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Introduction 5
* Model of optimal trade execution
* Dynamic programming with dynamic risk measure
* Second order cone programming
* Smoothing first order method
* Relation to regularized optimization
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 We sell or buy a huge volume of a single asset or a portfolio
of multi-assets using market orders.
The market is illiquid and the prices are impacted by orders.
The whole transaction has to be done within a finite time
horizon.
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e Execute a large selling or buying program by a sequence of
small market orders
* Focus on selling program in this talk
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* Obizhaeva and Wang (2006)

e Schied and Schoneborn (2009)

e Schied, Schoneborn, and Tehranchi (2010)
* Forsyth et al (2009, 2010, 2011)

e Gatheral and Schied (2011)

 Alfonsi, Fruth, and Schied (2010)
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Discrete Time Tépp(?l
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e Bertsimas and Lo (1998)

* Almgren and Chriss (2000)

e Krokhmal and Uryasev (2004)

* Almgren and Lorenze (2007, 2011)

* Moazeni, Coleman and Li (2008, 2011)
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Notations and Models Té])pﬁl
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m: The number of assets in the portfolio
xp € RI: The initial portfolio

[0, T]: Time period

N: The number of orders

t) = 7k: The time we submit the kth order, where 7 = %
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Xk € RY: The remaining portfolio at time t, k =1,..., N
ng € R The part of portfolio sold at time tx, k =1..... N

Nk = Xk—-1 — Xk
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Notations and Models t‘lJlJ‘?l
Xk € RY: The remaining portfolio at time t, k =1,..., N
ng € R The part of portfolio sold at time tx, k =1,.... N

Nk = Xk—-1 — Xk
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Notations and Models Té])})(?l

Almgren and Chriss (2000)
Almgren and Lorenz(2007, 2011)

S, € R™: The market prices of the assets at time ¢

Sk = Si_1 +7YV2%E, — Tg(x), for k=1,....N

&k ~ N(O, I,) Stagewise independent

Sk € R™: The transaction prices of the assets at time i
Sk = Sk—1— h(Z), for k=1,..., N

g(7%): Permanent market impact

h(”?”"): Temporary market impact

{Fk}k: The filtration generated by {&1,....¢n}
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): Permanent market impact

Ny
h(Z%): Temporary market impact
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Assume linear impact functions which prevents the opportunity of
quasi-arbitrage (Huberman and Stanzl, 2004)

g(7) =G
h() = H ™%

Positive definite (Almgren and Chriss, 2004)
vIHv > 0and v Gv > 0 for all v -+ 0
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Risk measure on sequential cost:

min (=S ng, ... — S
st A=(n.....nyN) Ql—}HT}“N
Aly = xo

nk is measurable with respect to Fg

Time-consistent
Optimal strategy is deterministic
Solved by Second Order Cone Programming (SOCP)
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Risk measure on sequential cost:

Zl.Zg ..... ZNi Zk:— an;(

Let Ly = Lo(S2, Fi, P). A one-step conditional risk measure is

a mapping pk : Lxtr1 — Lg, which satisfies the coherent axioms
by Artzner et al [1999]:

Al:
A2:
A3:
A4

pk(AZ + (1 = A)W) < App(Z) + (1 = N)pr(W);
If Z < W then pp(Z) < pr(W),YZ. W € Ly.1;
k(£ + W) =2+ pk(W),VZ € Lk, W € Lkya;
p(BZ) = Bpr(£),VZ € Lki1.5 > 0.

Ruszczynski and Shapiro (2004), Ruszczynski (2009), Shapiro (2011)
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Mean-semideviation:

,. 1
Pk(Zk+1) = E[Zky1|Fi] + BE[(Zk+1 — E[Zky1|Fi])L | FilT

Conditional Value at Risk (CVaR):

pulZiss) = jof { U+ TBlZia - ULl
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Suppose [Zi+1|Fi] follows a normal distribution N(jt, o) and py is
chosen to be Mean-semideviation with r = 2 or CVaR, we have

Pk(Zks1) = E[Zk11|Fi] + Bk \/Var[Zk+1|Fk] — 1+ [io

for a 3 > 0.
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(Ruszczynski 2009) A dynamic risk measure is a mapping
PkN : Lky1 X -+ x Ly — Lg given by:

