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General Theme 
• Portfolio optimization is difficult due to:  

• Consistency 
• Many parameters to estimate 
• Non-stationarity 
• Non-normality 
• …   

• Optimization models are driven to extremes and naturally focus 
on “rare events” that can create problems 

• Most convergence results rely on asymptotic results and 
constants that are difficult to estimate 
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Example: Financial Portfolio Optimization  
Quadratic program (Markowitz Portfolio): 
find investments x=(x(1),…,x(n)) to  

                        min xT Q x  

                        s.t. rT x = target, eT x=1 

 where Q and r are typically estimated from historical data. 

Correlations from University of Michigan CIO: 
 DomCommonSmallCap InteCommon EmerMarkets AbsoluteRetuVentCap RealEst Oil and Gas Commodities FixedIncome IntFixedInc Cash

DomCommon 1 0.79 0.58 0.56 0.6 0.44 0.25 0.01 -0.3 0.43 0.2 0.27
SmallCap 0.79 1 0.48 0.61 0.65 0.56 0.24 0.01 -0.05 0.31 0.1 0.08
InteCommon 0.58 0.48 1 0.37 0.45 0.25 0.38 -0.04 -0.17 0.35 0.55 0.23
EmerMarkets 0.56 0.61 0.37 1 0.3 0.3 0.07 -0.19 -0.07 -0.07 0.1 0.04
AbsoluteRetu 0.6 0.65 0.45 0.3 1 0.35 0.2 -0.2 0.11 0.35 0.25 0.45
VentCap 0.44 0.56 0.25 0.3 0.35 1 0.21 -0.02 -0.18 0.19 0.15 0.14
RealEst 0.25 0.24 0.38 0.07 0.2 0.21 1 0.08 -0.53 0.15 0.2 0.37
Oil and Gas 0.01 0.01 -0.04 -0.19 -0.2 -0.02 0.08 1 0.54 -0.18 -0.3 -0.07
Commodities -0.3 -0.05 -0.17 -0.07 0.11 -0.18 -0.53 0.54 1 -0.3 -0.08 -0.13
FixedIncome 0.43 0.31 0.35 -0.07 0.35 0.19 0.15 -0.18 -0.3 1 0.55 0.67
IntFixedInc 0.2 0.1 0.55 0.1 0.25 0.15 0.2 -0.3 -0.08 0.55 1 0.1
Cash 0.27 0.08 0.23 0.04 0.45 0.14 0.37 -0.07 -0.13 0.67 0.1 1
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Results from Optimization 
 Amt.  to invest
DomCommon -54079107483
SmallCap -17314640180
InteCommon -7098209713
EmerMarkets 21285151081
AbsoluteReturn 65911278496
VentCap 3346118938
RealEst -68300117028
Oil and Gas 66227880617
Commodities -1.04264E+11
FixedIncome -72656761796
IntFixedInc 1.17885E+11
Cash 49057530702

Return 0.099999487
Variance -1.64591E+19

What happened 
here? 
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Problems in Markowitz Model 

• Consistent time series 
– Correlations from different time series may not 

yield PD covariance matrices 
– Caution for general parameter estimates 

• Number of Correlation Parameters 
– For n assets, n(n-1)/2 correlations to estimate 
– Chances of estimation error increase rapidly in 

nru 
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Problem Statement 

• Large problems with n variables and m 
constraints/objective coefficients lead to (at least) 
mn estimates 

• Probability of significant deviation from mean 
values increases rapidly in mn 

• Deviant estimates drive optimal solutions  
• Non-normal returns further exacerbate issues 
• How can we construct large models that yield 

consistent results with high probability? 



© JRBirge Fields Inst., U. Toronto, Oct 2011 7 

The General Questions 
• Consider the basic problem (stochastic 

program): 
       MinxεX  Eξ[f(x,ξ)]            (P) 
• Suppose the only information for ξ is through 

observations:   ξ1,…,ξν 

• Typical empirical case: 
 Minxε X (1/ ν)∑i=1

ν  f (x,ξi)   
What is this in relation to solution x* to (P)? 

