THE BUZZARD-DIAMOND-JARVIS CONJECTURE FOR
UNITARY GROUPS

DAVID SAVITT (JOINT WORK WITH TOBY GEE AND TONG LIU)

I will discuss the proof of the weight part of Serre’s conjecture for mod p Galois
representations attached to rank two unitary groups in the unramified case — i.e.,
the Buzzard-Diamond-Jarvis conjecture for unitary groups. This is joint work with
Toby Gee and Tong Liu.

Notation. We fix the following notation. Let p > 2 be a prime number, and F' an
imaginary CM field with the following properties:

e F/FT is unramified at all finite places, split at all places of F* above p,

o [FT:Q) is even.
For simplicity I will further assume that F'™ has a unique place v lying above p,
and write v = ww® in F.

The conditions on F' guarantee the existence of an outer form G,p+ of GLg that

is quasi-split at all finite places, compact at infinity, and split over F.

_ Let k be the residue field of F),. In this context a Serre weight is an irreducible
F,-representation of GLq (k).

Definition. We say that 7 : Gal(F/F) — GLa(F,) is modular of weight o if 7
occurs in a certain space of algebraic modular forms for G with coefficients in o.

If 7 is modular, let W (7) be the set of Serre weights for which 7 is modular. When
p is unramified in F, BDJ describe a set of weights WBPJ(7) (whose definition I
will return to momentarily).

Then our main global theorem is as follows.

Theorem A. With notation as above, suppose that 7 : Ggp — GLQ(FP) is modular
and that T_|GF(cp> is irreducible (or if p = 3,5 require T irreducible and T(Gp(c,))

adequate). Assume that p is unramified in F. Then W (7) = WBDJI (7).

Recall that the irreducible F,-representations o of GLy(k) have the following
shape:
o= ® (det * @ Sym”*~* k%) @y, . F,
n:k‘%?p
with 0 < a, < p—1 (but not all equal to p—1) and 0 < b, —a, <p—1.

Assume for the rest of the talk that F' is unramified at p. We will identify an
embedding x : k < I, with its unique lifting Fy, — Q,.

Suppose that p : Gp, — GLQ(@p) is a crystalline representation, and let D
be the associated filtered ¢-module, which is a module over F, ®q, @p Since
Fy, ®q, @p =Il.r ) @p, there is a decomposition D =[], D,, and similarly for

. : w P —_
each Fil' D, so that each Dy is a filtered Q,-vector space of dimension 2.
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Definition. The jumps in the filtration of D, are the x-labeled Hodge-Tate weights
of p. (We normalize the sign of HT weights so that all the HT weights of the
cyclotomic character are 1.)

Let o be a Serre weight. We say that p has Hodge type o if the k-labeled Hodge-
Tate weights of p are (ay, b, + 1) for all .

The above definition is justified by the following basic fact.

Proposition. If 7 : Gp — GLa(F,) is modular of weight o, then Tlgy, has a
crystalline lift of Hodge type o.

(Indeed, 7 = 7, for some cuspidal automorphic m whose infinitesimal character
is determined by o, and rx|g,,, is the desired lift.)

Definition. Define W (7) to be the set of Serre weights o such that 7|, —has
a crystalline lift of Hodge type o. So, if 7 is modular, then essentially by definition
we have a containment W (7) C Wes(7).

One has the following important progress in the reverse direction. (Note: no
ramification hypothesis here!)

Theorem (Barnet-Lamb, Gee, Geraghty, 2011). Under the hypotheses of Theo-
rem A, suppose that 7|a,, has a crystalline lift of Hodge Type o that moreover is
potentially diagonalizable (in the sense of BLGG+Taylor). Then o € W(T).

Our task, then, is to remove the potentially diagonalizable hypothesis.

Definition. We define WBP’(7) to be the set of weights o such that 7|, has a
crystalline lift of Hodge type o that is:
e reducible, if 7|g,, ~is reducible, or

e induced from the unramified quadratic extension of F,, if 7|g, is irre-
ducible.

Lifts as above are potentially diagonalizable (this is all we will need to say about
potential diagonalizability), so by BLGG we have WEPJI(7) ¢ W (7). Note that the
set WBPJ(7) is much more explicit than W (7) — completely explicit if 7|¢,. is
semisimple, and in terms of crystalline extension classes in the non-split reducible
case. We prove the following theorem, our main local result.

Theorem B. Suppose that F,,/Q, and that p : G, — GL2(F,) is reducible. If
0 has a crystalline lift of Hodge type o, then p has a reducible crystalline lift of
Hodge type o.

We deduce from Theorem B that WBPJ(7) = Weis(7); this is immediate in
the reducible case, while the irreducible case follows by restricting to a quadratic
extension, applying the reducible case there, and descending. Theorem A follows.

Remark. (1) By twisting it suffices to consider weights o for which a, = 0 for
all k, and in this case the crystalline representations of Theorem B have all
their Hodge—Tate weights in [0, p].

(2) In the special case where the Hodge—Tate weights are in the interval [0, p—2]
rather than [0, p], then Theorem B is a consequence of Fontaine-Laffaille
theory. Indeed, Theorem A was proved by Gee (2006) in the case of generic
(or regular) weights. The regularity hypothesis allowed Gee to avoid the
difficulties that arise when dealing with Hodge-Tate weights outside the
Fontaine—Laffaille range. Our contribution now is a method for addressing
these difficulties.
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(3) Theorem B is false in any wider range of Hodge—Tate weights. For instance,
if F,, = Q, then €®€ has a crystalline lift with Hodge-Tate weights (0, p+1),
but no reducible such lift.