Pk N(Zks -« ZN) = Zk+pk (Zks1 + prs1(Ziso + -+ pn—1(Zn)))
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PN(Z1. . ZN) =21+ p1 (Lo + pa(Z3+ - + pn—-1(2n)))

Ly = —3;3-”;(
We want to solve
__ | fa cT
Vo(x0-S0) = min py y(—=5¢ N1, ... —Sn )
st A= {(ny...,ny) :Ql—}RT“N
A]N = X0
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State variables:

x € R : remaining portfolio

m . .
s € R : current prices

Cost to go function:

Vik_1(x.s) = min _,-’Jk’N(—gfnk, e —Hﬁ-f.-nm)
st A= (ng..... ny):Qr— RT}“N_I‘“
Aly_k41 =X
ne € Ly
Sk_1=S5

Vi (x, s) is the minimal dynamic risk, given that we are at time 1
with the observed prices s and the remaining portfolio x.
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The minimal dynamic risk of selling a portfolio xg with initial prices
So is Vo(xo. So), which can be solve recursively using the following
dynamic programming equations

1 T

Vn_1(x,s) = —(s—:Hx) X
1 T
Vik(x,s) = GE:T‘IIIEI(ETHH) n

+pk+1 (Vis1(x — n,s + /7LE — Gn))

This is a particular case of Ruszczynski (2009)
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Corollary

The optimal solution is a Markovian policy A = (n1.....nyn) given
by
ny(x,s) = x
1 T
ng(x,s) = argmin (5 — —Hn) n
0<n<x !
+pk+1 (Vir1(x — n, s + /72 — Gn))
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Corollary

The optimal solution is a Markovian policy A = (n1.....nyn) given
by
ny(x,s) = x
1 T
ng(x,s) = argmin (5 — —Hn) n
0<n<x !
+pk+1 (Vir1(x — n, s + /72 — Gn))

Solving these equations is still challenging
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Suppose the risk measure py is either Mean-semideviation with
r =2 or CVaR, we have Vi(x.s) = fi(x) —s'x for

k=N —1,...,0, where the function fi(-) is defined recursively as
follows.
Loryr,
fN_l[}{) = = H
fr(x) = min 1n'-‘r.‘—f'-‘r,-':r +n"GT(x — n)+ fre1(x — n)
0<n<x T

+Bk1VTIET (x — n)|2
fork=N-—-2.....0.
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Suppose the risk measure py is either Mean-semideviation with
r =2 or CVaR, we have Vi(x.s) = fi(x) —s'x for

k=N —1,...,0, where the function fi(-) is defined recursively as
follows.
Loryr,
f,n,-'_l[}{) = = H
fr(x) = min 1n'-‘r.‘—f'-‘r,-':r +n"GT(x — n)+ fre1(x — n)
0<n<x T

+Bk1VTIET (x — n)|2
fork=N-—-2.....0.

Recall that [k is from the property of Mean-semideviation and

CVaR:
pk(Z) = E[Z] + B/ Var[Z]

when Z is normal distributed.
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Corollary

The optimal solution is a deterministic policy A = (n1,...,ny)
given by
nn(x) = x
1
n(x) = argmin=n"H n+n"G"(x = n)+ fir1(x — n)
0<n<x T
+Bks1VTIE (x = n)|2
which does not depend on prices s.
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Corollary

In the case of liquidating a single asset (m = 1) with H = h and
G = g, the optimal strategy has a closed form

nny(x) = x

| X oVT i (iBu-i)
ng(x) = mln{N P + (N — k + 1)1(2h/”g)‘x}
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Corollary

Suppose [ = 0 (risk neutral).In the case of liquidating a single
asset (m=1) with H = h and G = g, the optimal strategy has a
closed form

ny(x) = x

N—k+1

Bertsimas and Lo (1998)
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Expand the nested optimization

1
fn_1(x) = ;XTHTX
1
fu(x) = Rully j:!'IfTH’Tﬂ' +n"GT(x = n)+ frar(x — n)

+Ok+1VTIET (x = )2
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Expand the nested optimization

