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Motivation – The LogNormal Model

Black and Scholes (1973).

If there is no correlation, random stock price of asset i at time T ,
Si (T ), is given by:

ln
Si (T )

Si (0)
=

(
µi −

σ2
i

2

)
T + σi

√
T Zi .

where Zi obeys a standard Gaussian distribution, i.e., Zi ∼ N(0, 1),
and:

T : the length of the time horizon,
Si (0) : the initial (known) value of stock i ,
µi : the drift of the process for stock i ,
σi : the infinitesimal standard deviation of the

process for stock i ,

Widely used in industry, especially for option pricing.
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Motivation (Cont’d)

Other distributions have been investigated by:

Fama (1965),
Blattberg and Gonedes (1974),
Kon (1984),
Jansen and deVries (1991),
Richardson and Smith (1993),
Cont (2001).

In real life, the distribution of stock prices have fat tails (Jansen and
deVries (1991), Cont (2001))
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Motivation (Cont’d)

Jansen and deVries (1991) states:

“ Numerous articles have investigated the distribution of share prices,
and find that the returns are fat-tailed. Nevertheless, there is still
controversy about the amount of probability mass in the tails, and
hence about the most appropriate distribution to use in modeling
returns. This controversy has proven hard to resolve.”

The Gaussian distribution in the Log-Normal model leads the
manager to take more risk than he is willing to accept.
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Motivation (Cont’d)

Numerous studies suggest that the continuously compounded rates of
return are indeed the true drivers of uncertainty.

There does not seem to be one good distribution for these rates of
return.

Managers want to protect their portfolio from adverse events.

This makes robust optimization particularly well-suited for the
problem at hand.
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Robust Optimization

Robust Optimization:

Models random variables as uncertain parameters belonging to known
intervals.

Optimizes the worst-case objective.

All (independent) random variables are not going to reach their worst
case simultaneously! They tend to cancel each other out. (Law of
large numbers.)

Key to the performance of the approach is to take the worst case over
a “reasonable uncertainty set.”

Tractability of max-min approach depends on the ability to rewrite
the problem as one big maximization problem using strong duality.

Setting of choice: objective linear in the uncertainty.
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Robust Optimization (Cont’d)

Theory of Robust Optimization:

Ben-Tal and Nemirovski (1999),

Bertsimas and Sim (2004).

Applications to Finance:

Bertsimas and Pachamanova (2008).

Fabozzi et. al. (2007).

Pachamanova (2006).

Erdogan et. al. (2004).

Goldfarb and Iyengar (2003).
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Robust Optimization (Cont’d)

All the researchers who have applied robust optimization to portfolio
management before us have modeled the returns Si (T ) as the
uncertain parameters.

This matters because of the nonlinearity (exponential term) in the
asset price equation.

To the best of our knowledge, we are the first ones to apply robust
optimization to the true drivers of uncertainty.
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Contributions

We incorporate randomness on the continuously compounded rates of
return using range forecasts and a budget of uncertainty.

We maximize the worst-case portfolio value at the end of the time
horizon in a one-period setting.

For the model without short-sales, we derive a tractable robust
formulation, specifically, a linear programming problem, with only a
moderate increase in the number of constraints and decision variables.

For the model with short-sales and independent assets, we devise an
exact algorithm that involves solving a series of LP problems and of
convex problems of one variable.

For the model with short-sales and correlated assets, we study some
heuristics.

We gain insights into the worst-case scaled deviations and the
structures of the optimal strategies.
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Portfolio Management without Short Sales
Independent Assets

We use the following notation:

n : the number of stocks,
T : the length of the time horizon,

Si (0) : the initial (known) value of stock i ,
Si (T ) : the (random) value of stock i at time T ,

w0 : the initial wealth of the investor,
µi : the drift of the process for stock i ,
σi : the infinitesimal standard deviation of the

process for stock i ,
xi : the amount of money invested in stock i .
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Problem Formulation

Assumptions:

Short sales are not allowed.

All stock prices are independent.

In the traditional Log-Normal model, the random stock price i at time
T , Si (T ), is given by:

ln
Si (T )

Si (0)
=

(
µi −

σ2
i

2

)
T + σi

√
T Zi .

Zi obeys a standard Gaussian distribution, i.e., Zi ∼ N(0, 1).
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Problem Formulation (Cont’d)

We model Zi as uncertain parameters with nominal value of zero and
known support[−c , c] for all i .

Zi = c z̃i ,

z̃i ∈ [−1, 1] represents the scaled deviation of Zi from its mean, which
is zero.