(4) If p : Gg, — GL2(Q,) with Hodge-Tate weights in the range [0, p], then p
is reducible if and only if p is reducible. But this is definitely not the case

it F, # Q, (i.e., p may be reducible for p irreducible)

Our proof of Theorem B is purely local. Perhaps the most direct approach to
Theorem B would be to write down all the filtered ¢-modules corresponding to
crystalline representations p of the sort considered in the theorem, and attempt to
compute each p explicity, e.g. using the theory of (¢, T')-modules. Some partial
results have been obtained along these lines by Dousmanis and by Zhu (and if you
look at what they do, they have to work very very hard), but the general case has
so far been resistant to these methods. Instead our approach is somewhat indirect.

Write W for the ring of integers of F,,, fix a uniformizer 7w of W, and define
6= WHU]L
¢ :6 — & has p(u) = uP and acts as Frobenius on W,

Fu.oo = Fup(n/P7), and

Goo = Gal(Fy/Fy.o0)-

A Kisin module of height r is a pair (9, ¢) where: 2 is a finite rank free G-module,
@ M — M is p-semilinear, and the cokernel of & ®, M — M is killed by (u—m)".

Theorem (Kisin). There is an exact and fully faithful functor T : { Kisin modules} —
Repy, (Go). If L is a G, -stable lattice in a semistable representation of Gr,, with
Hodge—Tate weights in [0,7], then L|g., ~ T(9M) for some (unique) Kisin module M
of height r. The functor T is compatible with reduction mod p.

The key technical result that we prove is the following structure theorem for
Kisin modules of height p.

Theorem C. Assume that F,,/Q, is unramified and p > 3. Suppose that L is
a G, -stable lattice in a d-dimensional crystalline representation with Hodge—Tate
weights r1,...,rq in the range [0,p], and let M be the corresponding Kisin module.
Then there exists a basis of M in which the matriz of ¢ is X[(u — 7)™, -, (u—
7)Y where X and Y are invertible matrices and 'Y is congruent to the identity
modulo p.

(To be precise, we prove a version with coefficients, but I will ignore coefficients
here.) This structure theorem has other applications. As an example, we can prove
the following (which I state with F,, = Q, just for the sake of simplicity, but we
can prove the analogous statement for F,, unramified):

Theorem D. Suppose that p : Gg, — GL4(Q),) is a crystalline representation with
Hodge-Tate weights 1, . ..,rq in the range [0,p]. If % is a sum of characters, then
ﬁﬁ; ~elt@...¢d,

This extends a theorem of Fontaine-Laffaille (in the HT weight range [0, p — 1]),
and would be false in the wider range [0,p + 1].

Sketch of proof of Theorem C. Suppose that L is any semistable representation.
Write S for the p-adic completion of the divided power envelope of Wu] with
respect to (v — 7). Then

D = S[1/p] ®p.0 M~ S[1/p] @5, D
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where D is the filtered (¢, N)-module associated to L[1/p]. In particular there is
an operator N on D. Let S = W[uP,u”/p]. A delicate calculation shows that if
L is crystalline then with respect to any basis of 91, the matrix of the operator N
lies in uPMy(S[1/p] N S). (So far, don’t need any unramified hypothesis either.)
Now write MM* = G ®,.¢ M C D and set Fil' M* = IM* NFil' D. Let M C D be
the image of 91* under the map u — 7, and Fil' M = M NFil’ D. Then one proves
by induction on i that the map Fil' 9* — Fil’ M sending u — = is surjective for
all 7; this uses in an essential way the shape of the operator IV, the fact that F,, is
unramified, and the hypothesis that Fil’ D = 0 for i > p. O

Suppose L is a lattice in a crystalline representation of Hodge type o with L/pL
reducible, and 9t the corresponding Kisin module. Then 9t/p9t is an extension
of rank one ¢-modules over k[u], and Theorem C places strong restrictions on the
extension classes that can arise in this manner.

We would like to see that each of the extensions that could arise in this manner
(according to Theorem C) can be lifted to a Kisin module corresponding to a
reducible crystalline representation of Hodge type o. But to deduce Theorem B it
is essential for us to be able to see the whole representation with the functor T' (not
just the restriction to Go).

To that end we make crucial use of Liu’s theory of (¢, @)-modules. A (¢, G)-
module is a Kisin module together with some extra structure; I won’t have time
to be completely precise about this, but let me at least say the following. Liu
constructs a certain G-algebra R C W(R) where R is the usual ring @0% /.
Set M = R @y, M. Then a (p, G)-module is (M, ¢) together with an action of
the group G = Gal(Fy 00 (ftpe )/ Fy) satisfying certain compatibilities, one upshot
of which is that there is a map 7 : 9 — M satisfying certain compatibilities. (The
element 7 corresponds to a choice of generator in Gal((Fiy, oo (fp)/Fuw(tipe=)).) Liu
has proved:

Theorem (Liu). There is an exact (anti-)equivalence of categories T between
(¢, G)-modules of height r and Galois-stable lattices in semi-stable representations
with Hodge—Tate weights in [0,7]. This is compatible with Kisin’s T and with re-

duction mod p.

We prove a structure result for (¢, G)-modules coming from crystalline (as op-
posed to semi-stable) reprsentations, namely that

T(z) —x € uPp(t)(W(R) @y, M)

where t is a certain element of W(R). The proof makes another use of the shape
of N as in the proof of Theorem C.

Using this, we show that each of the above extensions of characteristic p Kisin
modules can be extended in at most one way to an extension of characteristic p
(¢, G)-modules coming from the reduction mod p of a crystalline representation.’
Now Theorem B follows by counting dimensions: the mod p (¢, G)—modules coming
from reducible crystalline representations of Hodge type o account for all of the ones
we are left with.

IThis is not quite true when b, — a,, = p — 1 for all k.



