apply robust optimization to the true drivers of uncertainty.

Contributions

- We incorporate randomness on the continuously compounded rates of return using range forecasts and a budget of uncertainty.
- We maximize the worst-case portfolio value at the end of the time horizon in a one-period setting.
- For the model without short-sales, we derive a tractable robust formulation, specifically, a linear programming problem, with only a moderate increase in the number of constraints and decision variables.
- For the model with short-sales and independent assets, we devise an exact algorithm that involves solving a series of LP problems and of convex problems of one variable.
- For the model with short-sales and correlated assets, we study some heuristics.
- We gain insights into the worst-case scaled deviations and the structures of the optimal strategies.

Portfolio Management without Short Sales Independent Assets

We use the following notation:

- *n* : the number of stocks,
- T: the length of the time horizon,
- $S_i(0)$: the initial (known) value of stock *i*,
- $S_i(T)$: the (random) value of stock *i* at time *T*,
 - w_0 : the initial wealth of the investor,
 - μ_i : the drift of the process for stock *i*,
 - σ_i : the infinitesimal standard deviation of the process for stock *i*,
 - x_i : the amount of money invested in stock *i*.

- Assumptions:
 - Short sales are not allowed.
 - All stock prices are independent.
- In the traditional Log-Normal model, the random stock price *i* at time T, $S_i(T)$, is given by:

$$\ln \frac{S_i(T)}{S_i(0)} = \left(\mu_i - \frac{\sigma_i^2}{2}\right) T + \sigma_i \sqrt{T} Z_i.$$

• Z_i obeys a standard Gaussian distribution, i.e., $Z_i \sim N(0, 1)$.

 We model Z_i as uncertain parameters with nominal value of zero and known support[-c, c] for all i.

$$Z_i = c \tilde{z}_i,$$

- *ž_i* ∈ [−1, 1] represents the *scaled deviation* of *Z_i* from its mean, which is zero.
- Budget of uncertainty constraint:

$$\sum_{i=1}^{n} |\tilde{z}_i| \leq \Gamma,$$

Problem Formulation (Cont'd)

The robust portfolio management problem can be formulated as a maximization of the worst-case portfolio wealth:

$$\begin{array}{ll} \max_{x} & \min_{\tilde{z}} \sum_{i=1}^{n} x_{i} \exp\left[\left(\mu_{i} - \frac{\sigma_{i}^{2}}{2}\right)T + \sigma_{i}\sqrt{T}c\tilde{z}_{i}\right] \\ & \text{s.t.} & \sum_{i=1}^{n} |\tilde{z}_{i}| \leq \Gamma, \\ & |\tilde{z}_{i}| \leq 1 \ \forall i, \end{array}$$
s.t.
$$\begin{array}{l} \sum_{i=1}^{n} x_{i} = w_{0}. \\ & x_{i} > 0 \ \forall i. \end{array}$$

The problem is **linear** in the asset allocation and nonlinear but **convex** in the scaled deviations.

Theorem (Optimal wealth and allocation)

(i) The optimal wealth in the robust portfolio management problem is: $w_0 \exp(F(\Gamma))$, where F is the function defined by:

$$F(\Gamma) = \max_{\eta, \chi, \xi} \sum_{i=1}^{n} \chi_i \ln k_i - \eta \Gamma - \sum_{i=1}^{n} \xi_i$$

s.t. $\eta + \xi_i - \sigma_i \sqrt{T} c \chi_i \ge 0, \forall i$
 $\sum_{i=1}^{n} \chi_i = 1,$
 $\eta \ge 0, \chi_i, \xi_i \ge 0, \forall i.$

(ii) The optimal amount of money invested at time 0 in stock i is $\chi_i w_0$, for all i.

