
First-order algorithms for large-scale convex
optimization

Javier Peña
Carnegie Mellon University

Midwest Optimization Meeting & Workshop on Large Scale
Optimization and Applications

University of Toronto & Fields Institute
Toronto, October 2011

1 / 48

Some applications of convex optimization

Nash equilibria computation

min
x∈Q1

max
y∈Q2

〈x ,Ay〉

Regularized linear regression

min
β

(
1

2
‖Xβ − y‖2 + Ω(β)

)
Ω(β) : regularization term, e.g., λ‖β‖1 in lasso regression.

Compressed sensing

min
x
‖x‖1

Ax = b

2 / 48

In these applications:

The convex optimization model has nice structure.

Interesting practical instances lead to immense problems.

In some cases the relevant data of the problem is not available
in explicit form at once.

These pose interesting computational challenges.

3 / 48

Outline

1 First-order schemes for convex optimization

2 Nash equilibria computation for large sequential games

3 Elementary algorithms for linear programming

4 A sparsity-preserving stochastic gradient algorithm

4 / 48

1. First-order schemes for convex optimization

Classical approaches for convex minimization:

Subgradient methods (first-order non-smooth)

Gradient-descent methods (first-order smooth)

Newton’s method (second-order smooth)

These are iterative schemes to solve

min f (x)
x ∈ Q

where f : Rn → R and Q ⊆ Rn are convex.

Notation: f ∗ := min
x

f (x).

5 / 48

Gradient methods

Consider
min f (x)

x ∈ Q,

where f is convex, smooth, and ∇f is L-Lipschitz on Q.

Gradient-descent scheme

pick x0 ∈ Q

for k = 0, 1, . . .
xk+1 := argmin

y∈Q

{
f (xk) + 〈∇f (xk), y − xk〉+ L

2‖y − xk‖2
}

end for

6 / 48

Gradient methods

Properties of gradient-descent scheme

When Q = Rn we get the familiar

xk+1 = xk −
1

L
∇f (xk).

Convergence rate: after k iterations

f (xk)− f ∗ = O(L/k).

Equivalently, we can find ε-solution in O(L/ε) iterations.

Each iteration involves a projection of the form

min
u∈Q

{
〈g , u〉+

1

2
‖u‖2

}
.

7 / 48

Accelerated gradient-descent methods

Nesterov’s accelerated scheme

pick x0 = y0 ∈ Q

for k = 0, 1, . . .
xk+1 := argmin

y∈Q

{
f (yk) + 〈∇f (yk), y − yk〉+ L

2‖y − yk‖2
}

yk+1 := xk+1 + k
k+3 (xk+1 − xk)

end for

Theorem (Nesterov 1983)

Above method has rate of convergence: f (xk)− f ∗ = O(L/k2).
Equivalently, we can find ε-solution in O(

√
L/ε) iterations.

Remark

The O(1/
√
ε) complexity is optimal (Nemirovskii and Yudin 1983).

8 / 48

Nesterov’s smoothing technique

Consider the saddle-point problem

min
x∈Q1

max
y∈Q2

〈Ax , y〉.

This problem can be rewritten as

min f (x)
x ∈ Q1,

where
f (x) = max

y∈Q2

〈Ax , y〉.

Typically f is non-smooth.

9 / 48

Nesterov’s smoothing technique

Suppose we can easily compute projections

min
u∈Qi

{
〈g , u〉+

1

2
‖u‖2

}
for i = 1, 2.

Nesterov’s smoothing technique

1 Fix y0 ∈ Q2. For µ > 0 define

fµ(x) := max
y∈Q2

{
〈Ax , y〉 − µ

2
‖y − y0‖2

}
.

2 Apply optimal gradient scheme to min
x∈Q1

fµ(x).

10 / 48

Nesterov’s smoothing technique
Assume Q1,Q2 bounded and let

D1 = max
x∈Q1

1

2
‖x − x0‖2, D2 = max

y∈Q2

1

2
‖y − y0‖2.

Theorem (Nesterov 2005)

By setting µ := 2‖A‖
ε

√
D1
D2

, the above smoothing scheme finds an

ε-solution to the saddle point problem

min
x∈Q1

max
y∈Q2

〈Ax , y〉

in

O
(
‖A‖
√

D1D2

ε

)
first-order iterations.