Budget of uncertainty constraint:

n∑
i=1

|z̃i | ≤ Γ,
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Problem Formulation (Cont’d)

The robust portfolio management problem can be formulated as a
maximization of the worst-case portfolio wealth:

max
x

min
z̃

n∑
i=1

xi exp

[
(µi −

σ2
i

2
)T + σi

√
T cz̃i

]

s.t.
n∑

i=1

|z̃i | ≤ Γ,

|z̃i | ≤ 1 ∀i ,

s.t.
n∑

i=1

xi = w0.

xi ≥ 0 ∀i .

The problem is linear in the asset allocation and nonlinear but convex in
the scaled deviations.
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Tractable Reformulation

Theorem (Optimal wealth and allocation)

(i) The optimal wealth in the robust portfolio management problem is:
w0 exp(F (Γ)), where F is the function defined by:

F (Γ) = max
η, χ, ξ

n∑
i=1

χi ln ki − η Γ−
n∑

i=1

ξi

s.t. η + ξi − σi

√
T c χi ≥ 0, ∀i ,

n∑
i=1

χi = 1,

η ≥ 0, χi , ξi ≥ 0, ∀i .

(ii) The optimal amount of money invested at time 0 in stock i is χi w0,
for all i .
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Structure of the optimal allocation (Cont’d)

Theorem

Assume assets are ordered in decreasing order of the stock returns without
uncertainty ki = exp((µi − σ2

i /2)T ) (i.e., k1 > · · · > kn).
There exists an index j such that the optimal asset allocation is given by:

xi =


1/σi∑j

a=1 1/σa

w0, i ≤ j ,

0, i > j .

Notice that the allocations do not depend on c . Only the degree of
diversification j does.
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Remarks

xi σi is constant for all the assets the manager invests in.

The robust optimization selects the number of assets j the
manager will invest in.

When the manager invests in all assets, the allocation is similar to
Markovitz’s allocation but the σi have a different meaning.

When assets are uncorrelated, the diversification index j increases
with Γ, until η becomes zero and we invest in the stock with the
highest worst-case return only.
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Diversification (Cont’d)
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Portfolio Management without Short Sales
Correlated Assets - Formulation

The behavior of stock prices, is replaced by:

ln
Si (T )

Si (0)
=

(
µi −

σ2
i

2

)
T +

√
T Zi ,

where the random vector Z is normally distributed with mean 0 and
covariance matrix Q.

We define:
Y = Q−1/2Z,

where Y ∼ N (0, I) and Q1/2 is the square-root of the covariance

matrix Q, i.e., the unique symmetric positive definite matrix S such
that S2 = Q.
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Formulation (Cont’d)

The robust optimization model becomes:

max
x

min
ỹ

n∑
i=1

xi exp

(µi − σ2
i /2
)

T +
√

T c

 n∑
j=1

Q
1/2
ij ỹj


s.t.

n∑
j=1

|ỹj | ≤ Γ,

|ỹj | ≤ 1, ∀j ,

s.t.
n∑

i=1

xi = w0,

xi ≥ 0, ∀i .
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Theorem (Optimal wealth and allocation)

(i) The optimal wealth in the robust portfolio management problem with
correlated assets is: w0 exp(F (Γ)), where F is the function defined by:

F (Γ) = max
η, χ, ξ

n∑
i=1

χi ln ki − η Γ−
n∑

i=1

ξi

s.t. η + ξi −
√

T c

 n∑
j=1

Q
1/2
ij χj

 ≥ 0, ∀i ,

η + ξi +
√

T c

 n∑
j=1

Q
1/2
ij χj

 ≥ 0, ∀i ,

n∑
i=1

χi = 1,

η ≥ 0, χi , ξi ≥ 0, ∀i .

(ii) The optimal amount of money invested at time 0 in stock i is χi w0,
for all i .
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Numerical Experiments

Goal: to compare the proposed Log-robust approach with the robust
optimization approach that has been traditionally implemented in portfolio
management.

max
x , p, q, r

n∑
i=1

xi exp

[(
µi −

σ2
i

2

)
T

]
E

exp

 n∑
j=1

Q
1/2
ij Zj

− Γ p −
n∑

i=1

qi

s.t.
n∑

i=1

xi = w0,

p + qi ≥ c ri , ∀i ,

−ri ≤
n∑

k=1

M
1/2
ki xk ≤ ri , ∀i ,

p, qi , ri , xi ≥ 0, ∀i ,

with M1/2 the square root of the covariance matrix of

exp
[(
µi −

σ2
i

2

)
T +

√
T
(∑n

j=1 Q
1/2
ij Zj

)]
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Numerical Experiments (Cont’d)

We will see that:

The Log-robust approach yields far greater diversification in the
optimal asset allocation.

It outperforms the traditional robust approach, when performance is
measured by percentile values of final portfolio wealth, if at least one
of the following two conditions is satisfied:

The budget of uncertainty parameter is relatively small, or
The percentile considered is low enough.

