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Communication Through Oscillations

Oscillatory modulations in neural activity have
been observed during task related events.




Communication Through Oscillations

Striatum
s Modulation of 15-30
Hz (beta band)
oscillations during task
related activity
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Communication Through Oscillations

Motor Cortex
Suppression of beta and
emergence of 30-80 Hz
(gamma band) during a
motor task

during

‘ motor task

1 ﬂ r;l-%ﬂ' Donoghue, “Neural Discharge and Local Field Potential Oscillations in Primate Motor Cortex During
beta am Voluntary Movements[] J Neurophys (1998)




Communication Through Oscillations

Sensorimotor

Cortex
Simultaneous
increase in gamma
band and a
suppression in beta
band (cross-over)
observed before

movement
SINGLE-TRIAL EEG-DATA

right finger movement
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Pfurtscheller, “Simultaneous EEG 10Hz desynchronization and 40 Hz synchronization during finger
5e movements”, NeuroReport (1992)
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Oscillations in the Basal Ganglia

H1: When movement is
planned there is a
crossover effect in Gpi.

X C

- Excitatory connection (Glutamate) | | | | |

- Inhibitory connection (GABA) RElay




Oscillations in the Basal Ganglia in PD

H2: Crossover impaired in
PD due to prominent beta
oscillations in BG.

Gamma-band oscillations

f-band oscillXi

Basal Ganglia

- Excitatory connection (Glutamate)

No Relay

- Inhibitory connection (GABA)



Oscillations in the Basal Ganglia w/HF STN DBS

H3: Crossover phenomenon
is facilitated in Gpi with HF
DBS applied to STN.

Gamma-band oscillations

Beta-band oscillations

Basal Ganglia

- Excitatory connection (Glutamate)

- Inhibitory connection (GABA)




Oscillations in Basal Ganglia and Thalamic Relay

H4: Motor thalamus
doesn’t/does relay
cortical signals when

GPi activity has
beta/gamma power.

- Excitatory connection (Glutamate) N
o Relay
- Inhibitory connection (GABA) Relay




H4: Motor thalamus doesn’t/does

relay cortical sighals when GPi
activity has beta/gamma power.




Relay Neurons

I Widely found in CNS:
‘Ithalamus

_JFunction is to
strategically filterand (=7 |
relay information s

1 Open Questions: i {‘Pp?.?‘he;

Jwhen?
[Thow?

http://www.colorado.edu/intphys/Class/IPHY3430-200/image/10-29.jpg 12



Inputs & Outputs of a Relay Neuron

_ Two input types

I reference input r(?)
[Isignal to be relayed
[Irepresents few neurons
[Jon proximal dendrites

I modulating input u(t)

[Imodulates the relay of
reference input

[Jrepresents many neurons
[Jon distal dendrites

] Output: V(1)

r(t)

Isyn = Zg,(V _‘/syn)

u(r) =3 8/" (1

r(0)=8 OV, =Vy)

Nodeof |
Ranvier T}
Jo  Axon Terminals

v
u(t)

VYV YV

v(t)

r(t)

Relay Neuron | [ >

How and when does u(?) affect relay of r(¢)?

Sherman S. Murray and Guillery R. W. On the actions that one nerve can have on another: Distinguishing "drivers” from "modulator$3.

PNAS, 95(12):7121{26, 1998. 92



Model of a Relay Neuron

.:[ Stimulate

andl o
state alone separation o
- modulating input
x = [V = Vign, b1, o, o] and state

{ o
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http://home.apu.edu/~jsimons/Bio101/action_potential.gif 14



Models of Inputs

Ju(t) : sinusoidal signals ~(¢,, ¢, , @)

U={u(t) e R|u(t) =ci+ cosin(wt)}

Ir(t) : Poisson process ~(T,T,,1,)

T

S={r(t)eR|r(t)=1o Y d(t—t)}

i=1

u(t) |

r(t)

lu(t)

Relay Neuron

— 5 —

&N
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Relay Reliability

Successful response occurs if V(t) generates an
action potential within W ms after a pulse in r(¢)

successful response
==
unsuccessful response

r(t) /

16



Problem Statement

To find:
R=g(r(1),u(?),G)

= h@.861:3.0)

Modulating Reference Neuron model
input parameters input parameters parameters

iu(f)

Relay Neuron |——>
G
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Input Responses

u(t)=c,r()=0

] Periodic u(t), r(t)=0:

(] makes solution rotate in
an orbit tube X,

] Cell dynamics: Only X,>V,, -
I, generates an action
potential with a pulse in r(?)