1
fn_1(x) = ;XTHTX
1
fi(x) = min ;nTHTn +nTGT(x = n)+ fizi(x — n)

+Ok+1VTIET (x = )2

3

Vo(xo0. So) + S¢ X0 = fo(x0) =

N k
1
min E {j”k H  ne +n] GT(X{)—E n;)
i=1

k=1
k
+ByV/TIZ T Z”: 2}
i=1
N
S.T Z Nk = Xo
k=1
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Matrix Version:
min % Tr(ATHTA) + Tr(ATGT (1], — AY))

N—-1 k
VT BIE (0= ) m)l2
k=1 I=1
st A=(n..... nN)ERTXN
ﬂlN:){U
/1 1 1 1 1\
0 1 1 1 1
Jj—10 0 1 11

\ 0 - 0 - 01/, 4
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minimize the dynamic risk measure-------- (SOCP)

min % Tr(ATHTA) + Tr(ATGT (1], — AY))

N-1 k
VT BIE (0 =) )2
k=1 =1
mxN
st A=(n....,ny) €RY
ﬁ\lm = XD
minimize the mean-variance risk measure------- (QP)

Almgren and Chriss (2000): Static strategy
Moazeni, Coleman and Li (2011): Model the impacts from other large traders

Moazeni, Coleman and Li (2008): Sensitivity analysis to price impact matrix H and G

min T (ATHTA) + Tr(ATGT (x01), — A))

+7Tr((x0lf — ANTEZT (x01f — A))
st A= (m.....ny) € RTXN
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Convert to a second order cone programming

minimize the mean-variance risk measure------- (QP)

Almgren and Chriss (2000): Static strategy
Moazeni, Coleman and Li (2011): Model the impacts from other large traders
Moazeni, Coleman and Li (2008): Sensitivity analysis to price impact matrix H and G

min T (ATHTA) + Tr(ATGT (x01), — A))

HrTr((xolf — ANTEET (%01 — AY))
st A= (m.....ny) € RTXN
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min = Tr(ATHTA)Y+Tr(ATGT (x1) — AY))

VT Y BT (0 =D )2
k=1 I=1
st A= (ng,..., nN)ERTKN
A]-N = X0

* This SOCP is too large for interior-point method,
especially when m and N are both large

* A quick response to the financial market is needed

* Interior-point method is not fast enough

* First-order method is considered
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min  f(A) + o(A)
S.T A c Ql
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f(A) = % Tr(ATHTA) + Tr(ATGT(xolgb,. —AJ)) Smooth component
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min  f(A) + ¢(A)
st Ae @
f(A) = % Tr(ATHTA) + Tr(ATGT(xolgb,. —AJ)) Smooth component

O(A) = \/szm;ll Bre|ZT (x0 — z:‘:l nr)||2 Non-smooth component
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f(A) = % Tr(ATHTA) + Tr(ATGT(xolgb,. —AJ)) Smooth component
o(A) = \/szm;ll Bre|ZT (x0 — z:‘:l nr)||2 Non-smooth component
Q={A=(m,....ny) € RTXN|AIN = xp} Cartesian product of

scaled simplexes
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min  f(A)+ ¢(A)

st Ae @

f(A) = % Tr(ATHTA) + Tr(ATGT(xolgb,. —AJ)) Smooth component
O(A) = \/,:sz:—ll BrllZT (xo — zj‘ )2 Non-smooth component
Q={A=(m,..., nn) € RmXN|AIN = X0} Cartesian product of

scaled simplexes

Accelerated first-order algorithm
(Nesterov 1988, Tseng 2008)

Fort=0.1.2....7T:
o V= Hr&ﬁf Uy
@ Uiy = argmingyeq {(U, VF(Vy)) + &(U) + 2D(U, Uy)}
0 Ay = E_Hﬁr—l— 2+rUH‘1

Output: A1.4
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Fort=0,12....T:
0 V= Htﬂﬁgﬂur
© Uess = rgminueg (U V() +6(U) + #D(U. Uo)
© Aty = E_Hﬂr-l- 7y ~Ur41

Output: A1y

User specifies:

D(X,Y): Bregman divergence (1967)
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First-order algorithm
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Fort=0.1.2....T:
o V.= E_Hﬂt—l— 22 Ur
0 Uiy ~[rgminycq ((UVT(V0) + o(U) + ZD(U.U7)

© Ay = E—I—tﬂt + 557 2 ~Ur41

Output: A
P T+1 This sub-problem is as
. hard as the original
User specifies: problem!