This means that the Log-robust approach shifts the left tail of the
wealth distribution to the right, compared to the traditional robust
approach; how much of the whole distribution ends up being shifted
depends on the choice of the budget of uncertainty.
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Number of stocks in optimal portfolio vs Γ
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Number of shares in optimal Log-robust portfolio for
Γ = 10 and Γ = 20
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Numerical Experiments (Cont’d)

Γ Traditional Log-Robust Relative Gain

5 70958.81 107828.94 51.96%
10 70958.81 104829.93 47.73%
15 70958.81 102502.79 44.45%
20 70958.81 101707.00 43.33%
25 70958.81 100905.96 42.40%
30 70958.81 101763.58 43.41%
35 70958.81 98445.23 38.74%
40 70958.81 96120.18 35.46%
45 70958.81 94253.62 32.83%
50 70958.81 94032.09 32.52%

Table: 99% VaR as a function of Γ for Gaussian distribution.
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Relative gain of the Log-robust model compared to the
Traditional robust model - Gaussian Distribution
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Numerical Experiments (Cont’d)

Γ Traditional Log-Robust Relative Gain

5 68415.97 108234.32 58.20%
10 68415.97 105146.66 53.69%
15 68415.97 102961.66 50.49%
20 68415.97 102124.75 49.27%
25 68415.97 101294.347 48.06%
30 68415.97 102206.73 49.39%
35 68415.97 98508.69 43.98%
40 68415.97 95940.01 40.23%
45 68415.97 93841.05 37.16%
50 68415.97 93562.59 36.76%

Table: 99% VaR as a function of Γ for Logistic distribution.
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Conclusions

We have presented an approach to uncertainty in stock prices returns
that does not require the knowledge of the underlying distributions.

It builds upon observed dynamics of stock prices while addressing
limitations of the Log-Normal model.

It leads to tractable linear formulations.

We have characterized the structure of the optimal solution without
correlation and explained diversification.
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Conclusions

The model is more aligned with the finance literature than the
traditional robust model that does not address the true uncertainty
drivers.

The traditional robust optimization approach does not achieve
diversification for real-life financial data like our model.

Better performance for the ambiguity-averse manager maximizing his
99% VaR (or 95% or 90% VaR).
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Portfolio Management with Short Sales
Independent Assets

Short-selling is the practice of borrowing a security and selling it, in
the hope that the asset price will decrease.

Short-selling provides the decision maker with additional profit
opportunities. Therefore it is an important step in making the
log-robust portfolio management model appealing to practitioners.
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Notation

n : the number of stocks,
T : the length of the time horizon,
p : leverage parameter,

Si (0) : the initial (known) value of stock i ,
Si (T ) : the (random) value of stock i at time T ,

w0 : the initial wealth of the investor,
µi : the drift of the process for stock i ,
σi : the infinitesimal standard deviation of the

process for stock i ,
x̃i : the number of shares invested in stock i ,
xi : the amount of money invested in stock i .

p limits the amount of money that can be short-sold (borrowed) as a
percentage of the manager’s initial wealth.
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Formulation

The log-robust portfolio management model with short sales can be
formulated as:

max
x

min
z̃

n∑
i=1

xi exp

[
(µi −

σ2
i

2
)T + σi

√
T c z̃i

]

s.t.
n∑

i=1

|z̃i | ≤ Γ,

|z̃i | ≤ 1 ∀i ,

s.t.
n∑

i=1

xi = w0,∑
i | xi<0

−xi ≤ p w0.
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Tractable Reformulation

Additional notation:

ki : return of stock i without uncertainty,
z+
i : scaled deviation for assets that are not short sold,

z−i : scaled deviation for assets that are short sold,
Γ+: budget of uncertainty for assets not short sold,
Γ−: budget of uncertainty for assets short sold.

Specifically, ki = exp
(

(µi −
σ2

i
2 )T

)
for all i .

We distinguish between assets that are short-sold (xi < 0) and not
short-sold (xi ≥ 0), allocating a budget of uncertainty (to be
optimized) Γ− and Γ+ to each group.
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Tractable Reformulation (Cont’d)

max
x

min
Γ+, Γ−

min
z̃+

n∑
i |xi≥0

xiki exp(σi

√
T cz̃+

i )

s.t
n∑

i |xi≥0

|z̃+
i | ≤ Γ+,

|z̃+
i | ≤ 1∀ i s.t. xi ≥ 0.