• What are the best ways to use those observations? 
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Observations: The Good News 

• Asymptotic distribution of optimal solution of 
sampled problem is: 
– Sometimes multivariate normal 
– Sometimes projection of multivariate normal onto 

constraints 
– Sometimes an atom at a single point 

• Questions for large data sets: 
– When do we start to observe the asymptotic behavior? 
– How big must ν (no. of samples) be? 
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More Good News 
Goal: Universal Confidence Sets (e.g., Pflug (2003), 

Vogel (2008)) 
 
 
 
 
 
• Possible (sometimes explicit), e.g., Dai, Chen, JRB 

(2000) 
• Can this be used with only empirical observations? 
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Summary and Questions 
• Asymptotic imply that confidence intervals 

are possible 
• Universal bounds indicate exponential 

convergence to an optimal solution  
Questions: 1. When do asymptotic properties 

appear? (Size of the constants?) 
2. What are the effects of dimension? of 

multiple uncertainties? of constraints? 
3. Are there better ways to use samples and, if 

so, when?  
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Form of Examples: Mean-Risk 

Objective is composed of risk and return: 
E[f(x,w)] = - exp.return(x) + risk(x) 
For portfolios:  -mean + risk-

aversion_constant*variance 
For uncertainty, sometimes only in the return, 

sometimes only in risk and sometimes in 
both – (this can effect convergence) 
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Example Problem  

• Consider the following problem: 
minx  Eξ [ -ξTx + ε || x ||1 ] 
s. t. -1<= x <= 1 
where || .||1 is the 1-norm (so equivalent to a linear program) and 

E[ξ]=0. 
The optimal solution should be x*=0.  
 How long to achieve limiting distribution?  
How long will it take a sample solution to approach x*  

exponentially?  i.e., when does Log (P{||xν-x*||≥ε} decrease 
linearly?  
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Sample Problem 
• Assume that ξj ∼ N(0,1) for all j, 
the solution is xνj = 0 if |ξj|≤ε, and ± 1 o.w. 
So, P{||xν-x*||≥ 1} = P{| xνj |≥ 1, some j} 
= P{|ξj|≥ ε, some j} = 1-(1-2Φ(- ε ν0.5))n 

where Φ is the standard normal c.d.f. 
Note: already normal  
When is Log(P(error≥1)) linear in ν?  
What is the effect of dimension? (Note n) 
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Results  
Log (P(error ≥1)) v. sample size (ν) 
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Observations 
• Some delay in approach to exponential error 

decrease with dimension 
• Increase in the delay (size of the constants 

in the universal bound) is less than linear in 
dimension (in fact, less than linear in Log of 
dimension) 

• Same kinds of effects for objective 
• Good results but could they be even better? 

Can we reduce the effect of the dimension?  
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How Can We Reduce the 
Required Number of Samples? 

• Use of sub-samples or batch mean  
(e.g., Mak, Morton, Wood (99)) 

• Suppose that we divide the ν samples into k  batches of 
ν/k each, let ξν

i be the mean of batch i=1,…,k, then solve 
with ξν

i  to obtain xνi 

• Let xν,k=(1/k)∑i=1
k xνi  

• When does this perform better than a single sample?  
• In particular, how much better in the worst case?  
• How does this relate to known portfolio results?  
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Error Estimates for Portfolios 
For sample mean ¹º and sample variance §º with n samples 
xº=(§º)-1(¹º)(º-n-2)/º is an unbiased estimator of x* (for 

unconstrained case with risk-free asset) 
Objective estimate squared is Â2

n(º(¹§-1¹)) )(º-n-2)2/º3 with 
mean: (n)(º-n-2)/º2 + (¹§-1¹) )(º-n-2)/º  

Note: dependence on n;  
With batches:  
Variance of xº,k  is (n)(º-n-2)/º2 + (¹§-1¹) (º-n-2-kº)/(kº) 
    (assuming independence) 
But, sufficient batching can reduce the variance in the 

estimate of xº,k without increasing the number of samples  
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Result for Sub-sample Batch 
Optimization – Just Mean Estimate 

• What is the chance that one component in 
the decision variable is far off?  

