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Outline

n Multi-objective optimization — simultaneously optimizing two or more
conflicting objectives subject to certain constraints
g introduction
g solution techniques
g computing efficient frontiers
n Portfolio selection — selecting optimal portfolios based on multiple
criteria

g computing 2D efficient frontiers
g computing 3D efficient surfaces

n Robust multi-objective portfolio selection — robustness as one of the
objectives
g box uncertainty sets
g ellipsoidal uncertainty sets
n Risk management — market-credit risk optimization
g Value-at-Risk — Conditional Value-at-Risk efficient frontiers

n Conclusions and future work
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Multi-Objective Optimization

n  Multi-objective optimization: simultaneously
optimizing two or more conflicting objectives subject
to certain constraints

minimize {fi(x), fo(z), ..., fr(x)}

subject to x € ()

n Examples:
g Finance: Minimize risk & Maximize return

g Business: Minimize cost & Minimize environmental impact

n  Units of the objectives are typically not the same:

dollars, probability, units of time, ... 5 jl ,
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Bi-Objective Example

n min f; = risk, min fo = loss:

f2
C
A
| *
® :
B feasible
region / Pareto frontier or efficient frontier
* //’ (all non-dominated solutions)

Fil~——

1 f 1

n Pareto efficiency: solutions with characteristics like D,
are called tradeoff, Pareto optimal or non-dominated

n  Multi-objective optimization goal: find solution(s)
on the efficient frontier according to the

decision maker preferences

© 2011 Algorithmics Incorporated. All rights reserved. 5




Computing Efficient Frontiers - Possibilities

Multi-objective analysis involves computing the efficient frontier,
evaluating it (if possible, out-of-sample) and selecting the final
solution based on the decision maker preferences

Computing efficient frontiers:
n Ideal (often unrealistic) goal: compute exact frontier

identify exact efficient
f, frontier

/ /
true but unknown
efficient frontier

f1
n Typical (more realistic) goal: approximate the frontier
approximation of efficient

f, frontier using only three

_—\\ — solutions

true but unknown

efficient frontier Algorithmics | A~
- soitmics | -
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Solving Multi-Objective Optimization Problems

n Convert multi-objective optimization problem to a
series of single-objective optimization problems

n Methods:
a Weighting Method
g ¢€-Constraint (Hierarchical) Method
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Weighting Method

n Assign weights to each objective
n  Optimize the weighted sum of the objectives

n  Multi-objective optimization with weighting method:

min = wi - f1(x) + ws - fo(x)

st x €

fi is linear or convex quadratic, A — 00

) C R" (convex), Efficient frontier

w; € R is the weight of the i-th objective,

w; >0,2=1,2 and w; +wy =1 f, /

: : _ G A=0
n  Easier formulation: = —
f,

min  Afi(z) + f2(z)
stoeed)
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e-Constrained Method

n Optimize one objective
n Convert other objectives into constraints

n  Multi-objective optimization with e-constrained method:

First step Second step T "
mu;l J 2($g)2 min  fy(x) ; Efficient frontier
. 2
S ﬁ: - s.t x € N /
e falz) < (L4 e)fs | e N\ ot
: | |

. . ¥3
Algorithmics
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Multi-Objective Optimization Examples

n  Multi-objective optimization in finance and risk management:

min w; - (—performance measure) + ws - (risk measure)
i wi - \I'ISK Ineasure i+ w9 - \IlSK Ineasure A)
min risk measure

's.t. performance measure > ¢ +wy - (perform. measure 2)

n  Firm’s performance measures: profits, sales, stock price,
growth, liquidity, market share, ...

n  Bank’'s performance measures: return, profit, liquidity,
tracking error, ...

n Risk measures:

q variance
g  Value-at-Risk (VaR)
g  Conditional Value-at-Risk (CVaR)
n  Robustness as model’s performance measure?
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Market Risk Measures and Portfolio Selection

Portfolio return distribution (F'r) is assumed to be Gaussian (Normal)