D(X,Y): Bregman divergence (1967)
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Fort =0.1.2.. T'
o V= E_Hﬂt—l— s Ut
0 Uy = agminuca, (U, V(V0) +{(U) |- 2:D(0, 1)

© Ay = E—I—tﬂt + 557 2 ~Ur41

Output: A1y

Approximate ¢(A) with a smooth function ¢, (A)
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Fort=0,12....T:
0 V= Htﬂﬁgﬂur
0 ez = argminuea (U, VF(V0) + V6, (1 ) + 2£2D(U, Uy)}
© Aty = E_Hﬂr-l- 7y ~Ur41

Output: A1y

Approximate ¢(A) with a smooth function ¢, (A)
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Fort=0,12....T:
0 V= Htﬂﬁgﬂur
@ Uy = argmmm{w VE(Ve) + Ve ( Vo)) H 325D(U, Us)}
© Aty = E—H&T + 537 2 ~Ur41

Output: A1y

Approximate ¢(A) with a smooth function ¢, (A)
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Fort=0,12....T:
0 V= Htﬂﬁgﬂur
@ Uy = argmmm{w VE(Ve) + Ve ( Vo)) H 325D(U, Us)}
© Aty = E—H&T + 537 2 ~Ur41

Output: A1y

Approximate ¢(A) with a smooth function ¢, (A)
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Fort=0,12....T:
0 V= Htﬂﬁgﬂur
0 ez = argminuea (U, VF(V0) + V6, (1 ) + 2£2D(U, Uy)}
© Aty = E_Hﬂr-l- 7y ~Ur41

Output: A1y

Approximate ¢(A) with a smooth function ¢, (A)

Choose appropriate D(-, )
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Fort=0,12....T:
0 V= Htﬂﬁgﬂur
0 ez = argminuea (U, VF(V0) + V6, (1 ) + 2£2D(U, Uy)}
© Aty = E_Hﬂr-l- 7y ~Ur41

Output: A1y

Approximate ¢(A) with a smooth function ¢, (A)

Choose appropriate D(-, )

Weighted entropy divergence for the Cartesian product of scaled
simplexes

m N X
:zzi ( )f{)raIIX Y € (4
Yik

i—1 k=1 Y
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Fort=0,12....T:
o V= Htﬂﬁf Uy
0 vt = g minueo (U V (V) + Vo,V ) + Z=D(U, Uy)}
© Aty = E_Hﬂr-l- 7y ~Ur41
Output: A1y

This sub-problem has a
closed form solution

Approximate ¢(A) with a smooth function ¢, (A)

Choose appropriate D(-.-)
Weighted entropy divergence for the Cartesian product of scaled
simplexes

m N X
:Zzi ( )f{)raIIX Y € (4
Yik

i—1 k=1 Y
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SFOM:

Fort =0.1.2....T:
o V.= 2+rﬂt+ 2HU
@ Upsy = argminyeg {(U,VF(Ve) + Vo, (V;)) + 2£D(U. Uy)}
0 A= EL,&HF 2-|—rUT+1

Output: A1.q
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N—-1 k
(D) = VT Bl (0= m)l-
k=1 =1
N—1 k
-
_ max we. 2 (xo— Y )
kzzjl Wi [l2 < /T Bk < ; >

- W.ET( 1T—AJ)>
max (W.ET (1]



Smoothing first-order algorithm Tt‘ppel

SCHOOL OF BUSINESS

k

N—1
o(A) = T Z Bk HET(X{) — Z ny)||2
k=1

I=1

N-1 k
— Z max <Wk.ET(XUZ”!)>

< ST

g, (W-ET (ol

Q={W=(w,...,wy) € RPXN|||WI<||2 < \/’ka]r
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k

N—1
o(A) = T Z Bk HET(X{) — Z ny)||2
k=1

I=1

N-1 k
— Z max <Wk.ZT{xUZn;)>

< ST

_ W.ET( IT—AJ)>
max (W.X7 (xo1f

Q={W=(w,...,wy) € RPXN|||WI<||2 < \/’ka]r

Nesterov’s smoothing technique (2005):