Theorem

Assume assets are ordered in decreasing order of the stock returns without uncertainty $k_i = \exp((\mu_i - \sigma_i^2/2)T)$ (i.e., $k_1 > \cdots > k_n$). There exists an index j such that the optimal asset allocation is given by:

$$\mathbf{x}_i = \begin{cases} \frac{1/\sigma_i}{\sum_{a=1}^j 1/\sigma_a} w_0, & i \leq j, \\ 0, & i > j. \end{cases}$$

Notice that the allocations do not depend on c. Only the degree of diversification j does.

- $x_i \sigma_i$ is constant for all the assets the manager invests in.
- The robust optimization selects the number of assets *j* the manager will invest in.
- When the manager invests in all assets, the allocation is similar to Markovitz's allocation but the σ_i have a different meaning.
- When assets are uncorrelated, the diversification index j increases with Γ, until η becomes zero and we invest in the stock with the highest worst-case return only.

Diversification (Cont'd)

Portfolio Management without Short Sales Correlated Assets - Formulation

• The behavior of stock prices, is replaced by:

$$n \frac{S_i(T)}{S_i(0)} = \left(\mu_i - \frac{\sigma_i^2}{2}\right) T + \sqrt{T} Z_i,$$

where the random vector Z is normally distributed with mean $\mathbf{0}$ and covariance matrix \mathbf{Q} .

• We define:

$$\mathbf{Y} = \mathbf{Q}^{-1/2} \mathbf{Z},$$

where $Y \sim \mathcal{N}(0,I)$ and $Q^{1/2}$ is the square-root of the covariance matrix Q, i.e., the unique symmetric positive definite matrix S such that $S^2 = Q$.

The robust optimization model becomes:

$$\begin{array}{ll} \max_{x} & \min_{\tilde{y}} & \sum_{i=1}^{n} x_{i} \exp\left[\left(\mu_{i} - \sigma_{i}^{2}/2\right) T + \sqrt{T}c\left(\sum_{j=1}^{n} Q_{ij}^{1/2} \tilde{y}_{j}\right)\right] \\ & \text{s.t.} & \sum_{j=1}^{n} |\tilde{y}_{j}| \leq \Gamma, \\ & |\tilde{y}_{j}| \leq 1, \ \forall j, \\ & \text{s.t.} & \sum_{i=1}^{n} x_{i} = w_{0}, \\ & x_{i} \geq 0, \ \forall i. \end{array}$$

Theorem (Optimal wealth and allocation)

(i) The optimal wealth in the robust portfolio management problem with correlated assets is: $w_0 \exp(F(\Gamma))$, where F is the function defined by:

$$F(\Gamma) = \max_{\eta, \chi, \xi} \sum_{i=1}^{n} \chi_i \ln k_i - \eta \Gamma - \sum_{i=1}^{n} \xi_i$$

s.t. $\eta + \xi_i - \sqrt{T} c \left(\sum_{j=1}^{n} Q_{ij}^{1/2} \chi_j \right) \ge 0, \forall i,$
 $\eta + \xi_i + \sqrt{T} c \left(\sum_{j=1}^{n} Q_{ij}^{1/2} \chi_j \right) \ge 0, \forall i,$
 $\sum_{i=1}^{n} \chi_i = 1,$
 $\eta \ge 0, \chi_i, \xi_i \ge 0, \forall i.$

(ii) The optimal amount of money invested at time 0 in stock i is $\chi_i w_0$, for all i.

Dr. Aurélie Thiele (Lehigh University)

Log-Robust Portfolio Management

Numerical Experiments

Goal: to compare the proposed Log-robust approach with the robust optimization approach that has been traditionally implemented in portfolio management.

$$\max_{x, p, q, r} \sum_{i=1}^{n} x_i \exp\left[\left(\mu_i - \frac{\sigma_i^2}{2}\right) T\right] E\left[\exp\left(\sum_{j=1}^{n} Q_{ij}^{1/2} Z_j\right)\right] - \Gamma p - \sum_{i=1}^{n} q_i$$

s.t.
$$\sum_{i=1}^{n} x_i = w_0,$$
$$p + q_i \ge c r_i, \ \forall i,$$
$$-r_i \le \sum_{k=1}^{n} M_{ki}^{1/2} x_k \le r_i, \ \forall i,$$
$$p, q_i, r_i, x_i \ge 0, \ \forall i,$$

with $M^{1/2}$ the square root of the covariance matrix of $\exp\left[\left(\mu_i - \frac{\sigma_i^2}{2}\right)T + \sqrt{T}\left(\sum_{j=1}^n Q_{ij}^{1/2}Z_j\right)\right]$