————————–
Optimal complexity of a subgradient method is O(1/ε2) (Nemirovskii-Yudin 1983).

11 / 48

Nesterov’s smoothing technique
Assume Q1,Q2 bounded and let

D1 = max
x∈Q1

1

2
‖x − x0‖2, D2 = max

y∈Q2

1

2
‖y − y0‖2.

Theorem (Nesterov 2005)

By setting µ := 2‖A‖
ε

√
D1
D2

, the above smoothing scheme finds an

ε-solution to the saddle point problem

min
x∈Q1

max
y∈Q2

〈Ax , y〉

in

O
(
‖A‖
√

D1D2

ε

)
first-order iterations.

————————–
Optimal complexity of a subgradient method is O(1/ε2) (Nemirovskii-Yudin 1983).

11 / 48

Nesterov’s smoothing technique

Theorem (Gilpin, P, Sandholm 2009)

If Q1,Q2 are polyhedral, then an iterated version of Nesterov’s
smoothing scheme finds an ε-solution to the saddle point problem

min
x∈Q1

max
y∈Q2

〈Ax , y〉

in

O
(
κ(A,Q1,Q2) log

(
‖A‖
√

D1D2

ε

))
first-order iterations.

κ(A,Q1,Q2) : “condition number” of A,Q1,Q2.

12 / 48

Prox-functions and Bregman projection

Definition

d : Q → R is a prox-function if

d is strongly convex in Q, i.e., there exists σ > 0 such that for
all x , y ∈ Q, and α ∈ [0, 1]

d(αx +(1−α)y) ≤ αd(x)+(1−α)d(y)− 1

2
σα(1−α)‖x−y‖2.

min
x∈Q

d(x) = 0

Bregman distance

ξ(y , x) := d(y)− d(x)− 〈∇d(x), y − x〉 ≥ σ

2
‖y − x‖2.

Bregman projection

Use min
y∈Q

{
〈g , y〉+ 1

σ ξ(y , x)
}

instead of min
y∈Q

{
〈g , y〉+ 1

2‖y − x‖2
}

.

13 / 48

Other accelerated first-order schemes

Nemirovskii’s mirror-prox method

Beck and Teboulle’s FISTA algorithm

Other classes of problems, e.g., variational inequalities,
composite optimization

14 / 48

2. Nash equilibria computation for large sequential games
(joint work with A. Gilpin, S. Hoda, and T. Sandholm)

Sequential games

Games that involve turn-taking, chance moves, and imperfect
information.

Example (r -round poker)

Deal private cards to the players (face down)

Betting round

For i = 2 to r

Deal public cards (face up)
Betting round

Showdown (if needed)

15 / 48

2. Nash equilibria computation for large sequential games
(joint work with A. Gilpin, S. Hoda, and T. Sandholm)

Sequential games

Games that involve turn-taking, chance moves, and imperfect
information.

Example (r -round poker)

Deal private cards to the players (face down)

Betting round

For i = 2 to r

Deal public cards (face up)
Betting round

Showdown (if needed)

15 / 48

Example (one-round poker, detailed)

Initial pot: $1 each

Deal: deck with two Js and two Qs
Deal one private card to each of two players

Betting round:
 

 

1

1

2

2

check raise

check raise call fold

fold call

If none of the players folded, player with higher card wins pot.

16 / 48

Example (one-round poker, detailed)

Initial pot: $1 each

Deal: deck with two Js and two Qs
Deal one private card to each of two players

Betting round:
 

 

1

1

2

2

check raise

check raise call fold

fold call

If none of the players folded, player with higher card wins pot.

16 / 48

Example (one-round poker, detailed)

Initial pot: $1 each

Deal: deck with two Js and two Qs
Deal one private card to each of two players

Betting round:
 

 

1

1

2

2

check raise

check raise call fold

fold call

If none of the players folded, player with higher card wins pot.