/ T T H 2
6u(D) = ﬂ§52<w.z (XOIN—&J)>—§||W||F



Smoothing first-order algorithm 'Ié‘l‘:’)ﬁ‘ij_jl

SCHOOL OF BIJSINESS

hu(A) = <Wi T( T_ )>_E .
oul8) = jpay (W2 Lol —AJ)) = FIWIE

¢u(A) is convex and smooth
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bu(B) = (W.T (x01f - 81)) - Lywi3
oulB) =, aly = 8J)) = SIWIE

Q= {W = (w1,...,wn) € RPN|||wy|l2 < V7 5k}

¢u(A) is convex and smooth

bu(D) < (D) < du(D) + 30, 57
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/ T T H 2
bu(D) = @géxwiz (XOIN—&J>>—§HWHF

Q= {W = (w1,...,wn) € RPN|||wy|l2 < V7 5k}

¢u(A) is convex and smooth

bu(D) < (D) < du(D) + 30, 57

Vo (D) = —W,(A)JT

W,.(A) = arg rna:><<W. > (x{]l;ﬂ- — &J)> — E|| W ||%
WeQ: .
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Let A™ be the optimal solution. If we set ;1 = ~—>, the
72 k=1 5%

solution in the t-th iteration, A, is an e-optimal solution when

€T 62

2||H D:—I_ZT G oo T N_ I.Bz max; || x; 2
f24|xﬁ|1\/ [Hlleo + 2711Clloc | TGk i) maxi 271

where 2_; is the i-th row of 2.
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Let A* be the optimal solution and A: be the solution in the t-th
iteration in SFOM. We have

F(De) + &(Ar) — F(AT) — (A%) < O (1) |

L




Numerical experiments

Compare to SDPT3 (Toh, Todd and Tutuncu, 1999) contained in
CVX Software (Grant and Boyd)

Assets | Trans SFOM SDPT3
m N iter | time(s) | obj iter | time(s) | ob]
10 10 1000 0.4 961 18 0.4 960
10 50 1000 0.5 1605 24 6.5 1603
10 100 | 1000 0.7 2683 25 51 2681
100 10 1000 0.8 6815 35 70 6815
200 10 1000 1.6 11339 | 37 689 11338
200 20 1000 2.7 13382 | 40 4418 | 13380
500 10 1000 9.5 23352 | 41 8839 | 23351
500 20 1000 1.5 | 30101 | N/JA | N/A N/A
1000 10 1000 | 34.7 | 44969 | N/JA | N/A N/A
1000 20 1000 | 41.9 | 47589 | N/JA | N/A N/A
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Numerical experiments

Compare to SDPT3 (Toh, Todd and Tutuncu, 1999) contained in
CVX Software (Grant and Boyd)

Assets | Trans SFOM SDPT3
m N iter | time(s) | obj iter | time(s) obj
10 10 1000 0.4 961 18 0.4 960
10 50 1000 0.5 1605 24 6.5 1603
10 100 | 1000 0.7 2683 25 51 2681
100 10 1000 0.8 6815 35 70 6815
200 10 1000 1.6 11339 | 37 689 11338
200 20 1000 2.7 13382 | 40 4418 | 13380
500 10 1000 9.5 23352 | 41 8839 | 23351
500 20 1000 11.5 | 30101 | N/A || N/A N/A
1000 10 1000 || 34.7 | 44969 | N/A || N/A N/A
1000 20 1000 (| 41.9 | 47589 | N/A || N/A N/A
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Lasso (Tibshirani,1996)

N

1 )
min || Ax — b||3 + Akz_:l Xk |

Single asset liquidation under dynamic risk measure

N
min —||&||2+g<ﬁ )
k_l
st A= (ny....nN) € Rfm
= (X1..... XN) € Rfm
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Lasso (Tibshirani,1996)

N
1 )
min || Ax — b||3 + Akz_:l Xk |

\ They contain a

same term in the

objective function
Single asset liquidation under dynamic risk measure

N

. h ,.
min - —[|A3 + g (A, 1) + /70| > Bic|xk
: k=1
s.t A:(nl....,nm)ERfN
= (X1..... XN) € Rfm
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Lasso (Tibshirani,1996)