Dr. Aurélie Thiele (Lehigh University)

We will see that:

- The Log-robust approach yields far greater diversification in the optimal asset allocation.
- It outperforms the traditional robust approach, when performance is measured by percentile values of final portfolio wealth, if at least one of the following two conditions is satisfied:
 - The budget of uncertainty parameter is relatively small, or
 - The percentile considered is low enough.
- This means that the Log-robust approach shifts the **left** tail of the wealth distribution to the right, compared to the traditional robust approach; how much of the whole distribution ends up being shifted depends on the choice of the budget of uncertainty.

Number of stocks in optimal portfolio vs Γ

Dr. Aurélie Thiele (Lehigh University)

Log-Robust Portfolio Management

Number of shares in optimal Log-robust portfolio for $\Gamma=10$ and $\Gamma=20$

Numerical Experiments (Cont'd)

Г	Traditional	Log-Robust	Relative Gain
5	70958.81	107828.94	51.96%
10	70958.81	104829.93	47.73%
15	70958.81	102502.79	44.45%
20	70958.81	101707.00	43.33%
25	70958.81	100905.96	42.40%
30	70958.81	101763.58	43.41%
35	70958.81	98445.23	38.74%
40	70958.81	96120.18	35.46%
45	70958.81	94253.62	32.83%
50	70958.81	94032.09	32.52%

Table: 99% VaR as a function of Γ for Gaussian distribution.

Relative gain of the Log-robust model compared to the Traditional robust model - Gaussian Distribution

Numerical Experiments (Cont'd)

Г	Traditional	Log-Robust	Relative Gain
5	68415.97	108234.32	58.20%
10	68415.97	105146.66	53.69%
15	68415.97	102961.66	50.49%
20	68415.97	102124.75	49.27%
25	68415.97	101294.347	48.06%
30	68415.97	102206.73	49.39%
35	68415.97	98508.69	43.98%
40	68415.97	95940.01	40.23%
45	68415.97	93841.05	37.16%
50	68415.97	93562.59	36.76%

Table: 99% VaR as a function of Γ for Logistic distribution.

- We have presented an approach to uncertainty in stock prices returns that does not require the knowledge of the underlying distributions.
- It builds upon observed dynamics of stock prices while addressing limitations of the Log-Normal model.
- It leads to tractable linear formulations.
- We have characterized the structure of the optimal solution without correlation and explained diversification.

- The model is more aligned with the finance literature than the traditional robust model that does not address the true uncertainty drivers.
- The traditional robust optimization approach does not achieve diversification for real-life financial data like our model.
- Better performance for the ambiguity-averse manager maximizing his 99% VaR (or 95% or 90% VaR).

Portfolio Management with Short Sales Independent Assets

- Short-selling is the practice of borrowing a security and selling it, in the hope that the asset price will decrease.
- Short-selling provides the decision maker with additional profit opportunities. Therefore it is an important step in making the log-robust portfolio management model appealing to practitioners.

Notation

- *n* : the number of stocks,
- T: the length of the time horizon,
- p: leverage parameter,
- $S_i(0)$: the initial (known) value of stock i,
- $S_i(T)$: the (random) value of stock *i* at time *T*,
 - w_0 : the initial wealth of the investor,
 - μ_i : the drift of the process for stock *i*,
 - σ_i : the infinitesimal standard deviation of the process for stock *i*,
 - \tilde{x}_i : the number of shares invested in stock *i*,
 - x_i : the amount of money invested in stock *i*.

p limits the amount of money that can be short-sold (borrowed) as a percentage of the manager's initial wealth.