16 / 48

One-round poker in extensive form (game tree)

2

1 1 11

2

2

2

2

1111

2 2

00

0

00 1

0−1 −1 2 −1−2−1

1 1 2−2−1

2

(Q,Q)(J,J)

(Q,J)

k r
k k k

r r r

f c c c cf f f

k

r r r rk k k

f f f fc c c c

1/6

1/3

1/6

1/3

(J,Q)

1 1

17 / 48

Nash equilibrium of sequential games
Simultaneous choice of strategies for all players so that no player
has incentive to deviate.

Formulation via the sequence form for two-person, zero-sum
games (Von Stengel, Koller & Megiddo, Romanovskii)

max
x∈Q1

min
y∈Q2

〈x ,Ay〉 = min
y∈Q2

max
x∈Q1

〈x ,Ay〉.

A: Player 1’s payoff matrix

Rows and columns of A indexed by sequences of moves of
Players 1 and 2 respectively.

Q1,Q2: strategy sets (realization plans) of Players 1 and 2
respectively

Games in normal form: Q1,Q2 are simplexes.

Sequential games in extensive form: Q1,Q2 are treeplexes.

18 / 48

Nash equilibrium of sequential games
Simultaneous choice of strategies for all players so that no player
has incentive to deviate.

Formulation via the sequence form for two-person, zero-sum
games (Von Stengel, Koller & Megiddo, Romanovskii)

max
x∈Q1

min
y∈Q2

〈x ,Ay〉 = min
y∈Q2

max
x∈Q1

〈x ,Ay〉.

A: Player 1’s payoff matrix

Rows and columns of A indexed by sequences of moves of
Players 1 and 2 respectively.

Q1,Q2: strategy sets (realization plans) of Players 1 and 2
respectively

Games in normal form: Q1,Q2 are simplexes.

Sequential games in extensive form: Q1,Q2 are treeplexes.

18 / 48

Nash equilibrium of sequential games
Simultaneous choice of strategies for all players so that no player
has incentive to deviate.

Formulation via the sequence form for two-person, zero-sum
games (Von Stengel, Koller & Megiddo, Romanovskii)

max
x∈Q1

min
y∈Q2

〈x ,Ay〉 = min
y∈Q2

max
x∈Q1

〈x ,Ay〉.

A: Player 1’s payoff matrix

Rows and columns of A indexed by sequences of moves of
Players 1 and 2 respectively.

Q1,Q2: strategy sets (realization plans) of Players 1 and 2
respectively

Games in normal form: Q1,Q2 are simplexes.

Sequential games in extensive form: Q1,Q2 are treeplexes.

18 / 48

Treeplexes

Definition

A simplex is a treeplex.

If Q1, . . . ,Qk treeplexes then

{(u0, u1, . . . , uk) : u0 ∈ ∆k , u
i ∈ u0

i · Qi , i = 1, . . . , k}

is a treeplex.

If Q1, . . . ,Qk treeplexes then Q1 × · · · × Qk is a treeplex.

Observe

A treeplex can be written in the form

{u ∈ Rd |u ≥ 0,Eu = e}

where E , e have {0, 1} entries.

19 / 48

Computation of Nash equilibrium

Nash equilibrium

max
x∈Q1

min
y∈Q2

〈x ,Ay〉 = min
y∈Q2

max
x∈Q1

〈x ,Ay〉.

Can formulate as the primal-dual pair of linear programs.
However, interesting games lead to enormous instances.

Poker

Texas Hold’em (with limits): Game tree has ∼ 1018 nodes.

Rhode Island Hold’em: simplification of Texas Hold’em.
Created for AI research (Shi & Littman 2001).
Game tree has ∼ 109 nodes.

These problems are too large for general-purpose linear
programming solvers.

Use Nesterov’s smoothing approach.

20 / 48

Computation of Nash equilibrium

Nash equilibrium

max
x∈Q1

min
y∈Q2

〈x ,Ay〉 = min
y∈Q2

max
x∈Q1

〈x ,Ay〉.

Can formulate as the primal-dual pair of linear programs.
However, interesting games lead to enormous instances.

Poker

Texas Hold’em (with limits): Game tree has ∼ 1018 nodes.

Rhode Island Hold’em: simplification of Texas Hold’em.
Created for AI research (Shi & Littman 2001).
Game tree has ∼ 109 nodes.

