Performance Limitations of Thalamic Relay: Insights into Motor Signal Processing, Parkinson's Disease and Deep Brain Stimulation

Acknowledgements

Rahul Agarwal

Shreya Saxena

John Gale & Erwin Montgomery

Oscillatory modulations in neural activity have been observed during task related events.

Motor Cortex

Suppression of beta and emergence of 30-80 Hz (gamma band) during a

during

motor task

Ch 9

gamma 40-Hz ERS

-2

10-Hz ERD

movement

beta

Sensorimotor Cortex

Simultaneous increase in gamma band and a suppression in beta band (cross-over) observed before movement

Pfurtscheller, "Simultaneous EEG 10Hz desynchronization and 40 Hz synchronization during finger movements", NeuroReport (1992)

Oscillations in the Basal Ganglia

Motor Cortex H1: When movement is **Striatum** planned there is a crossover effect in Gpi. **SNpc GPe STN Basal Ganglia Excitatory connection (Glutamate)** Relay **Inhibitory connection (GABA)**

Oscillations in the Basal Ganglia in PD

Oscillations in the Basal Ganglia w/HF STN DBS

Oscillations in Basal Ganglia and Thalamic Relay

H4: Motor thalamus doesn't/does relay cortical signals when GPi activity has beta/gamma power.

H4: Motor thalamus doesn't/does relay cortical signals when GPi activity has beta/gamma power.

Relay Neurons

- ☐ Widely found in CNS:
 - ☐ thalamus
- ☐ Function is to strategically filter and relay information
- □ Open Questions:
 - □ when?
 - □ how?

Inputs & Outputs of a Relay Neuron

- ☐ Two input types
 ☐ reference input r(t)☐ signal to be relayed
 - ☐ represents few neurons
 - ☐ on proximal dendrites
 - \square modulating input u(t)
 - modulates the relay of reference input
 - ☐ represents many neurons
 - ☐ on distal dendrites
- \square Output: V(t)

How and when does u(t) affect relay of r(t)?

Model of a Relay Neuron

Models of Inputs

 $\square u(t)$: sinusoidal signals $^{\sim}(c_1,c_2,\omega)$

$$U = \{u(t) \in \mathbb{R} \mid u(t) = c_1 + c_2 sin(\omega t)\}$$

 $\Box r(t)$: Poisson process (T, T_0, I_0)

$$S = \{ r(t) \in \mathbb{R} \mid r(t) = I_0 \sum_{i=1}^{n} \delta(t - t_i) \}$$

Relay Reliability

Successful response occurs if V(t) generates an action potential within W ms after a pulse in r(t)

Problem Statement

To find:

Input Responses

$$u(t) = c_1, r(t) = 0$$

- □ Periodic u(t), r(t)=0:
 - \square makes solution rotate in an orbit tube \mathbb{X}_r
- \square Cell dynamics: Only $X_1 > V_{th}$ I_0 generates an action potential with a pulse in r(t)
- $\square \mathbb{X}_{us} \subseteq \mathbb{X}_r$ does not generate action potential
- $\square \mathbb{X}_s \subseteq \mathbb{X}_r$ generates an action potential

Solution

$$\frac{P_{response}}{1 + (1 - \alpha)P_{response}} \ge R \ge \alpha \cdot P_{response}$$

Modulating input parameters

$$P_{response} = \frac{\pi + 2sin^{-1} \left(\frac{\mathcal{O} - \mathcal{I}_{th} \mathcal{O}}{\mathcal{O}} \right)}{2\pi}$$

Reference input parameters

Neuron model parameters

$$\alpha = \begin{cases} e^{\frac{-(T_R - T_0)}{T - T_0}} & T_R - T_0 \ge 0\\ 1 & T_R - T_0 < 0 \end{cases}$$

R vs $\omega/2\pi$

20

Application to Motor Signal Processing

Summary

- □ Our analysis
 - ☐ Shows how relay reliability varies as a function of multiple parameters.
 - High frequency modulating inputs enable higher reliability
 - This is indicative that the gamma band oscillations observed in LGN LFPs & GPi activity are required to achieve higher relay reliability at thalamus.

H1: When movement is planned, there is crossover from beta to Gamma-band oscillations

Gamma in Gpi;

Cross-over

Beta-band oscillations

Thalamic relay occurs.

Experimental Set Up

Single unit activity of GPi neurons from two healthy primates (n=27 and n=56) was recorded while they were performing a directed radial center-out reaching task.

Experimental Set Up

Single unit activity of GPi neurons from two healthy primates (n=27 and n=56) was recorded while they were performing a directed radial center-out reaching task.

At key epochs, we express the CIF for each neuron using a multiplicative structure.

$$\lambda(t|H_t,\Theta) = \lambda^S(t|\Theta) \cdot \lambda^H(t|H_t,\Theta)$$

- $\Box \lambda^S(t|\Theta)$ represents the effect of the movement direction stimulus
- $\square \, \lambda^H(t|H_t,\Theta)$ describes the effect of *spiking* history