 
 
 
 
• Now, decreased dependence on n 
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Results for Batch/Single Samples 

Observe: more improvement as ν ↑ (from 4 to 9 orders of magnitude) 
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What about Effects of Uncertainty in 
Risk? 

• Example:  
 
 
• Now, ξ  and γ are random 
Suppose ξj ~N(0,1); γ∼ N(1,1) 
• Unconstrained solution:  
Error in solution in 2-norm is χ2 under asymptotic distribution  
True error in solution is given by:  
 
 
 
where F is the non-central F-ratio distribution  
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How Many Samples before the Error 
Approaches Asymptotic Distribution?  
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Observations 

• Convergence now is much slower than in the case 
with just stochastic returns 

• Convergence delay to the asymptotic distribution 
is almost linear in dimension 

• Asymptotic distribution for the objective is again 
similar 

• Asymptotic distribution for the general portfolio 
problem with multiple variance estimates (and 
inverse Wishart distribution) is even worse 
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Full Portfolio Examples 
• General form: 
 
 
requires estimation: e.g., using sample estimates as: 
 
 
and (ν-n-2)/ν  term makes solution un-biased with no 

constraints (e.g., Kan and Zhou (2007)) 
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Questions to Consider 

• Does the use of sub-sample/batch optimal 
solutions improve convergence? 

• How do the constraints affect the 
performance of the batch solution 
approximations? 

• What is the effect of dimension in these 
problems?  
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Simulation Setup 

Observe: histograms of relative errors in 
solutions and losses in objective 
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X=[0,1]10 
Solution Objective 

Relatives 
differences: 

Batch better: 
1000/1000 

Avg. Sol. Dist. 
Diff. :  -25% 

Avg. Obj. Diff.: 
-19% 
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X=[-1,2]10 

Relatives 
differences: 

Batch better: 
638/1000 

Avg. Sol. Dist. 
Diff. :  -3% 

Avg. Obj. Diff.: 
-3% 

Solution Objective 
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  X=[-5,10]10 

Relatives 
differences: 

Batch better: 
231/1000 

Avg. Sol. Dist. 
Diff. :  +7% 

Avg. Obj. Diff.: 
+8% 

Solution Objective 



Dimension Effect: X=[-1,2] 
Relative Distance from Optimum 

© JRBirge Fields Inst., U. Toronto, Oct 2011 

                   n=10                                                 n=20 



Distance Effect: X=[-5,10] 
Relative Distance from Optimum 
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                   n=10                                                 n=20 
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Observations on Portfolios 

• Batch approach improves when constraints 
can bind the sample solutions 

• The batch improvement is significant when 
constraints are relatively tight (but still more 
than 3 standard deviations from optimum) 

• Batch can improve without constraints (but 
not so much in low dimensions ~10) 



Effects of Dimension 
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• Increase dimension from 10 to 20: 
Range: X=[0,1]20  
    - 982/1000 better with batching (cf. 1000/1000) 
    - Average improvement: 15.4% in objective (cf. 19.3%) 
X=[-1,2]20  
    - 840/1000 better with batching (cf. 638/1000) 
    - Average improvement: 8.5% in objective (cf. 3.0%) 
X=[-5,10]20  
    - 39/1000 better with batching (cf. 231/1000) 
    - Average improvement: -22% in objective (cf. -8%) 
Observation: there is a “sweet spot” in constraints where 
batching is especially effective 
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Observations on Portfolios 

• Batch approach improves when constraints 
can bind the sample solutions 

• The batch improvement is significant when 
constraints are relatively tight (but still more 
than 3 standard deviations from optimum) 

• Batch can improve without constraints (but 
not so much here) 

• Batching favored by medium constraint 
level  
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Alternative Responses 
Factor methods (but still need estimation for 

factors and coefficients) 
Robust optimization 
Robust estimation  
Bayesian updating/Estimation with non-data 

information 
Simple rules 
Non-normal distribution assumptions  
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Robust Optimization  