These problems are too large for general-purpose linear
programming solvers.

Use Nesterov’s smoothing approach.

20 / 48

Computation of Nash equilibrium

Theorem (Gilpin, Hoda, P, Sandholm 2007)

Assume Q ⊆ Rn is a treeplex. We can construct a prox-function
d : Q → R so that the projection min {〈g , u〉+ d(u) : u ∈ Q} is
easily computable.

Theorem (Gilpin, Hoda, P, Sandholm 2007)

The new prox-functions yield a first-order smoothing algorithm
that finds (x̄ , ȳ) ∈ Q1 × Q2 such that

0 ≤ max
x∈Q1

〈x ,Aȳ〉 − min
y∈Q2

〈x̄ ,Ay〉 ≤ ε

in ⌊
4n1n2

‖A‖
ε

⌋
first-order iterations.
ni : number of sequences of Player i for i = 1, 2

21 / 48

Application to poker

Poker

Central problem in artificial intelligence

Unlike chess or checkers, it is a game of imperfect information

Bluffing and other deceptive strategies are necessary to be a
good player.

Developing automatic poker players is an important milestone
in artificial intelligence.

22 / 48

Game-theoretic approach to designing poker players

Limit Texas Hold’em

Main version of poker used in academic research

Game tree has about 1018 nodes.

Use a sophisticated abstraction technique to create smaller
games that approximate the original game

Compute approximate Nash equilibria for the abstractions
Recover approximate Nash equilibria for the original game

Main current limitation of this approach: size of the
abstractions that can be handled

23 / 48

Computational experience

Instances

Lossy and lossless abstraction of Rhode Island Hold’em

Lossy abstractions of Texas Hold’em

Problem sizes (when formulated as LPs)

Name Rows Columns Nonzeros

10k 14,590 14,590 536,502
160k 226,074 226,074 9,238,993

RI 1,237,238 1,237,238 50,428,638
Texas 18,536,842 18,536,852 61,498,656,400
GS4 299,477,082 299,477,102 4,105,365,178,571

24 / 48

Implementation

Main work per iteration

(Most expensive) matrix-vector products x 7→ ATx , y 7→ Ay

Projections min
u∈Qi

{〈g , u〉+ d(u)} .

Peculiar structure in poker instances

Payoff matrix in poker games admits a concise representation.
For example, for a three-round game

A =

F1 ⊗ B1

F2 ⊗ B2

F3 ⊗ B3 + S ⊗W

Do not need to form A explicitly.

Instead have subroutines that compute x 7→ ATx , y 7→ Ay .

25 / 48

Do we get useful strategies?

Annual AAAI Computer poker Competition (since 2006).

About 15 teams competed Texas Hold’em with limits and
with no limits.

Players based on our algorithm are quite competitive (ended
between first and fourth place).

Unlike other players, these players do not use poker-specific
expert knowledge.

26 / 48

3. Elementary algorithms for linear programming
(joint work with N. Soheili)

Assume

A =
[
a1 · · · an

]
∈ Rm×n, where ‖aj‖ = 1, j = 1, . . . , n.

The perceptron algorithm solves

ATy > 0.

Perceptron Algorithm (Rosenblatt, 1958)

y0 := 0

for k = 0, 1, . . .
aT
j yk := min

i
aT
i yk

yk+1 := yk + aj

end for

27 / 48

Normalized Perceptron Algorithm

Observe

aT
j y := min

i
aT
i y ⇔ aj = Ax(y), x(y) = argmin

x∈∆n

〈ATy , x〉.

Hence in the perceptron algorithm yk = Axk where
xk ≥ 0, ‖xk‖1 = k .

Normalized Perceptron Algorithm

y0 := 0

for k = 0, 1, . . .
θk := 1

k+1
yk+1 := (1− θk)yk + θkAx(yk)

end for

In this algorithm yk = Axk for xk ∈ ∆n.

