Multi-Objective and Robust Optimization in Finance and Risk Management

Oleksandr Romanko

Quantitative Research, Algorithmics Inc.
Dept. of Computing and Software, McMaster University

Joint work with Helmut Mausser

Outline

- n **Multi-objective optimization** simultaneously optimizing two or more conflicting objectives subject to certain constraints
 - q introduction
 - q solution techniques
 - q computing efficient frontiers
- n Portfolio selection selecting optimal portfolios based on multiple criteria
 - q computing 2D efficient frontiers
 - q computing 3D efficient surfaces
- n Robust multi-objective portfolio selection robustness as one of the objectives
 - q box uncertainty sets
 - q ellipsoidal uncertainty sets
- n **Risk management** market-credit risk optimization
 - q Value-at-Risk Conditional Value-at-Risk efficient frontiers
- n Conclusions and future work

Multi-Objective Optimization

Multi-Objective Optimization

Multi-objective optimization: simultaneously n optimizing two or more conflicting objectives subject to certain constraints

minimize
$$\{f_1(x), f_2(x), \dots, f_k(x)\}$$

subject to $x \in \Omega$

Examples: n

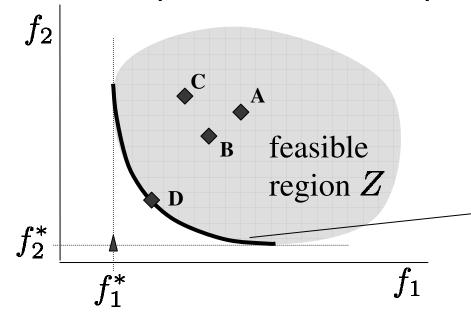
Finance: Minimize risk & Maximize return

Business: Minimize cost & Minimize environmental impact

Units of the objectives are typically not the same: n dollars, probability, units of time, ...

Bi-Objective Example

n $\min f_1 = \operatorname{risk}, \ \min f_2 = \operatorname{loss}$:



Pareto frontier or efficient frontier (all non-dominated solutions)

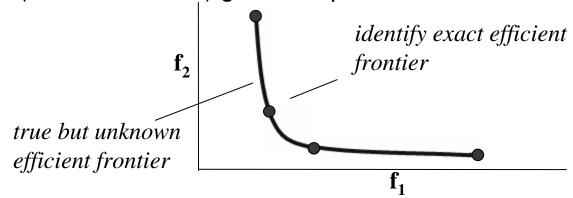
- n Pareto efficiency: solutions with characteristics like **D**, are called tradeoff, Pareto optimal or non-dominated
- Multi-objective optimization goal: find solution(s) on the efficient frontier according to the decision maker preferences

Computing Efficient Frontiers - Possibilities

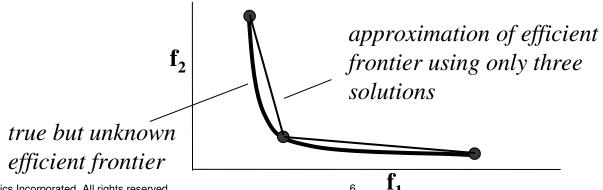
Multi-objective analysis involves **computing the efficient frontier**, evaluating it (if possible, out-of-sample) and selecting the final solution based on the decision maker preferences

Computing efficient frontiers:

Ideal (often unrealistic) goal: compute exact frontier



Typical (more realistic) goal: approximate the frontier n



Algorithmics

Solving Multi-Objective Optimization Problems

n Convert multi-objective optimization problem to a series of single-objective optimization problems

n **Methods**:

- q Weighting Method
- q ε-Constraint (Hierarchical) Method

Weighting Method

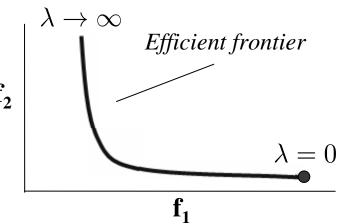
- n Assign weights to each objective
- n Optimize the weighted sum of the objectives
- n Multi-objective optimization with weighting method:

$$\min \quad w_1 \cdot f_1(x) + w_2 \cdot f_2(x) \\
\text{s.t.} \quad x \in \Omega$$

 f_i is linear or convex quadratic, $\Omega \subseteq \mathbb{R}^n$ (convex), $w_i \in \mathbb{R}$ is the weight of the *i*-th objective, $w_i \geq 0, i = 1, 2$ and $w_1 + w_2 = 1$