+ min
z̃−

n∑
i |xi<0

xiki exp(σi

√
T cz̃−i )

s.t
n∑

i |xi<0

|z̃−i | ≤ Γ−,

|z̃−i | ≤ 1∀ i s.t. xi < 0.


s.t Γ+ + Γ− = Γ,

Γ+, Γ− ≥ 0 integer.

s.t.
n∑

i=1

xi = w0,

n∑
i |xi<0

−xi ≤ pw0.
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Worst-Case Uncertainty

At optimality, 0 ≤ z̃−i ≤ 1 for all stocks that are short-sold (the worst
case is to have returns no lower than their nominal value), and the
minimization problem in z̃−i is equivalent to the linear programming
problem:

min
z−

n∑
i |xi<0

xi ki (1− z−i ) + xi ki exp(σi

√
T c)z−i

s.t.
n∑

i |xi<0

z−i ≤ Γ−,

0 ≤ z−i ≤ 1, ∀i s.t. xi < 0.
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Optimal Strategy

Theorem (Optimal Strategy)

(i) At optimality, either the manager short-sells the maximum amount
allowed, or he does not short-sell at all.
(ii) The optimal wealth is the maximum between the optimal wealth in the
no-short-sales model and the convex problem:

max
θ≥0

w0 ·
(
θ

[
1 + ln

(
(1 + p)

θ

)]
+ Fp(θ, Γ)

)
,

where Fp is defined by:
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Theorem (Optimal Strategy (Cont’d))

Fp(θ, Γ) = max
η, ξ, χ̃

∑
i |xi≥0

χ̃i ln ki −
∑

i |xi<0

χ̃i ki − η Γ−
n∑

i=1

ξi

s.t. η + ξi − σi

√
T c χ̃i ≥ 0, ∀i |xi ≥ 0,

η + ξi − ki

[
exp(σi

√
T c)− 1

]
χ̃i ≥ 0, ∀i |xi < 0,∑

i |xi≥0

χ̃i = θ,

∑
i |xi<0

χ̃i = p,

η ≥ 0, ξi ≥ 0, χ̃i ≥ 0, ∀i .

(iii) The optimal fraction of money χi allocated to asset i is (1 + p) χ̃i
θ

if
the stock is invested in and −χ̃i if the stock is short-sold.
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Corollary (Optimal Allocation)

If it is optimal to short-sell, there exist indices j and l, j < l such that the
decision-maker:

invests in stocks 1 to j,

neither invests in nor short-sells stocks j + 1 to l − 1,

short-sells stocks l to n.
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Numerical Experiments

The traditional robust model with short sales is given by:

max
x , s, q, r

n∑
i=1

(x+
i − x−i ) exp

[(
µi −

σ2
i

2

)
T

]
E

exp

 n∑
j=1

Q
1/2
ij Zj


−Γ s −

n∑
i=1

qi

s.t.
n∑

i=1

(x+
i − x−i ) = w0,

s + qi ≥ c ri , ∀i ,

−ri ≤
n∑

k=1

M
1/2
ki (x+

k − x−k ) ≤ ri , ∀i ,

n∑
i=1

x−i ≤ p w0

s, qi , ri , x+
i , x−i ≥ 0, ∀i ,

Dr. Aurélie Thiele (Lehigh University) Log-Robust Portfolio Management October 2011 40 / 56



Numerical Experiments - Uncorrelated Assets
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Number of Shares per Stock in the Log-robust model
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Number of Stocks Short Sold for Two Data Sets
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Number of Stocks Short Sold for p = 0.5 and p = 5
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Impact of Γ on Stocks Allocation and Diversification
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99% VaR - Gaussian Distribution
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99% cVaR - Gaussian Distribution
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Portfolio Management with Short Sales
Correlated Assets

The log-robust optimization model with short sales and correlation is:

max
x

min
ỹ

n∑
i=1

xi exp

(µi − σ2
i /2
)

T +
√

T c

 n∑
j=1

Q
1/2
ij ỹj


s.t.

n∑
j=1

|ỹj | ≤ Γ,

|ỹj | ≤ 1, ∀j ,

s.t.
n∑

i=1

xi = w0,

n∑
i |xi<0

−xi ≤ pw0.
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Heuristics

The heuristics aim at allowing us to use the results of the
independent-assets case.

1 Heuristic 1: No correlation for assets short-sold.

2 Heuristic 2: Approximating the off-diagonal elements by their average
and use budget of uncertainty.

3 Heuristic 3: Approximating the off-diagonal elements by a
conservative estimate of their worst-case value.
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Impact of Γ on stock allocation and diversification for
correlated stocks.
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Allocation for the three heuristics, Γ = 5
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Allocation for the three heuristics, Γ = 10
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Allocation for the three heuristics, Γ = 20
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Comparison of the three heuristics with Normal
distribution using cVaR
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99% cVaR for Gaussian distribution
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Conclusions

We have derived tractable reformulations to the portfolio
management problem with short sales.

We have proved that it is optimal for the manager to either short-sell
as much as he can, or not short-sell at all, and provided optimal
allocations in this case.

We have also seen that diversification arises naturally from the
log-robust optimization approach.
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