NEW THOUGHTS AND APPROACHES IN PD PATHOGENESIS

Dr. Mandar Jog Professor, University of Western Ontario Chair, National Parkinson Foundation Centre of Excellence in Parkinson Disease and Movement Disorders

Thanks! First to the organizers

- Dr. Dorian Aur
- Dr. Tushar Das
- Dr. Mircea Chelaru
- Dr. Chris Connolly
- Ms Anca Chelaru
- Ms Theodora Aur

Many unresolved questions in PD

- As a degenerative disease, no pathogenic process has yet been identified as the reason for why neurons die – e.g. asymmetry
- In terms of the mechanisms, many fundamental observations have been made that point from "very far away" towards processes
- These processes share commonality with other degenerative disorders
- Currently, there is no consistent and robust common theme to these conditions

Too many features

- Areas of vulnerability are diffuse
 - For example in PD, everything from SN to gastrointestinal splanchnic neurons are affected
- Large variability in the pathological features including
 - Protein accumulation
 - Architectural simplification at all levels
 - Cellular connectivity disruption
 - Actual cell death
- And these are just a few variabilities....

At the other end

- At the other end, specific physical manifestations of disease are clearly seen
 - In PD, many symptoms with immense variability within them are indeed the hallmark of disease
- Well learnt and established tasks fail, not simple movements but goal directed and functionally relevant movements
- This implies that whatever is happening at the pathological level, the system fails in its ability to process information adequately.
- The resultant is task failure.

What I mean by task failure

Pathology and phenotype NOT linked

- It seems clear then that the measurement of all of these variabilities, from the level of the gene to the phenotype may be a very difficult
- Indeed we may never be able to understand, by experimental measurement of pathology in the system, what and why goes wrong in the system
- Finally, phenotypic observations are probably not related directly in any way to the underlying pathological processes –
 - degeneracy and multifunctionality makes this happen

Bottom up, not top down....

- Which tells me that a top down approach, whether it is electrophysiological, immunochemical or otherwise will always be by itself inadequate in understanding the brain language
- A synthesizing bottom-up approach does exist and is being applied to a small extent within neuroscience – small amount of modeling work
- This approach takes into consideration the basic fundamentals of biological systems – thermodynamics, multi-stability and finally Neuroelectrodymanics

The Thermodynamic brain

- Survival being the basic instinct, all systems are expected to obey the laws of thermodynamics and especially the second law
- The biological systems, and in our case of interest, the nervous system is may be able to break the requirement of the second law
- As such, the system is able to import and export entropy at a cost
- This cost is fuelled by metabolism of substrate

The Thermodynamic brain

- In order to utilize this concept, all components of the nervous system at all levels become locally efficient
- Vascular flow and branching, delivery of molecules including glucose and oxygen species follow this
- In essence, the system builds itself as a multitude of fuel efficient attractors from the lowest level to the highest, i.e. from genotype to phenotype and indeed behavior

The Thermodynamic brain

- In evolution, this hierarchical, locally maximized systems have come together to form a dynamical and complex system
 - This is the concept of local synergies that the nervous system is especially good at
 - Local synergies are at all levels membrane proteins, dendritic branching, gene transcription among the many others
 - This means that perturbations within the system are compensated by even remote effects that may not be visible directly e.g. at secondary and tertiary dendrites

Multi-stability and Non-equilibrium

- These thermodynamically synergistic states result in two very important features, vital to the nervous system
 - Multistability at every level
 - Non equilibrium states with phase transitions
- Both these features allow the nervous system to form spatial and temporal patterns at successively complex levels
- The multistability state

Multi-stability and Non-equilibrium

- These patterns are thermodynamically neutral or more efficient
 - This is the concept of self-organized criticality (Chialvo *Nat Physics* 2010)
 - The self organization may occur in the form of phase transitions that are multi-dimensional, multistable and sudden
 - Such transitions may represent tipping points or instabilities
 - As such at every level, from charge (faster, microscopic) to macroscopic attractors may form