Variance n Consider n assets with random returns:
(standard deviation) xi, i = 1,...,n proportion invested in asset i
Wiy O exp. return and standard dev. of

the return of asset i
Q.j = pij0;0; variance-covariance matrix

n Portfolio exp. return and variance:
E[z] = pTz  Var[z] = 27 Qx

n Set of admissible portfolios:
F={z:>  ,z;=1 x>0}

Probability density

Mean
0 return

Portfolio Return (f2)
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Portfolio Selection

n  Mean-variance (Markowitz, 1952) portfolio optimization
problem with market risk — two objectives:

Mean-Variance Efficient Frontier

004k
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Yariance

Extensions of mean-variance model: introduce transaction costs
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Portfolio Selection

Mean-variance portfolio optimization problem with

market risk — efficient frontier and portfolio composition:

Efficient Frontier
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Portfolio Selection

n  Mean-variance portfolio optimization problem with
market risk and transaction cost — three objectives:

min  z? Qx

T
T
S.t M X 2 €1 0.014 -
cL'x < &9
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Robust Optimization 1

n  The vector of true expected returns r lies in the ellipsoidal

uncertainty set:
reU(p)s={r: (r—p)"'07 (r—p) <%}
n  Robust portfolio optimization:

. T T
1min —rx + )\ZE Qaj Ellipsoidal Uncertainty Set

x>0
Vr e Z/[(,LL)(;
n  Ellipsoidal

uncertainty set:

0.05 u r
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Robust Optimization 2

n  The vector of true expected returns r lies in the box
uncertainty set:

relU(u)s=A{r :|ri— | <0, i=1,...,n}
n  Robust portfolio optimization:

: T T
min —rx + )\ZU Q.CC Box Uncertainty Set
x>0

VrelU(u)s
n  Box uncertainty set:
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Robust Optimization 1 and 2

n  The vector of true expected returns r lies in the box
uncertainty set or ellipsoidal uncertainty set :

reU(p)s={r : |ri—w| <d, i=1,...,n}
reU(p)s ={r: (r—p)"0 1 r—pu) <d%

n  Objectives:
g  minimize variance of portfolio return a:TQa:
g  maximize portfolio expected return ,uTa:
g  minimize portfolio return estimation error
box uncertainty set: 6 |z| = || Dz||1, D = diag(d;)
ellipsoidal uncertainty set: ||©1/2z| = V2T Oux

n Constraints:

> i Ti

X

vV
-
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Robust Optimization 2

Multi-objective robust optimization:
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Robust Optimization 1

Multi-objective robust optimization:

max ulzx

S.t. rT'Qxr < g
|02z < e
D im1 Ti =

oo7is-f L

Do7TI4 -} R |
A2

Expected Return

Robust portfolio
optimization problem
solution — efficient e
surface
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Conditional Value-at-Risk Optimization

n Conditional Value-at-Risk optimization problem:

S
, 1
min €+S(1_Q);us

x,u,l

st us>—plx—4, u, >0, s=1,...,8

DiTi=1
x>0 \ o

. 1 T +
min (o sy 2 s =4l

s=1

n Solve CVaR optimization problem at different quantile levels o
to compute VaR .~ — CVaR,~ trade-oft
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VaR Optimization via CVaR Optimization

n Solve CVaR optimization problem at different quantile levels «
to compute VaR - — CVaR - trade-off

CVaRgg-VaRggy, Efficient Frontier
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Conclusions

n Benefits of multi-objective optimization: a wider range of alternatives is
identified, and models tend to be more realistic if more objectives
considered

n Multi-objective optimization problems can be formulated as series of
single-objective optimization problems and solved efficiently

n Many optimization problems in finance and risk management are multi-
objective in their nature

n Efficient frontiers provide a decision make with the complete picture of
choices and allow to identify trade-offs

n Robustness measure can be incorporated into multi-objective
optimization problem as the additional objective

n Investigate Value-at-Risk — Conditional Value-at-Risk efficient frontiers

n ldentify if other efficient frontiers in addition to the mean-variance trade-
off are useful for practical applications
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