The log-robust portfolio management model with short sales can be formulated as:

$$\max_{x} \quad \min_{\tilde{z}} \sum_{i=1}^{n} x_{i} \exp\left[\left(\mu_{i} - \frac{\sigma_{i}^{2}}{2}\right)T + \sigma_{i}\sqrt{T} c \tilde{z}_{i}\right]$$
s.t.
$$\sum_{i=1}^{n} |\tilde{z}_{i}| \leq \Gamma,$$

$$|\tilde{z}_{i}| \leq 1 \forall i,$$
s.t.
$$\sum_{i=1}^{n} x_{i} = w_{0},$$

$$\sum_{i \mid x_{i} < 0}^{n} -x_{i} \leq p w_{0}.$$

• Additional notation:

- k_i: return of stock *i* without uncertainty,
- z_i^+ : scaled deviation for assets that are not short sold,
- z_i^- : scaled deviation for assets that are short sold,
- Γ^+ : budget of uncertainty for assets not short sold,
- Γ^- : budget of uncertainty for assets short sold.

Specifically,
$$k_i = \exp\left(\left(\mu_i - \frac{\sigma_i^2}{2}\right)T\right)$$
 for all *i*.

 We distinguish between assets that are short-sold (x_i < 0) and not short-sold (x_i ≥ 0), allocating a budget of uncertainty (to be optimized) Γ⁻ and Γ⁺ to each group.

Tractable Reformulation (Cont'd)

$$\begin{array}{l} \max_{x \in \Gamma^{+}, \Gamma^{-}} \min_{z \in I_{i} \mid x_{i} \geq 0} \sum_{i \mid x_{i} \geq 0}^{n} x_{i}k_{i} \exp(\sigma_{i}\sqrt{T}c\tilde{z}_{i}^{+}) + \min_{\tilde{z}^{-}} \sum_{i \mid x_{i} < 0}^{n} x_{i}k_{i} \exp(\sigma_{i}\sqrt{T}c\tilde{z}_{i}^{-}) \\ \text{s.t} \sum_{i \mid x_{i} \geq 0}^{n} |\tilde{z}_{i}^{+}| \leq \Gamma^{+}, \qquad \text{s.t} \sum_{i \mid x_{i} < 0}^{n} |\tilde{z}_{i}^{-}| \leq \Gamma^{-}, \\ |\tilde{z}_{i}^{+}| \leq 1 \forall i \text{ s.t. } x_{i} \geq 0. \qquad |\tilde{z}_{i}^{-}| \leq 1 \forall i \text{ s.t. } x_{i} < 0. \end{array} \right)$$

$$\text{s.t} \quad \Gamma^{+} + \Gamma^{-} = \Gamma,$$

$$\Gamma^+, \Gamma^- \ge 0$$
 integer.
 $\sum_{i=1}^n x_i = w_0, \quad \sum_{i|x_i<0}^n -x_i \le pw_0.$

•

.

• At optimality, $0 \leq \tilde{z}_i^- \leq 1$ for all stocks that are short-sold (the worst case is to have returns no lower than their nominal value), and the minimization problem in \tilde{z}_i^- is equivalent to the linear programming problem:

$$\min_{z^{-}} \sum_{i|x_{i}<0}^{n} x_{i} k_{i}(1-z_{i}^{-}) + x_{i} k_{i} \exp(\sigma_{i} \sqrt{T} c) z_{i}^{-}$$
s.t.
$$\sum_{i|x_{i}<0}^{n} z_{i}^{-} \leq \Gamma^{-},$$

$$0 \leq z_{i}^{-} \leq 1, \ \forall i \text{ s.t. } x_{i} < 0.$$

Theorem (Optimal Strategy)

(i) At optimality, either the manager short-sells the maximum amount allowed, or he does not short-sell at all.