Multi-stability and Non-equilibrium

- The rule of energy minimization persists within this system
 - This intrinsically leads to self-organization since each level reaches a particular point of complexity
 - It is then enslaved by the next level and so on
- The "switch" from one system to another occurs as a process of dynamic, and unstable phase transitions
 - Once the transition occurs from state A to State B, a collective of attractors builds within the self organizing structure
 - Inherent non-linearity and fluctuations within this system makes more and more likely that new constructs are built

So what are the contributors?

- This is an extremely difficult question to answer....
- At an anatomical level the ultra-structure of the neuron itself is dependent on these very rules
 - Dendritic branching, axonal arborization, transport ultrastructure, synaptic ultrastructure, neurotransmitters, ions, channels....to name a few

Self-organization and pattern formation

Self-organization: A mechanism that nature uses to form spatial and temporal patterns in its collective order and opens local interactions to exchange energy, matter and information with environment. Many systems self-organize towards a state which is barely stable.

Pattern formation: A spatially organized structure in systems that are driven and dissipative, which occurs in the region of the growing perturbation i.e., far from equilibrium (modes with nonzero wave vector).

What do these do?

- Taking synchronization into account, dynamic attractors formation in spatiotemporal domain may be a way to code information in response to any input.
- Maximal number of attractors at criticality outcomes maximal information storage capacity.
 - At the finest level and therefore the fastest these include charges that are ubiquitous yet nonequally distributed in the nervous system

A complex form of bifurcations→ Route to Chaos

$$\delta = \underset{n \to \infty}{\text{Lt}} \frac{\Delta_n}{\Delta_{n+1}}$$
$$= 4.669201609103...$$

$$\alpha = \underset{n \to \infty}{\text{Lt}} \frac{d_n}{d_{n+1}}$$
$$= 2.5029078750957...$$

Degeneracy, hysteresis, dynamic instabilities, etc. .. related to the chaotic mode can also be extracted in order to quantify the phase transition – Require to apply **Synchronization** in order to characterize the dynamic states.

The transitions

- In this construct of multi-stability and nonequilibrium, we have tried to use this lowest level of assembly, charge, to investigate transition to and from multistable states
- In this construct we used the movement of a charge during action potentials as representing the carrier that is used for information
- This charge flux is then used to demonstrate how state changes can occur within the system

 Charges in motion generate an electric potential that is simplistically modeled as

$$V_{\sum} = \sum_{i} \frac{q_{i}}{4\pi\varepsilon \, r_{i}} \qquad \qquad \sum_{\substack{i \text{ for some production} \\ \text{Y}_{[um]}}} \sum_{\substack{i \text{ for some production}$$

 However, this set of charges distribute in the local space under the influence of the such dynamic fields

Directionality of charge flux

Charge dissipation can then be studied in terms of the construct of multistate and nonequilibrium conditions as having the property of directionality of propagation

The paradigm

- Using ensemble tetrode recording
 - We recorded from the dorso-lateral striatum in rodents
 - Animals were performing a learning task on a Tmaze
 - Data were filtered and gathered continuously while multiple trials of data were acquired
 - All data was in the spike domain
 - Data was analysed using standard spike sorting and analysis methods

 We then applied this analysis of spike directivity to every spike recorded during this behavioral task during learning

- A charge density map for every spike can be computed using a variety of techniques for each spike
 - a) Perform the ICA algorithm for all four channels
 - b) Construct the transformation T₁, as the law of cosines u_i=T₁(s).
 - d) Compute the position p_k of electrical sources.
 - e) De-bending by constructing a symmetric plot.