28 / 48

The Von Neumann Algorithm
Algorithm to solve

Ax = 0, x ∈ ∆n. (1)

Von Neumann Algorithm, 1948

x0 := 1
n1; y0 := Ax0

For k = 0, 1, . . .
if vk := mini aT

i yk > 0 then STOP; (1) is infeasible

λk := ‖yk‖2−vk

‖yk‖2−2vk+1

xk+1 := (1− λk)xk + λkx(yk)
yk+1 := (1− λk)yk + λkAx(yk)

end for

————————————————-
Main loop in the normalized perceptron:

θk := 1
k+1

xk+1 := (1− θk)xk + θkx(yk)
yk+1 := (1− θk)yk + θkAx(yk)

29 / 48

The Von Neumann Algorithm
Algorithm to solve

Ax = 0, x ∈ ∆n. (1)

Von Neumann Algorithm, 1948

x0 := 1
n1; y0 := Ax0

For k = 0, 1, . . .
if vk := mini aT

i yk > 0 then STOP; (1) is infeasible

λk := ‖yk‖2−vk

‖yk‖2−2vk+1

xk+1 := (1− λk)xk + λkx(yk)
yk+1 := (1− λk)yk + λkAx(yk)

end for

————————————————-
Main loop in the normalized perceptron:

θk := 1
k+1

xk+1 := (1− θk)xk + θkx(yk)
yk+1 := (1− θk)yk + θkAx(yk)

29 / 48

Properties of Perceptron and Von Neumann Algorithms

Recall assumption: A =
[
a1 · · · an

]
∈ Rm×n, ‖aj‖ = 1, j = 1, . . . , n.

Perceptron and Von Neumann Algorithms

Simple greedy iterations

Convergence analysis in terms of the parameter

ρ(A) = max
||y ||=1

min
i

aT
i y = max

||y ||=1
min
x∈∆n

〈ATy , x〉.

Observe:

ρ(A) > 0 if and only if ATy > 0 feasible
ρ(A) ≤ 0 if and only if Ax = 0, x ∈ ∆n feasible

30 / 48

Properties of Perceptron and Von Neumann Algorithms

Theorem (Block, Novikoff 1962)

If ρ(A) > 0 then the perceptron finds a solution to ATy > 0 in at
most

1

ρ(A)2

iterations.

Theorem (Epelman & Freund, 2000)

If ρ(A) < 0 then then the Von Neumann Algorithm finds an
ε-solution to Ax = 0, x ∈ ∆n in at most

1

ρ(A)2
· log

(
1

ε

)
iterations.

31 / 48

Properties of Perceptron and Von Neumann Algorithms

Theorem (Block, Novikoff 1962)

If ρ(A) > 0 then the perceptron finds a solution to ATy > 0 in at
most

1

ρ(A)2

iterations.

Theorem (Epelman & Freund, 2000)

If ρ(A) < 0 then then the Von Neumann Algorithm finds an
ε-solution to Ax = 0, x ∈ ∆n in at most

1

ρ(A)2
· log

(
1

ε

)
iterations.

31 / 48

Smooth Perceptron and Von Neumann Algorithms

Theorem (Soheili & P 2011)

If ρ(A) > 0, then a Smooth Perceptron Algorithm finds a solution
to ATy > 0 in at most

2
√

log(n)

ρ(A)

iterations while preserving the simplicity of the perceptron.

Theorem (Soheili & P 2011)

If ρ(A) < 0, then a Smooth Von Neumann Algorithm finds an
ε-solution to Ax = 0, x ∈ ∆n in at most

2
√

log(n)

|ρ(A)|
log

(
1

ε

)
iterations while preserving the simplicity of Von Neumann
Algorithm.

32 / 48

Perceptron and Von Neumann as first-order algorithms

Observation

The perceptron and Von Neumann algorithms are respectively
subgradient and gradient schemes for the saddle-point problems

max
‖y‖≤1

min
x∈∆n

〈y ,Ax〉 = min
x∈∆n

max
‖y‖≤1

〈y ,Ax〉.

Smooth perceptron and Von Neumann

Use a smooth version of

x(y) = argmin
x∈∆n

〈ATy , x〉,

namely,

xµ(y) :=
exp(−ATy/µ)

‖ exp(−ATy/µ)‖1

for some µ > 0.