Idea: Suppose an uncertainty set around the 
estimated data 

Optimize over the worst case in the 
uncertainty set 

Example: (r, V) 2 R £ W 
Min (Max(r,V)2R£ W xT V x 
s.t. rT x ¸ r*, eT x=1 (x¸ 0)) 
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Challenges in Robust Optimization 

Choice of uncertainty set 
Usually set outside of model (ad hoc) 
If defined as confidence interval based on 

observations, must grow larger with problem 
size to avoid aberrant solutions 

Solution structure 
Solution avoids assets with large uncertainty sets 

(i.e., sets to 0) 
May yield lack of diversification 
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Bayesian and Non-data Procedures 

Assume some prior on structure of returns and co-
variances (e.g., Black-Litterman) 
Use CAPM equilibrium 
All prices are consistent 
Weights on all assets are positive 

Example: ri = ¯i rm + ¾i ²i  
=> V=¯ ¯T + § 
where rm and ²i are normalized; just need some 

assumption on market price of risk and maximum 
correlation to market 
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Updating to Posterior 
Suppose view is given by rview and Vview 
Given confidence (0· ® · 1) in view 
(rpost,Vpost)=(1-®) (rprior,Vprior) + ®(rview,Vview) 
Solve with (rpost,Vpost) (with caution that it may not 

be market consistent) 
Alternatives: Chevrier (MCMC enforcing non-

negative weight solutions) 
Mix optimum from view and CAPM (LeDoit-Wolf) 
Mix of views (like batch means) 
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Further Alternatives 

Robust estimation (DeMiguel, Nogales) 
- Remove outliers from estimates 
- Solve with estimates 

- Simple rules (DeMiguel, Garlappi,Uppal) 
- Just place 1/n in each asset 
- Results: Better Sharpe ratio and lower turnover 

than any estimation procedure attempted 
- So, is naïve diversification the best? 
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Some Results 
Monthly data sets from MSCI and Ken French’s website as in 

DeMiguel, et al. 
Comparisons: 

1/N 
Moving window (120 months) estimate 
Full history estimate 
GARCH estimates 

Alternative sub-strategies: 
Weight on basic CAPM prior (non-data information) 
No-short-sale constraint 
Robust optimization 
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Sharpe Ratios 
Strategy 

Weight on 
Prior Industry International FF3 

FFPortfolios+
1 

FFPortfolios+
4 

1/N 0 0.137 0.092 0.235 0.164 0.176 

MV (uncon.) 0 0.213 0.160 0.278 0.761 1.764 

MV (no-short) 0 0.173 0.111 0.278 0.267 0.368 

MovingWindow (uncon.)  0 -0.001 -0.070 0.204 0.207 1.554 

MovingWindow (no-
short)  1 0.071 0.086 0.137 0.247 0.254 

  0.5 0.078 0.093 0.171 0.253 0.291 

  0 0.097 0.098 0.229 0.254 0.344 

MovingWindow (Robust, 
uncon.) 0 0.111 0.074 0.105 0.256 0.312 

MovingWindow (robust, 
no-short)) 0 0.102 0.060 0.105 0.244 0.292 

FullHistory (no-short) 1 0.102 0.086 0.210 0.230 0.247 

  0.5 0.100 0.076 0.226 0.237 0.320 

  0 0.105 0.075 0.242 0.239 0.342 

GARCH (no short) 1 0.167 0.108 0.158 0.239 0.238 

  0.5 0.167 0.110 0.183 0.249 0.284 

  0 0.177 0.121 0.241 0.259 0.347 

GARCH (robust, 
uncon.) 0 0.158 0.102 0.171 0.245 0.303 

GARCH (robust, no-
short) 0 0.032 0.023 0.029 0.228 0.203 
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Implications 
Approach Conver-

gence 
Better 
with n 

Solution 
character 

C.I. for all N Efficient 

Large sample Y N M N M 

Batch Y Y Y N M 

Robust N N N M Y 

Bayesian/Non-
data Info. 