1 Xyus € X, does not generate
action potential

X C X, generates an
action potential

Xz w 100
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Solution

Pfresponse
2 R 2 v - Pfresponse
1 ‘I' (1 o @)P’response

Modulating
input parameters

. —1 ( @) ()
T+ 251n ()

P’r’esponse — o —

Reference
input parameters

_ fTO) -
Q—{ D () -1 >0

Neuron model
parameters

1 Ir—"10 <0
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Application to Motor Signal Processing
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Summary

(1 Our analysis

_IShows how relay reliability varies as a function of
multiple parameters.

_IHigh frequency modulating inputs enable higher
reliability

[1This is indicative that the gamma band oscillations
observed in LGN LFPs & GPi activity are required
to achieve higher relay reliability at thalamus.
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H1: When movement is planned,
there is crossover from beta to

Gamma-band oscillations

semmener

Beta-band oscillations

Thalamic relay occurs.




Experimental Set Up

Single unit activity of GPi neurons from two
healthy primates (n=27 and n=56) was recorded
while they were performing a directed radial
center-out reaching task.



Experimental Set Up

Single unit activity of GPi neurons from two
healthy primates (n=27 and n=56) was recorded
while they were performing a directed radial
center-out reaching task.
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Point Process Analysis

spike train

spike train




Point Process Analysis

tuu,

spike train

spike train




Point Process Analysis

tuu,

spike train
spike train

probability of a spike =
I bin / = A(dN,=1|H°) =A(t|H)At
0
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Point Process Analysis

tuu,

spike train

spike train

past spiking history H, probability of a spike =
bin / = P(dN,=1|H°) =A(t|HYAt

|
| |
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N
0
|
i
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Point Process Analysis

At key epochs, we express the CIF for each neuron
using a multiplicative structure.

At/ Hy, ©) = N (¢|©) - \H (¢t|Hy, ©)

S
A (ﬂ @) represents the effect of the movement
direction stimulus

A" (t|H¢, ©) describes the effect of spiking
history



Generalized Linear Model (GLM) of A°> and A?

o?0

S —

logh(tla,d) =ag @ ©) A(t|H)At
S

Sy

Movement Direction
Stimulus



Generalized Linear Model (GLM) of A°> and A?
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Generalized Linear Model (GLM) of A°> and A?

o?0
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Directional Tuning (DT)
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Directional Tuning (DT)

100

o —— 31— & 1 log A (t|er, d) = ay
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The neuron is DT if the history-independent
firing in one direction was found to be
significantly different from that in at least 4
other directions at a 95% confidence level.



Generalized Linear Model (GLM) of AH
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Generalized Linear Model (GLM) of AH
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Generalized Linear Model (GLM) of AH
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Generalized Linear Model (GLM) of AH
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It captures recurrent patterns
with period 12-30 ms
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Generalized Linear Model (GLM) of AH
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Determining Cross-Over Effect

Trial type 1
Red Cue Green Start of Rewar
first cue Cue Movement d
final cue
Trial type 2
Red Cue Start of Rewar

final cue Movement d




Determining Cross-Over Effect

2
@1 .| mo gamma, no beta
. — - —
Trial type 1 s '
0.5 Gamma-
Beta-band band
Red Cue Green Start of Rewar 0™==5 50 "0 10 30 >0
first cue Cue Movement d history bins (ms)
final cue
Trial type 2
Red Cue Start of Rewar

Movement d

final cue




Determining Cross-Over Effect

Trial type 1
Red Cue Green Start of Rewar
first cue Cue Movement d
final cue
Trial type 2
Red Cue Start of Rewar
Movement d

final cue
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no gamma, no beta
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Gamma-
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= V' \
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Determining Cross-Over Effect