Application to the learning task

- T maze task with task acquisition over time
- Approximately 10 days of learning

Striatal "clumps"

Striatal "clumps"

Multistable to Bistable transition

From charge to behavior

- The conjecture then is that even at the fundamental level, charge, which is a carrier of information shows organization
- This organization in terms of flux seems to follow a transient, bi-stable pattern a reflection of a local maxima.
- What drives is the demand for behavior which changes the system from non-equilibrium to transient "equilibrium" locally
- $lue{}$ This state is thermodynamically expensive and is transformed into internal entropy H_i

 The transfer of these patterns into internal independent entropy dynamics is the representation of learning

Can we see this learning in the behavioral world?

Learning in Three Phases

Early learning phase, learning begins low MI values

Task-acquisition phase -rapid increase in MI

Over-training phase MI stabilization

From a behavioral perspective

- The mean percentage correct before session 10 was 48%
- It is 76% after session 12.
- This is a 1.58 fold increase in the percentage correct behavioral responses between these two phases

What do we see in behavior? The "AHA" moment

In terms of information within the network

Now computing the actual amount of information in bits

Pre-tipping	Post-tipping	Percent change
0.10±0.5	1.590±0.81	1481%
0.81±0.5	4.891±0.3	600%
0.820±0.49	2.59±0.44	313 %

And now to conjecture....

In this context, what happens in disease?

- Among the processes that are implicated, a form of metabolic damage has always been used as an important contributor
- This "oxidative stress", resulting from many different species such as oxygen free radicals are felt to "cause" cell death
- Unfortunately, the steps before and after are missing and hence why and how this happens has remained a mystery

The thermodynamic concept

- One way of thinking this through is that the neurons metabolically produce abnormal toxins and destroy themselves, (genetic)
- Another is that an exogenous trigger that causes this to occur (environmental)
- However a common feature within this construct is the concept of thermodynamics of the system

- The system, and the constituent cells especially neurons start on a pathway of metabolic failure
- In this regard, the neuron faces a loss of multistability at multiple levels
- Whether in PD, this begins at the stage of the mitochondria or as in ALS, at the level of failure of the tubular transport systems, is an unknown
- However, the conjecture is that at least one or more system reaches equilibrium

- In order to attempt a return to multistable state, then requires energy expenditure.
- This comes at a cost to other systems within the cell
- Some of this may be translated to maintaining dendrite integrity, some to protein chemistry, membrane structure, and many other subsystems
- Some systems are more capable of handling this than others

- Which ones begin to themselves start reaching an "equilibrium" state then simply a matter of their constituent properties, local environment and for the lack of any other word…luck?
- Accumulation of protein is one such manifestation of poor clearing
- This then becomes an unstoppable process once a critical stage of equilibrium occurs
- The highly non-equilibrium multistate system is converted to an equilibrium state

- This is when we may start to see the epiphenomenon of synchrony at large levels internally and in EEG style recordings.
- Since the disease insult is relentless and continuous, the disease is progressive
- The system is unable to reach a state of multistate and so transitions become impossible
- Many aspects then become locked within the system

Many equilibria

- This state of many subcomponents of the system reaching equilibrium states is now fatal.
- The second law of thermodynamics, which only held locally now becomes global
- The boundary conditions are now limited and the system becomes gradually enslaved with reducing attractor states
- Solutions are limited and both biologically(thermodynamically) and otherwise there is failure

Thermodynamic collapse

- In an attempt to reduce the thermodynamic load, many compensations occur
 - The neuron reduces its load by dendritic simplification, others increase firing, some sequester material and accumulations result
 - Regional differences, local and remote effects occur and there is essentially a progressive thermodynamic failure
 - Phenotypic manifestations occur as disease

Summary

- The nervous system is organised based upon thermodynamic laws and those of nonequilibrium and multistate
- Transiently, at many levels, local maxima that result in a stable state exist but rapidly convert to internal entropy state
- This non-equilibrium and desynchronized state remains similar in aging, but will equilibrate with disease
- The progressive transform from non-equilibrium to equilibrium may be the underpinning of disease