Y M M M M 

Naïve  N M Y N Y 



Additional Issues 
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Non-normal distributions (Chavez/Birge (2011)): 
• Mean-variance may be far from optimizing utility  
• For exponential utility, can use generalized hyperbolic 

distributions – closed form for some examples  
• Mean-variance can be close (but only if the risk-aversion 

parameter is chose optimally) 
 

Additional examples: 
• Non-linear functions of Gaussian distributions 
• Can use polynomial approximations and higher moments to 

obtain optimal solutions for these non-normal cases    
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Summary Observations 
• Convergence to asymptotic behavior may be much 

slower with optimization and different uncertainty 
forms than simple estimation 

• Dimension has more effect with greater 
uncertainty 

• Use of optimization in batches can improve 
estimates especially with potentially violated 
constraints and symmetric feasible regions 

• Best MV portfolio results using GARCH-type 
estimates 
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Additional Questions 

• How does the batch sample continue to improve 
with dimension and what are the effects of 
dimension in general?  

• Are more general confidence interval estimates 
available? 

• How do these approaches perform with other 
techniques to enhance convergence? 

• What are the combined effects with estimation, 
non-stationarity, and non-normal distributions?  
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Thank you! 
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Can This Help with Variance 
Example? 

Suppose we have 10,000 assets 
Now, we need ~50,000,000 correlations to construct 

the variance-covariance matrix 
Problem: Analysis all assumed independence 

If independent, then have positive definiteness problem 
again 

If a single time series: 
Observations are not independent 
Limited number of degrees of freedom 
Cannot estimate everything with any accuracy 

What to do? 
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Observations on Portfolios 

• Batch approach improves when constraints 
can bind the sample solutions 

• The batch improvement is significant when 
constraints are relatively tight (but still more 
than 3 standard deviations from optimum) 

• Batch can improve without constraints (but 
not so much in low dimensions ~10) 



Effects of Dimension 
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• Increase dimension from 10 to 20: 
Range: X=[0,1]20  
    - 982/1000 better with batching (cf. 1000/1000) 
    - Average improvement: 15.4% in objective (cf. 19.3%) 
X=[-1,2]20  
    - 840/1000 better with batching (cf. 638/1000) 
    - Average improvement: 8.5% in objective (cf. 3.0%) 
X=[-5,10]20  
    - 39/1000 better with batching (cf. 231/1000) 
    - Average improvement: -22% in objective (cf. -8%) 
Observation: there is a “sweet spot” in constraints where 
batching is especially effective 
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Observations on Portfolios 

• Batch approach improves when constraints 
can bind the sample solutions 

• The batch improvement is significant when 
constraints are relatively tight (but still more 
than 3 standard deviations from optimum) 

• Batch can improve without constraints (but 
not so much here) 

• Batching favored by medium constraint 
level  
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Towards a General Result 
In cases of symmetric bias (e.g., small example and 

portfolio optimization), xº may be symmetrically 
distributed around x* (even though the asymptotic 
distribution is not obtained) 

Partitioning into k independent sub-samples, xº,k may 
be an unbiased estimate of x* (with error that can 
improve in dimension as in the example) 

Requirements:  
distribution of xº for small sample sizes  
symmetry in the case of tail-risk measures may require 

different formulations  
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General Implications? 

• How to put the batch results in terms of 
universal bounds?  

• View: consider errors distributed throughout 
X and decompose by cone support in face 
F* containing x* 

 
X F* 

x* 
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Assumptions 

• Under mild conditions,      x* is randomly 
distributed in F* 

• Assume bias is known (or bounded) 
 
 
under certain regularity conditions (e.g., 

Roemisch and Schulz (1991)) 
• Worst error in any direction is  g/n.  



© JRBirge Fields Inst., U. Toronto, Oct 2011 54 

General Result 
• Under these conditions,  
 
 
 
• So, if unbiased, a=K1/4,  
 
 



Additional Considerations 

• Performance is also U-shaped in batch size 
(when batching is improving) 

• Some indication in analytical results for 
simple problems  

• Difficult to assess optimal batch sizes in 
practice without experimentation 
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