Trial type 1

Red Cue Green Start of Rewar
first cue Cue Movement d
final cue
Trial type 2
Red Cue Start of Rewar
final cue Movement d

e¢ Ysp

no gamma, no beta
T — — el —— ,-.J\,’\
Gamma-
Beta-band band
-70 -60 -50 -40 -30 -20 -10
history bins (ms)
gamma > beta
— AU
Gamma-
Beta-band band
-70 60 -50 -40 -30 -20 10
history bins (ms)
beta > gamma
Gamma-
Beta-band band
-70 60 -50 -40 -30 -20 -10

history bins (ms)




% of neurons

RESUItS = gamma > beta

— beta > gamma
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% of neurons

% of neurons

RESUItS = gamma > beta

— beta > gamma
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Summary

] A cross-over effect is seen only in the task
specific, i.e. directionally tuned neurons during
the planning of movement.

I This is an indication that a cross-over effect
(suppression of beta and emergence of gamma
oscillations) may be a mode of communication
in GPi, encoding the planning of a movement.



H3: Crossover phenomenon is

facilitated in GPi with HF DBS
applied to STN.
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Appendix



Striatum responses to STN DBS

Cortex <

[ Thalamus (Th) }

Basal Ganglia

Excitatory connection (Glutamate) - Inhibitory connection (GABA)




Reinforcement Hypothesis

Cortex <

[ Thalamus (Th) }4

Basal Ganglia

- Excitatory connection (Glutamate) - Inhibitory connection (GABA)



Methods: Model Evaluation

Time
Rescale

Time-Rescaling Theorem: z’s are i.i.d. exponential rate 1

Kolmogorov-Smirnov
(KS) Plot:

ECDF(z,)

In our analysis, only neurons
whose KS-plot after time rescaling
was within the 95% confidence CDF ( exp ( 1 ) )
interval were included and

inferences were conducted from

their model parameters




Inferences from Model Parameters

e R RGGnEEEEE R
imild propensity to
o:scillation (15-20 ms)
I B | ‘
®o9 B EESEEEEELEEEEEEEEE R
1
t-0100 t-50

history bins (ms)

Refractoriness: a neuron shows
refractoriness if UB(e#)<0.90 for at
least 1 value of 1<i <5. Depending on i,
the refractory period is determined.

n MMM Mo nn

Bu rsting: a neuron shows bursting if
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Bursts detected by applying the Poisson
Surprise Method (Legendy & Salcman, J.
Neurophysiol., 1985, 53:926). Intra-burst
period is 7.95+0.004 ms (meants.e.m.)




Inferences on Ensemble Effects

cross-correlogram (spikes/s)

0 0 20 30 40 50
lag (ms)

o=
©O=
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\

|

|

|

t-go t-£0 t-;10 -5 t-1 inhibition (lag:
history bins (ms) 1-3 ms)

-
o

Inhibition: a neuron n, is inhibited by another neuron n, in the same ensemble
if UB(e?2)<0.90 for at least 1 value of 1<i <5

Positive correlation: a neuron n, is correlated with another neuron n, in the
same ensemble if LB(e%*?)>1.10 for at least 1 value of 3<i <31. Depending on i, the
lag of the correlation is determined

cross-correlogram (spikes/s)
N O DN & O O

Positive
correlation (lag:
10 ms)

history bins (ms)



Application to Visual System

] LGN

] Driver input from retina

"] Modulating Input from
Layer 6 of cortex and brain
stem

'] Function is to strategically
relay information

] Modulating Input

Primary
visual cortex
(occipital lobe)

] Ensemble synaptic activity on a LGN neurons

_IMajor contributor to local field potentials
(LFPs) recorded in LGN (Logothetis2002)

http://www.colorado.edu/intphys/Class/IPHY3430-200/image/10-29.jpg
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Cont...

JLFPs in LGN?
 Delta rhythms ->deep sleep
_Alpha rhythms -> awake and
naturally behaving cats
i Gamma rhythms -> high
attentional tasks

Increased attention
Increased LFP frequency
Increased modulating input frequency

Hughes S W, Lorinez M, Cope D W, Blethyn K L, Kekesi K A, et al. (2004) Synchronized oscil-
lations at a and # frequencies in the lateral geniculate nuclens. Neuron, Vol 42, 253268, April 22, 58
2004, .