 $\frac{v_1}{v_2}$

$$\min_{\mathbf{s.t}} \lambda f_1(x) + f_2(x) \\
\mathbf{s.t} \quad x \in \Omega$$



ε-Constrained Method

- n Optimize one objective
- n Convert other objectives into constraints
- n Multi-objective optimization with ε -constrained method:

First step
$$\min_{\begin{subarray}{c} f_2(x) \\ s.t & x \in \Omega \end{subarray}} \min_{\begin{subarray}{c} f_2(x) \\ f_2(x) \end{subarray}} \sup_{\begin{subarray}{c} c \in \mathcal{E}_u \\ f_1(x) \\ s.t & x \in \Omega \end{subarray}} \sup_{\begin{subarray}{c} f_1(x) \\ f_2(x) \leq (1+\epsilon)f_2^* \\ \hline \end{subarray}} \underbrace{\begin{array}{c} \varepsilon = \varepsilon_u \\ \varepsilon = \varepsilon_$$

Multi-Objective Optimization Examples

n Multi-objective optimization in finance and risk management:

```
min w_1 \cdot (\text{-performance measure}) + w_2 \cdot (\text{risk measure})

min w_1 \cdot (\text{risk measure} + w_2 \cdot (\text{risk measure } z))

min risk measure

w_1 \cdot (\text{risk measure} + w_2 \cdot (\text{risk measure } z))

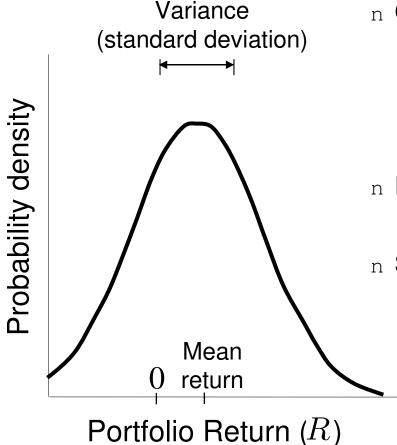
s.t. performance measure w_2 \cdot (\text{perform. measure } z)
```

- n Firm's performance measures: profits, sales, stock price, growth, liquidity, market share, ...
- n Bank's performance measures: return, profit, liquidity, tracking error, ...
- n Risk measures:
 - q variance
 - q Value-at-Risk (VaR)
 - q Conditional Value-at-Risk (CVaR)
- n Robustness as model's performance measure?

& Portfolio Selection

Market Risk Measures and Portfolio Selection

Portfolio return distribution (F_R) is assumed to be Gaussian (Normal)



n Consider *n* assets with random returns:

 $x_i, i = 1, ..., n$ proportion invested in asset i

 μ_i, σ_i exp. return and standard dev. of the return of asset i

 $Q_{ij} = \rho_{ij}\sigma_i\sigma_j$ variance-covariance matrix

n Portfolio exp. return and variance:

$$\mathbb{E}[x] = \mu^T x \quad \text{Var}[x] = x^T Q x$$

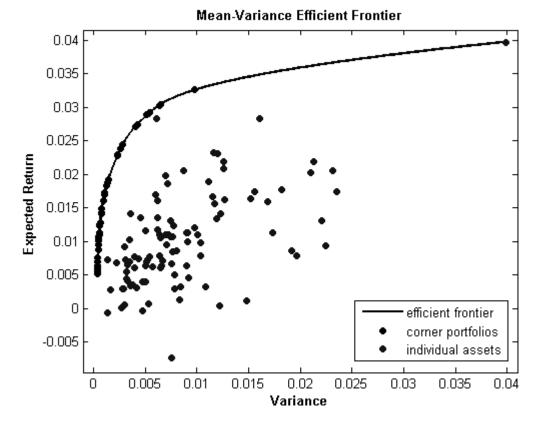
n Set of admissible portfolios:

$$\mathcal{F} = \{x : \sum_{i} x_i = 1, \ x \ge 0\}$$

Portfolio Selection

Mean-variance (Markowitz, 1952) portfolio optimization problem with market risk – two objectives:

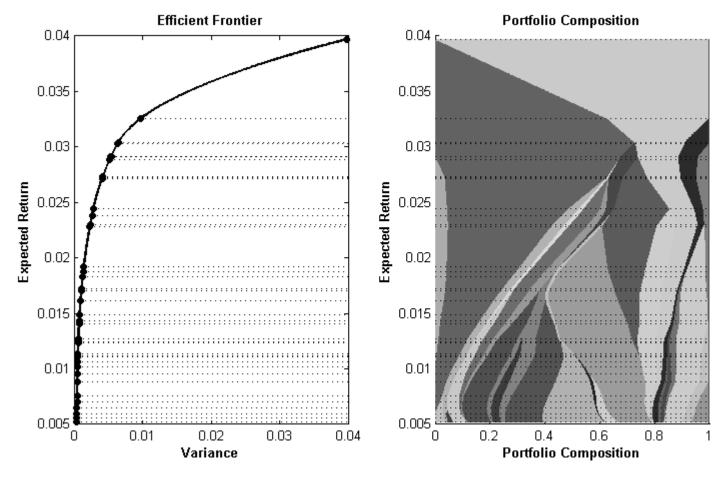
$$egin{array}{ll} \min_{x} & x^TQx \ \mathrm{s.t} & \mu^Tx \geq arepsilon \ & \sum_{i} x_i = 1 \ x \geq 0 \end{array}$$



Extensions of mean-variance model: introduce transaction costs

Portfolio Selection

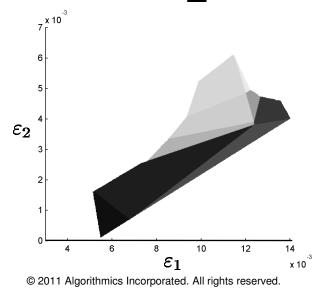
Mean-variance portfolio optimization problem with market risk – efficient frontier and portfolio composition:



Portfolio Selection

Mean-variance portfolio optimization problem with market risk and transaction cost – three objectives:

$$\min_{x} \quad x^{T}Qx$$
 $\text{s.t} \quad \mu^{T}x \geq \varepsilon_{1}$
 $c^{T}x \leq \varepsilon_{2}$
 $\sum_{i} x_{i} = 1$
 $x \geq 0$





Algorithmics

& Robust Portfolio Selection

Robust Optimization 1

The vector of true expected returns *r* lies in the ellipsoidal uncertainty set:

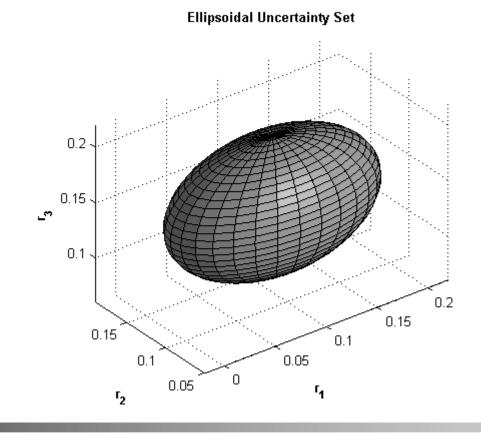
$$r \in \mathcal{U}(\mu)_{\delta} = \{r : (r - \mu)^T \Theta^{-1}(r - \mu) \le \delta^2\}$$

n Robust portfolio optimization:

min
$$-r^T x + \lambda x^T Q x$$

s.t. $\sum_i x_i = 1$
 $x \ge 0$
 $\forall r \in \mathcal{U}(\mu)_{\delta}$

n Ellipsoidal uncertainty set:



Robust Optimization 2

n The vector of true expected returns *r* lies in the box uncertainty set:

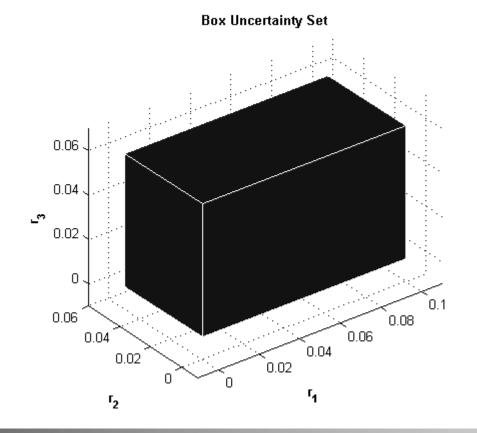
$$r \in \mathcal{U}(\mu)_{\delta} = \{r : |r_i - \mu_i| \le \delta_i, i = 1, \dots, n\}$$

n Robust portfolio optimization:

min
$$-r^T x + \lambda x^T Q x$$

s.t. $\sum_i x_i = 1$
 $x \ge 0$
 $\forall r \in \mathcal{U}(\mu)_{\delta}$

n Box uncertainty set:



Robust Optimization 1 and 2

The vector of true expected returns r lies in the box uncertainty set or ellipsoidal uncertainty set:

$$r \in \mathcal{U}(\mu)_{\delta} = \{r : |r_i - \mu_i| \le \delta_i, i = 1, \dots, n\}$$

 $r \in \mathcal{U}(\mu)_{\delta} = \{r : (r - \mu)^T \Theta^{-1}(r - \mu) \le \delta^2\}$

n **Objectives**:

- ${f q}$ minimize variance of portfolio return x^TQx
- $_{\mathrm{q}}$ maximize portfolio expected return $\mu^T x$
- q minimize portfolio return estimation error

box uncertainty set:
$$\delta^T |x| = \|Dx\|_1, \ D = \operatorname{diag}(\delta_j)$$
 ellipsoidal uncertainty set: $\|\Theta^{1/2}x\| = \sqrt{x^T \Theta x}$

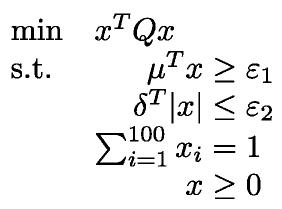
n Constraints:

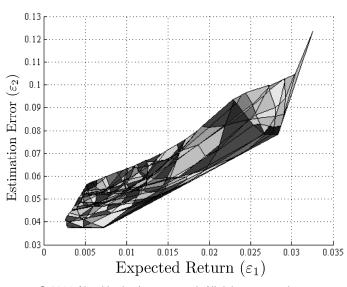
$$\sum_{i} x_{i} = 1$$

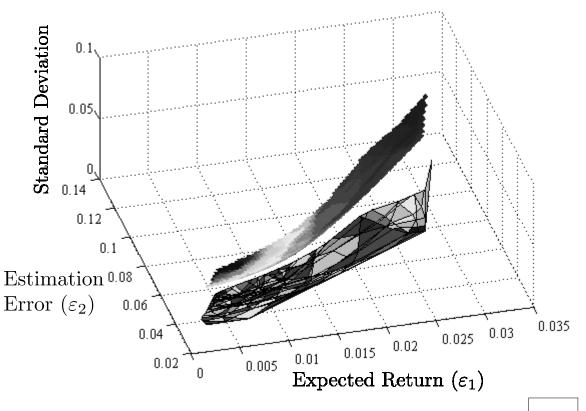
$$x \geq 0$$

Robust Optimization 2

Multi-objective robust optimization:







Algorithmics

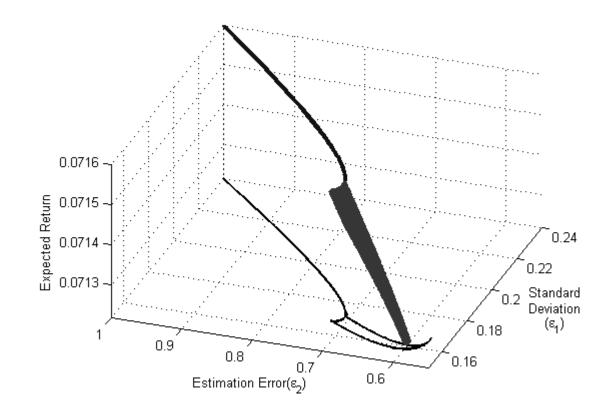
Robust Optimization 1

Multi-objective robust optimization:

max
$$\mu^T x$$

s.t. $x^T Q x \le \varepsilon_1$
 $\|\Theta^{1/2} x\| \le \varepsilon_2$
 $\sum_{i=1}^n x_i = 1$
 $x \ge 0$

Robust portfolio optimization problem solution – efficient surface



& Risk Management

Conditional Value-at-Risk Optimization

n Conditional Value-at-Risk optimization problem:

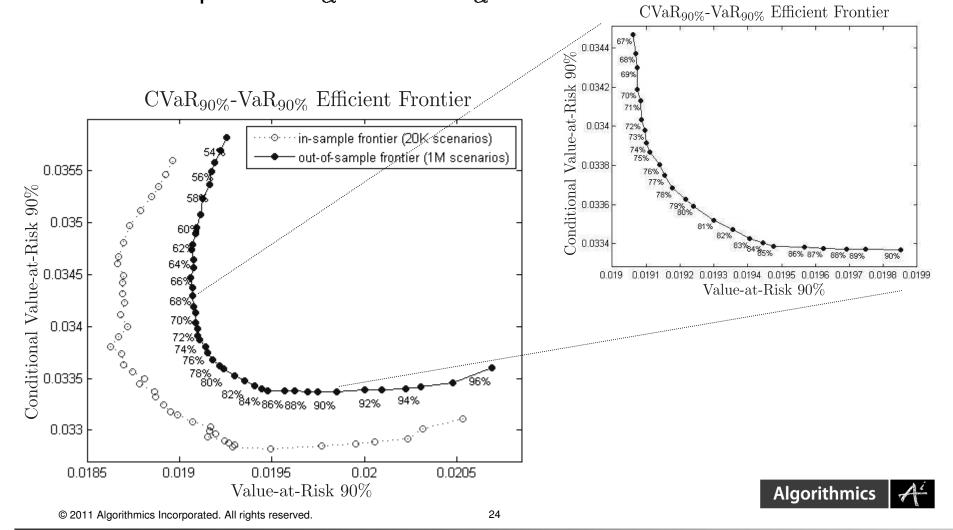
$$\begin{array}{c|c}
\min_{x, u, \ell} & \ell + \frac{1}{S(1 - \alpha)} \sum_{s=1}^{S} u_s \\
\text{s.t.} & u_s \ge -\mu_s^T x - \ell, \ u_s \ge 0, \ s = 1, \dots, S
\end{array}$$

$$\begin{array}{c|c}
\sum_{i} x_i = 1 \\
x \ge 0 \\
\min_{x, \ell} & \ell + \frac{1}{S(1 - \alpha)} \sum_{s=1}^{S} \left[-\mu_s^T x - \ell \right]^+
\end{array}$$

n Solve CVaR optimization problem at different quantile levels α to compute $VaR_{\alpha^*} - CVaR_{\alpha^*}$ trade-off

VaR Optimization via CVaR Optimization

n Solve CVaR optimization problem at different quantile levels α to compute $VaR_{\alpha^*} - CVaR_{\alpha^*}$ trade-off



& Conclusions

Conclusions

- n Benefits of multi-objective optimization: a wider range of alternatives is identified, and models tend to be more realistic if more objectives considered
- Multi-objective optimization problems can be formulated as series of single-objective optimization problems and solved efficiently
- n Many optimization problems in finance and risk management are multiobjective in their nature
- n Efficient frontiers provide a decision make with the complete picture of choices and allow to identify trade-offs
- n Robustness measure can be incorporated into multi-objective optimization problem as the additional objective
- n Investigate Value-at-Risk Conditional Value-at-Risk efficient frontiers
- Identify if other efficient frontiers in addition to the mean-variance tradeoff are useful for practical applications

Questions?