33 / 48

Smooth Perceptron Algorithm

Smooth Perceptron Algorithm

y0 := 1
nA1; µ0 := 1; x0 := xµ0(y0)

for k = 0, 1, . . .
θk := 2

k+3

yk+1 := (1− θk)(yk + θkAxk) + θ2
kAxµk

(yk)
µk+1 := (1− θk)µk

xk+1 := (1− θk)xk + θkxµk+1
(yk+1)

end for

————————————————-
Main loop in the normalized perceptron:

θk := 1
k+1

xk+1 := (1− θk)xk + θkx(yk)
yk+1 := (1− θk)yk + θkAx(yk)

34 / 48

Smooth Perceptron Algorithm

Smooth Perceptron Algorithm

y0 := 1
nA1; µ0 := 1; x0 := xµ0(y0)

for k = 0, 1, . . .
θk := 2

k+3

yk+1 := (1− θk)(yk + θkAxk) + θ2
kAxµk

(yk)
µk+1 := (1− θk)µk

xk+1 := (1− θk)xk + θkxµk+1
(yk+1)

end for

————————————————-
Main loop in the normalized perceptron:

θk := 1
k+1

xk+1 := (1− θk)xk + θkx(yk)
yk+1 := (1− θk)yk + θkAx(yk)

34 / 48

4. A sparsity-preserving stochastic gradient algorithm
(joint work with Q. Lin and X. Chen)

Consider the convex optimization problem

min f (x) + h(x)
x ∈ Q,

where f is smooth of the form

f (x) = E[F (x , ω)],

and h is a non-smooth, sparsity enforcing, e.g., h(x) = ‖x‖1.

————————————————-
For instance, lasso regression

min
β

(
1

2
‖Xβ − y‖2 + ‖β‖1

)

35 / 48

4. A sparsity-preserving stochastic gradient algorithm
(joint work with Q. Lin and X. Chen)

Consider the convex optimization problem

min f (x) + h(x)
x ∈ Q,

where f is smooth of the form

f (x) = E[F (x , ω)],

and h is a non-smooth, sparsity enforcing, e.g., h(x) = ‖x‖1.

————————————————-
For instance, lasso regression

min
β

(
1

2
‖Xβ − y‖2 + ‖β‖1

)

35 / 48

Beck and Teboulle’s FISTA algorithm

Assume f convex, ∇f is L-Lipschitz.

FISTA Algorithm

pick x0 = y0 ∈ Q; t0 := 1

for k = 0, 1, . . .
xk+1 :=

argmin
y∈Q

{
f (yk) + 〈∇f (yk), y − yk〉+ L

2‖y − yk‖2 + h(y)
}

tk+1 :=
1+
√

1+4t2
k

2

yk+1 := xk+1 + tk−1
tk+1

(xk+1 − xk)

end for

Theorem (Beck and Teboulle 2008)

After k iterations (f + h)(xk)− (f + h)∗ = O(1/k2).

36 / 48

Stochastic gradient methods

Challenge

Gradient ∇f (x) may be expensive or impossible to compute. We
may only have a stochastic gradient ∇F (x , ω) such that

∇f (x) = E[∇F (x , ω)].

Stochastic gradient

Estimate E[∇F (x , ω)] : Draw a sample S = {ω1, . . . , ωK} and
compute

G (x ,S) =
1

K

K∑
i=1

∇xF (x , ωi)

Assumption

EG (x , S) = ∇f (x) and E‖G (x ,S)−∇f (x)‖2 ≤ σ2.

37 / 48

Stochastic gradient methods

Algorithms that use G (x , S) instead of ∇f (x)

Stochastic Approximation:
Robbins and Morron 1951, Polyak and Juditsky 1992

Mirror Descent Stochastic Approximation:
Nemirovski et al. 1983, 2009

Accelerated Stochastic Approximation (AC-SA):
Lan 2010, Ghadimi and Lan 2010

(Accelerated) Regularized Dual Average (RDA):
Xiao 2010

Others: Langford et al 2009, Shalev-Shwartz 2009, Hu 2009,
Duchi 2009, Byrd et al. 2011

Most of these have optimal convergence rate O(1/ε2)
(Nemirovskii and Yudin 1983).