(ii) The optimal wealth is the maximum between the optimal wealth in the no-short-sales model and the convex problem:

$$\max_{\theta \ge 0} w_0 \cdot \left(\theta \left[1 + \ln \left(\frac{(1+p)}{\theta} \right) \right] + F_p(\theta, \Gamma) \right),$$

where F_p is defined by:

· · · · · · · · ·

Theorem (Optimal Strategy (Cont'd))

$$F_{p}(\theta, \Gamma) = \max_{\eta, \xi, \widetilde{\chi}} \sum_{i|x_{i}\geq 0} \widetilde{\chi}_{i} \ln k_{i} - \sum_{i|x_{i}<0} \widetilde{\chi}_{i} k_{i} - \eta \Gamma - \sum_{i=1}^{n} \xi_{i}$$
s.t. $\eta + \xi_{i} - \sigma_{i}\sqrt{T}c \, \widetilde{\chi}_{i} \geq 0, \qquad \forall i|x_{i} \geq 0,$
 $\eta + \xi_{i} - k_{i} \left[\exp(\sigma_{i}\sqrt{T}c) - 1 \right] \widetilde{\chi}_{i} \geq 0, \quad \forall i|x_{i} < 0,$
 $\sum_{i|x_{i}\geq 0} \widetilde{\chi}_{i} = \theta,$
 $\sum_{i|x_{i}<0} \widetilde{\chi}_{i} = p,$
 $\eta \geq 0, \, \xi_{i} \geq 0, \, \widetilde{\chi}_{i} \geq 0, \qquad \forall i.$

(iii) The optimal fraction of money χ_i allocated to asset *i* is $(1 + p)\frac{\tilde{\chi}_i}{\theta}$ if the stock is invested in and $-\tilde{\chi}_i$ if the stock is short-sold.

Corollary (Optimal Allocation)

If it is optimal to short-sell, there exist indices j and l, j < l such that the decision-maker:

- invests in stocks 1 to j,
- neither invests in nor short-sells stocks j + 1 to l 1,

• short-sells stocks I to n.

Numerical Experiments

The traditional robust model with short sales is given by:

$$\max_{x, s, q, r} \sum_{i=1}^{n} (x_{i}^{+} - x_{i}^{-}) \exp\left[\left(\mu_{i} - \frac{\sigma_{i}^{2}}{2}\right) T\right] E\left[\exp\left(\sum_{j=1}^{n} Q_{ij}^{1/2} Z_{j}\right)\right] -\Gamma s - \sum_{i=1}^{n} q_{i} \text{s.t.} \sum_{\substack{i=1 \ s+q_{i} \ge c r_{i}, \forall i, \\ -r_{i} \le \sum_{k=1}^{n} M_{ki}^{1/2} (x_{k}^{+} - x_{k}^{-}) \le r_{i}, \forall i, \\ \sum_{i=1}^{n} x_{i}^{-} \le p w_{0} \\ s, q_{i}, r_{i}, x_{i}^{+}, x_{i}^{-} \ge 0, \forall i,$$