1 , To enforce a sparse
min EHAX — b||5 + }\kz_:l | Xk | solution

Single asset liquidation under dynamic risk measure

N
. h ,.
min  —[|A|3+ g (A, M) + 7o > Bi|xk
: k=1
st A= (ny....nN) € Rfm
= (X1..... XN) € Rfm



[-:IIITH":!,?!_‘.‘NH"_J_LII.‘.
Connection to Regularized Optimization Tt‘.:ppﬁl

CHOOL OF BUSIMESS
Lasso (Tibshirani,1996)
1 N
: 2
min || Ax — b||3 + A Ix]
k=1
Single asset liquidation under dynamic risk measure
h N “Sparse” here means a
min :||A||% + g (A1) + /7o Z B | Xk | Early-completed
: k=1 liquidation strategy
st A= (ny....nN) € Rfm
= (X1..... XN) € Rfm
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Static Strategy which minimizes Strategy which minimizes the
the Mean-Variance dynamic risk measure

05 r r r r r r r r r I .05 r r r r r r r r r r
1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11
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Static Strategy which minimizes Strategy which minimizes the
the Mean-Variance dynamic risk measure

_05 r r r r r r r r r [ _051 r r r r r r r r r [

1 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11
Allow a long tail No long tail
Finish with a sequence of tiny orders All shares would be sold at an
Not practical since a fixed transaction early stage

fee could be charge for each order Due to the regularization property
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Group Lasso (Yuan and Lin, 2004)

N
1
min < [IAX = I+ A [Ixela
k=1

Portfolio liguidation under dynamic risk measure

min % Tr(ATHTA)+ Tr(ATGT (x01f — AY))

N-1
V73 Bl E T xll2
k=1

st A= (n,....nyN) € R?‘N
1= (Xl ..... XN) < R}I_KN
M=xlf —AJ



[-:IIITH":!,?!_‘.‘NH"_J_LII.‘.
Connection to Regularized Optimization Tt‘.:ppﬁl

SCHOOL OF BUSINESS

Group Lasso (Yuan and Lin, 2004)

1
min = [IAX = I3 + NS lIxel
k=1

Portfolio liguidation under dynamic risk measure

min % Tr(ATHTA)+ Tr(ATGT (x01f — AY))

N—1
VA Bl Tl
k=1
st A= (n,....nyN) € R?‘N
1= (Xl ..... XN) < R}I_KN
MN=xly—AJ
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Group Lasso (Yuan and Lin, 2004)

1 N Enforce a group
min E“AX — b3 + AZ x| sparsity in the solution
k=1

Portfolio liguidation under dynamic risk measure

min % Tr(ATHTA)+ Tr(ATGT (x01f — AY))

N-1
V73 Bl E T xll2
k=1

st A= (n,....nyN) € R?‘N
1= (Xl ..... XN) < R}I_KN
M=xlf —AJ
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Connection to Regularized Optimization

Group Lasso (Yuan and Lin, 2004)

N

1
min < [IAX = I+ A [Ixela
k=1

Portfolio liguidation under dynamic risk measure

min % Tr(ATHTA)+ Tr(ATGT (x01f — AY))

N-1 “Sparse” here means a
++/7 Z BillZ T xi |2 Early-completed
k=1 liguidation strategy
st A= (n,....nyN) € R?‘N
_ 1xN
[1 = (Xl....,XN) ER—I—
M=xlf —AJ
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Strategy which minimizes the
dynamic risk measure

45 L L L L L L L L L
\
. 4ﬁ\ u
1 3.5F \ T
\
- 3ﬁ \ -
\
1 25 T
\
N\
i 2 \ -
N\
-4 15 T
— 1ﬁ -
105 T~ .
t 0 r r B F ) \\xg\\\ 2 —
11 1 2 3 4 5 6 7 8 9 10 11
Allow a long tail No long tail
Finish with a sequence of tiny orders All shares would be sold at an
Not practical since a fixed transaction early stage

fee could be charge for each order

Due to the regularization property
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Thank you!
Questions and Comments