38 / 48

The issue of sparsity

Solution to
min f (x) + h(x)

x ∈ Q,

is sparse thanks to h(x).

Observe

The sparsity of the optimal solution is due to the form of the
objective, not the specific algorithm.

The iterates generated by an algorithm may not be as sparse
as the optimal solution, particularly for first-order algorithms
that converge slowly.

39 / 48

The issue of sparsity

AC-SA (Lan 2010)

Choose x0 = z0 ∈ Q

For t = 1, 2, . . .
yt = (1− αt)zt−1 + αtxt−1

draw a sample St

xt = argmin
x∈Q

{〈G (yt , St), x〉+ γt

2αt
‖x − xt−1‖2 + h(x)}

zt = (1− αt)zt−1 + αtxt

end for

Output: zt

In this algorithm

Iterate xt is sparse while zt is not.

Iterate zt converges to the optimal solution while xt does not.

Similar situation in other stochastic gradient methods.

We would like to make the sparse xt converge to optimality.
40 / 48

The issue of sparsity

Sparsity-preserving Stochastic Gradient(SSG)

Choose γ0 > 0 and x0 = y0 ∈ Q.

For t = 0, 1, 2, . . .
Choose Lt > L, αt ∈ (0, 1) s.t. 2Ltα

2
t ≤ (1− αt)γt =: γt+1

yt := αtγtzt+γt+1xt

γt

draw a sample St

xt+1 := argmin
x∈Q

{〈G (yt , St), x〉+ Lt
2 ‖x − yt‖2 + h(x)}

zt+1 := (1−αt)γtzt−αtLt(yt−xt+1)
γt+1

Output xt

xt is sparse and converges to the optimal solution.

41 / 48

Sparse solution

Example

min
x

1

2
E(aT x − b)2 + λ‖x‖1

b = aT x̄ + ε

x̄ = (1, 1, . . . , 1, 0, 0, . . . , 0)T

ai ← U(0, 1) and ε← N(0, 1)

42 / 48

t

Sparsity of X
t
 in ACSA

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

X
t

43 / 48

t

Sparsity of Z
t
 in ACSA

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

Z
t

44 / 48

t

Sparsity of X
t
 in SSG

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

X
t

45 / 48

Properties of SSG Algorithm

Observe

Each iterate xt is random since each G (yt , St) is random.

Theorem (Qihang-Chen-P 2011)

If E‖G (x ,S)−∇f (x)‖2 ≤ C <∞ then for suitable chosen
γt , αt , Lt we have

E [φ(xt+1)− φ(x∗)] ≤ O
(

C√
t

)
.

Rate of converge O
(

1√
t

)
is optimal (Nemirovski and Yudin, 1983)

Theorem (Qihang-Chen-P 2011)

If E‖G (x ,S)−∇f (x)‖4 ≤ C and ‖x∗ − xt‖, ‖x∗ − zt‖ ≤ D then

V [φ(xt+1)− φ(x∗)] ≤ O
(

CD2

t

)
.

46 / 48

Concluding remarks

Numerous interesting applications in computational game
theory, signal processing, machine learning can be modeled as
convex optimization problems.

Practical problems are typically immense. This poses major
computational challenges.

Modern algorithmic technology (accelerated gradient
methods) can be specialized to deal effectively with these
challenges.

47 / 48

References

S. Hoda, J. A. Gilpin, and J. Peña, and T. Sandholm,
“Smoothing techniques for computing Nash equilibria of
sequential games,” Mathematics of Operations Research 35
(2010) pp. 494–512.

A. Gilpin, J. Peña, and T. Sandholm, “First-order algorithm
with O(log(1/ε)) convergence for ε-equilibrium in two-person
zero-sum games,” To Appear in Mathematical Programming.

N. Soheili and J Peña, “A smooth perceptron algorithm,”
Technical report, Carnegie Mellon University.

Q. Lin, X. Chen, and J. Peña “A sparsity preserving stochastic
gradient method for composite optimization,” Technical
report, Carnegie Mellon University.

48 / 48

	First-order schemes for convex optimization
	Nash equilibria computation for large sequential games
	Elementary algorithms for linear programming
	A sparsity-preserving stochastic gradient algorithm