Numerical Experiments - Uncorrelated Assets

Number of Shares per Stock in the Log-robust model

Number of Stocks Short Sold for Two Data Sets

Number of Stocks Short Sold for p = 0.5 and p = 5

Impact of Γ on Stocks Allocation and Diversification

MMM		1	2	3	4	5	6	7	8	9	10	- 11	12	13	14	15
	4210	1367	809 576	633 451	476	425 303	360	307	286	274 195	268	4210	4210	4210	4210	4210
SYT AA	0	973	405	451	238	213	256 100	219	143	195	134	0	0	0	0	0
APD	0	669	395	309	236	208	180	154	143	137	134	0	0	0	0	0
FCX	0	0	416	326	245	219	185	158	147	141	138	ő	0	0	0	0
AU	0	0	427	334	251	224	190	162	151	145	142	0	0	0	0	0
APA	0	0	417	326	245	219	185	158	147	141	138	0	0	0	0	0
E	ő	0	0	297		200	169	144	134	129	126	ő	0	0	0	0
ESV	0	0	0	346	250		197	168	156	150	147	0	0	0	0	0
HP	0	0	0	187	238		180	154	143	137	135	0	0	0	0	0
OKS	o o	0	0	0	156	140	118	101	94	90	88	0	0	0	0	0
TPP	ò	0	0	0	234	209	177	151	141	135	132	0	0	0	0	0
EPE	0	0	0	0	229	204		147	138	132	129	0	0	0	0	0
HMC	0	0	0	0	280	251	212	181	169	161	158	0	0	0	0	0
MT	0	0	0	0	279	410	347	296	276	264	259	0	0	0	0	0
NCX	0	0	0	0	0	215	182	155	145	138	136	0	0	0	0	0
CR	0	0	0	0	0	0	357	304	284	272	266	0	0	0	0	0
LI	0	0	0	0	0	0	129	110	102	96	96	0	0	0	0	0
DAI	0	0	0	0	0	0	290	355	331	317	311	0	0	0	0	0
TRW	0	0	0	0	0	0	0	149	138	133	130	0	0	0	0	0
BUD	0	0	0	0	0	0	0	317	295	283	277	0	0	0	0	0
FMX	0	0	0	0	0	0	0	588	594	569	557	0	0	0	0	0
BTI	0	0	0	0	0	0	0	0	126	121	118	0	0	0	0	0
DEO	0	0	0	0	0	0	0	0	45	43	42	0	0	0	0	0
RAJ	0	0	0	0	0	0	0	0	0	114	112	0	0	0	0	0
αx	0	0	0	0	0	0	0	0	0	17	52	0	0	0	0	0
HSY	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CBY	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HNZ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CL.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CPB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RAH	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AMG	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PFG	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HOLX TRIB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TAC	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
STE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SHS	0	0	0	0	0	0	0	0	-18	-55	-63	0	0	0	0	0
NYT	0	0	0	0	0	0	0	0			-53	0	0	0	0	0
NDSN	0	0	0	0	0	0	0	-103			-50	0	0	0	0	0
ITC	0	0	0	0	0	0	0				-50	0	0	0	0	0
DTE	0	0	0	0	0	0	118				-56	0	0	0	0	0
DRS	0	0	0	0	0	-18					-134	0	0	0	0	0
ATU	0	0	0	0	0						-109	0	0	0	0	0
MEC	0	0	0	0	-446						-242	0	0	0	0	0
ATG	0	0	0	-218							-87	0	0	0	0	0
800	ő	-227	-603								-220	.1095	.1095	.1095	.1095	.1095
APOG	ő										-130	0	0	0	0	0
ATTR	20085										-158	0	0	0	0	0

Dr. Aurélie Thiele (Lehigh University)

October 2011 45 / 5

99% VaR - Gaussian Distribution

Portfolio Management with Short Sales Correlated Assets

The log-robust optimization model with short sales and correlation is:

$$\begin{array}{ll} \max_{x} & \min_{\tilde{y}} & \sum_{i=1}^{n} x_{i} \exp\left[\left(\mu_{i} - \sigma_{i}^{2}/2\right) T + \sqrt{T}c\left(\sum_{j=1}^{n} Q_{ij}^{1/2} \tilde{y}_{j}\right)\right] \\ & \text{s.t.} & \sum_{\substack{j=1\\ |\tilde{y}_{j}| \leq 1, \ \forall j, \\ \text{s.t.} & \sum_{\substack{i=1\\ i=1}^{n} x_{i} = w_{0}, \\ & \sum_{\substack{i=1\\ i|x_{i}<0}^{n} - x_{i} \leq pw_{0}. \end{array}\right.$$

The heuristics aim at allowing us to use the results of the independent-assets case.

- **(** Heuristic 1: No correlation for assets short-sold.
- Heuristic 2: Approximating the off-diagonal elements by their average and use budget of uncertainty.
- Heuristic 3: Approximating the off-diagonal elements by a conservative estimate of their worst-case value.