Generalized Linear Model (GLM) of λ^S and λ^H

Movement Direction
Stimulus

Generalized Linear Model (GLM) of λ^S and λ^H

Generalized Linear Model (GLM) of λ^S and λ^H

$$\log \lambda^{S}(t|\alpha,d) = \alpha_{d}$$

$$\log \lambda^{H}(t|\phi,\gamma,\beta)$$

$$= \sum_{n=0}^{9} 2n n n - nn - (n+1)$$

$$+ \sum_{n=0}^{8} 2n n n - (2n+12) \cdot nn - (2n+14)$$

$$+ \sum_{n=0}^{8} 2n n n - (5n+30) \cdot nn - (5n+35)$$

$$\lambda(t|H_{t})\Delta t$$

$$N_{t}(t|\theta,\gamma,\beta)$$

$$S_{d}$$

$$Movement Direction Stimulus$$

$$\Theta = \left[\{ \mathbb{Z}_{\mathbb{Z}} \}_{\mathbb{Z}=1}^{8}, \{ \mathbb{Z}_{\mathbb{Z}} \}_{\mathbb{Z}=0}^{9}, \{ \mathbb{Z}_{\mathbb{Z}} \}_{\mathbb{Z}=0}^{8}, \{ \mathbb{Z}_{\mathbb{Z}} \}_{\mathbb{Z}=0}^{8} \right] \quad \textit{estimated via Maximum Likelihood}$$

Directional Tuning (DT)

Directional Tuning (DT)

The neuron is DT if the history-independent firing in one direction was found to be significantly different from that in at least 4 other directions at a 95% confidence level.

$$\begin{split} \log \lambda^{H}(t|\phi,\gamma,\beta) \\ &= \sum_{n=0}^{9} \text{ Tank } \text{ Then } (n+1) \\ &+ \sum_{n=0}^{8} \text{ Tank } \text{ Then } (2n+12) \text{: } \text{ Then } (2n+14) \\ &+ \sum_{n=0}^{8} \text{ Tank } \text{ Then } (5n+30) \text{: } \text{ Then } (5n+35) \end{split}$$

$$\log \lambda^{H}(t|\phi,\gamma,\beta) = \sum_{l=0}^{9} 2 l_{l} l$$

It captures short-term (<=10 ms) recurrent patterns (e.g., intra-burst activity)

$$+\sum_{10=0}^{8} \frac{10}{10} \frac{10}{10} (10 - (210 + 12): 10 - (210 + 14)$$
 $+\sum_{10=0}^{8} \frac{10}{10} \frac{10}{10} - (510 + 30): 10 - (510 + 35)$

$$\log \lambda^{H}(t|\phi,\gamma,\beta)$$

$$= \sum_{\underline{m}=0}^{9} 2 \underline{m}_{\underline{m}} \underline{m} \underline{m} - \underline{m}_{\underline{m}} - \underline{m}_{\underline{m}} - \underline{m}_{\underline{m}} \underline{m} + 1)$$

$$+ \sum_{\underline{m}=0}^{8} 2 \underline{m}_{\underline{m}} \underline{m} \underline{m} - (2\underline{m} + 12) : \underline{m} - (2\underline{m} + 14)$$

<u>m</u>=0

It captures recurrent patterns with period 12-30 ms (oscillations in gamma frequency band)

$$\begin{split} \log \lambda^{H}(t|\phi,\gamma,\beta) \\ &= \sum_{m=0}^{9} \, \text{Then model} \, (m+1) \\ &+ \sum_{m=0}^{8} \, \text{Then model} \, (2m+12) \colon m - (2m+14) \\ &+ \sum_{m=0}^{8} \, \text{Then model} \, (5m+30) \colon m - (5m+35) \end{split}$$

It captures recurrent patterns with period 30-75 ms (oscillations in beta frequency band)

Results

gamma > beta

beta > gamma

Results

beta > gamma

Summary

□ A cross-over effect is seen only in the task specific, i.e. directionally tuned neurons during the planning of movement.

□ This is an indication that a cross-over effect (suppression of beta and emergence of gamma oscillations) may be a mode of communication in GPi, encoding the planning of a movement. H3: Crossover phenomenon is facilitated in GPi with HF DBS applied to STN.

Appendix

Striatum responses to STN DBS

Reinforcement Hypothesis

Methods: Model Evaluation

Time-Rescaling Theorem: z_i's are i.i.d. exponential rate 1

In our analysis, only neurons whose KS-plot after time rescaling was within the 95% confidence interval were included and inferences were conducted from their model parameters

Inferences from Model Parameters

0.5

0

1.5

1

time (s)

2

oscillation if $LB(e^{\beta i})>1.10$ for at least 1 value of $7 \le i \le 31$ (i.e., 15-1000 ms). Depending on i, the oscillation period is determined.

Bursts detected by applying the <u>Poisson</u> <u>Surprise Method</u> (Legendy & Salcman, J. Neurophysiol., 1985, 53:926). Intra-burst period is <u>7.95±0.004 ms</u> (mean±s.e.m.)

Inferences on Ensemble Effects

Application to Visual System

- - Driver input from retina
 - Modulating Input from Layer 6 of cortex and brain stem
 - Function is to strategically relay information
 - ☐ Modulating Input
 - Ensemble synaptic activity on a LGN neurons
 - Major contributor to local field potentials (LFPs) recorded in LGN (Logothetis2002)

Cont...

□ LFPs in LGN¹
 □ Delta rhythms -> deep sleep
 □ Alpha rhythms -> awake and naturally behaving cats
 □ Gamma rhythms -> high attentional tasks

Hughes S W, Lorincz M, Cope D W, Blethyn K L, Kekesi K A, et al. (2004) Synchronized oscillations at α and θ frequencies in the lateral geniculate nucleus. Neuron, Vol 42, 253268, April 22, 2004, .