Impact of Γ on stock allocation and diversification for correlated stocks.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
MARM .	4210	1403	1018	609	526	474	372	367	309	266	295	4210	4210	4210	4210
SYT	0	893	567	245	192	101	154	148	135	102	93	0	0	0	0
A.A.	0	717	476	298	240	211	154	136	106	115	108	0	0	0	0
APD	0	672	510	284	291	289	241	222	197	164	145	0	0	0	0
•cx	0	0	451	328	231		207	227	168	126	116	0	0	0	0
AU	0	0	599	382	283	259	219	198	151	166	144	0	0	0	0
APA	0	0	0	1.60	128	97	103	96	85	76	63	0	0	0	0
=	0	0	0	0	256	241	231	241	203	167	169	0	0	0	0
ssv.	0	0	0	278	226	201	167	154	146	140	125	0	0	0	0
-IP	ò	0	ő	353	354	341	243	219	210	182	184	0	0	ō	0
OKS	ò	0	0	0	156	100	131	123	106	76	69	ò	0	ō	0
TPP	0	0	0	0	0	21	222	225	213	100	163	0	0	0	0
PE	0	0	0	0	241	244	185	155	126	92	73	0	0	0	0
MC	0	0	0	0	0	0	0	0	D	0	0	0	0	0	0
TN	0	0	0	812	717	668	524	443	414	350	354	0	0	0	0
VCX	0	0	0	0	0	0	0	22	162	142	113	0	0	0	0
28	0	0	0	815	743	688	555	496	479	420	421	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DAI	0	0	0	0	0	0	0	0	293	496	478	ő	0	0	0
TRVV	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BUD	0	0	0	0	0	0	417	350	308	232	227	0	0	0	0
MX	0	0	0	0	0	1270	902	900	840	750	690	0	0	0	0
TI	0	0	0	0	0	0	982	0	040	0	124	0	0	0	0
DEO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SAL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TAI TLX								0							
ILX ISY	0	0	0	0	0	0	0		0	0	0	0	0	0	0
	0	0		0			219	205	191	162	163	0	0	0	
CBY	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HNZ		0					0	0	0		0				0
CL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CPB	0	0	0	0	0	0	118	442	404	31.5	302	0	0	0	0
RAH	0	0	0	0	0	0	0	0	0	369	353	0	0	0	0
AMG	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
are -	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
POLX	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TREE	0	0	0	0	D	0	D	0	D	0	0	0	0	0	0
FAC	0	0	0	0	D	a	0	0	D	0	0	0	0	0	0
STE	0	0	0	0	0	0	D	0	0	0	0	0	0	0	0
SHS	0	0	0	0	0	0	0	0			-42	0	0	0	0
TYP	0	0	0	0	0	0	0	0			-39	0	0	0	0
NDSN	0	0	0	0	0	0	0				-70	0	0	0	0
тс	0	0	0	0	0	0					-39	0	0	0	0
DTE	0	0	0	0	0	0					-66	0	0	0	0
ORS	0	0	0	0	0	0					-106	0	0	0	0
ATU	0	0	0	0	0						-06	0	0	0	0
ABC	0	0	0								-191	0	0	0	0
ATG	0	0	0								69	0	0	0	0
900	0	-227	-487									-1095	-1095	-1095	-1095
APOG	0										-102	0	0	0	0
ATTR	20065										-124	0	0	0	0

Allocation for the three heuristics, $\Gamma=5$

Allocation for the three heuristics, $\Gamma=10$

Allocation for the three heuristics, $\Gamma = 20$

Comparison of the three heuristics with Normal distribution using cVaR

Dr. Aurélie Thiele (Lehigh University)

イヨト イヨト

- We have derived tractable reformulations to the portfolio management problem with short sales.
- We have proved that it is optimal for the manager to either short-sell as much as he can, or not short-sell at all, and provided optimal allocations in this case.
- We have also seen that diversification arises naturally from the log-robust optimization approach.