Facility Location with Economies of Scale and Congestion: Models and Column Generation Heuristics

Da Lu

Fatma Gzara
Samir Elhedhli

Outline

- Facility Location(FL) Models
- FL with concave cost (economies of scale)
- FL with convex cost (congestion)
- Our model: with economies of scale and congestion
- Lagrangian Relaxation
- Subproblems
- Lagrangian bound
- Column Generation Heuristics
- Numerical Test
- Data generation
- Test results

Facility Location Problem

- How to allocate facilities such that:
- Total cost is minimized
- All customers' demands are satisfied within the capacities of operating facilities.

Facility Location(FL) Models

- FL with Concave Cost

- Unit cost decreases as output increases due to economies of scale
- Examples include concave production costs in Romeijin et al. 2010 and Cohen and Moon 1991, concave site dependent costs in Dupont 2008, concave transportation costs in Lin et al. 2006, concave operating costs as a function of the number of assigned clients in Hajiaghayi et al. 2003, and concave technology acquisition costs in Dasci and Verter 2001.
- Solution Methodologies include branch-and-bound (Dupont 2008), piecewise linear approximation (Dasci and Verter 2001), Benders decomposition (Cohen and Moon 1991) and greedy heuristics (Hajiaghayi et al. 2003, Romeijin et al. 2010, Lin et al. 2006).

Facility Location(FL) Models

- FL with Convex Cost

- Unit cost increases as output increases due to over-utilization of resources, overtime, and facility congestion.
- Examples include location models that consider waiting times and congestion (Desrochers et al. 1995, Elhedhli 2006), strategic inventory-location (Benjaafar et al. 2004) and stochastic transportation problems (Holmberg 1995).
- Solution methodologies include tangential piecewise approximations (Elhedhli 2006, Benjaafar et al. 2004, Holmberg 1995), column generation (Desrochers et al. 1995), and branch-and-bound (Holmberg 1995).

Facility Location(FL) Models

- FL with Both Convex and Concave Cost
- Broek et al. 2006 studied a FL model with inverse S-shaped cost function. Schütz et al. 2008 extended the formers' work to a stochastic case considering both short-run and long-run scenarios. But both cost functions is linear after after deflection point capturing only economies of scale.
- Solution approach is piecewise approximation and Lagrangian relaxation.

Facility Location(FL) Models

- A typical phenomenon in economics
- E.g. a typical function often used by economists is cubic function as follows:

$$
h(q)=a q^{3}+b q^{2}-c q+d
$$

Facility Location(FL) Models

- Our model
- Index
- i : customers
- j : facilities
- Parameters:
- d_{i} demand of customer i
- K_{j} capacity at facility j
- $c_{i j}$ transportation cost from facility j to customer i
- F_{j} fixed cost of facility j
- e_{j} economic point at facility j

Facility Location(FL) Models

- Our model
- Functions
- $g_{j}(q)$ represents concave part of production cost
- $f_{j}(q)$ represents convex part of production cost
- Decision variables
- $x_{i j}$ quantity supplied by facility j to customer i
- $y_{j}^{e}=\left\{\begin{array}{l}1, \text { if facility } \mathrm{j} \text { operates under economic point } \\ 0, \text { otherwise }\end{array}\right.$
- $y_{j}^{c}=\left\{\begin{array}{l}1, \text { if facility } \mathrm{j} \text { operates above economic point } \\ 0, \text { otherwise }\end{array}\right.$

Our Model

$\min \sum_{j} F_{j}\left(y_{j}^{j}+y_{j}^{i}\right)+\sum_{j} y_{j}^{f} g_{j}\left(\sum_{j} x_{j j}\right)+\sum_{j} y_{j}^{j} f_{j}\left(\sum_{i} x_{j j}\right)+\sum_{i} \sum_{j} c_{i j} x_{j}$
s.t.

$$
\begin{array}{cc}
\sum_{j} x_{i j}=d_{i} & \forall i \\
e_{j} y_{j}^{c} \leq \sum_{i} x_{i j} \leq K_{j} y_{j}^{c}+e_{j} y_{j}^{e} & \forall j \tag{1}\\
y_{j}^{e}+y_{j}^{c} \leq 1 & \forall j \\
y_{j}^{e}, y_{j}^{c} \in\{0,1\} & \forall j \\
x_{i j} \geq 0, x_{i j} \text { are integers } & \forall i, j
\end{array}
$$

Our Model

- Advantages
- No approximation on the production cost function
- No need to introduce extra binary variables
- Decomposable in terms of $\left(y_{j}^{e}, y_{j}^{c}\right)$
- $\left(y_{j}^{e}, y_{j}^{c}\right)=(0,0)$: facility j is closed
- $\left(y_{j}^{e}, y_{j}^{c}\right)=(1,0)$: facility j is producing under e_{j}
- $\left(y_{j}^{e}, y_{j}^{c}\right)=(0,1):$ facility j is producing above e_{j}

Lagrangian Relaxation

- Lagrangian Subproblems
- Relax on constrain set (2): $\sum_{j} x_{i j}=d_{i}$
- Resulted in the following relaxed problem:
$\operatorname{LR}(\mu)=\min \sum_{j} F_{j}\left(y_{j}^{e}+y_{j}^{c}\right)+\sum_{j} y_{j}^{e} g_{j}\left(\sum_{i} x_{i j}\right)+\sum_{j} y_{j}^{c} f_{j}\left(\sum_{i} x_{i j}\right)+\sum_{i} \sum_{j} c_{i j} x_{i j}+\sum_{i} \mu_{i}\left(d_{i}-\sum_{j} x_{i j}\right)$
- Subject to constrain set (3), (4), (5), (6)
- Given $\bar{\mu}$, the problem decomposes in terms of facilities
- $\operatorname{SP}(\bar{\mu})_{j}=\min F_{j}\left(y_{j}^{e}+y_{j}^{c}\right)+y_{j}^{e} g_{j}\left(\sum_{i} x_{i j}\right)+y_{j}^{c} f_{j}\left(\sum_{i} x_{i j}\right)+\sum_{i}\left(c_{i j}-\bar{\mu}_{i}\right) x_{i j}$
- Subject to constrain (3), (4), (5), (6)
- Futher decompose in terms of $\left(y_{j}^{e}, y_{j}^{c}\right)$

Lagrangian Relaxation

- Case 1: $\quad S P(\bar{\mu})_{j}=0$
- Case 2 and 3 could dominate only if $S P(\bar{\mu})_{j} \leq 0$

Lagrangian Relaxation

- Add cuts to subproblems

$-x_{i j} \leq d_{i}, \forall i, j$ is valid in subproblems, though redundant in original model.

- Then Case 2 and Case 3 become:

Case 2: concave bounded knapsack problem
$\min F_{j}+g_{j}\left(\sum_{i} x_{i j}\right)+\sum_{i}\left(c_{i j}-\bar{\mu}_{i}\right) x_{i j}$
s.t. $\quad 0<\sum_{i} x_{i j} \leq e_{j}$

$$
x_{i j} \leq d_{i}, \forall i
$$

$x_{i j} \geq 0$, integers

Case 3: convex bounded knapsack problem
$\min F_{j}+f_{j}\left(\sum_{i} x_{i j}\right)+\sum_{i}\left(c_{i j}-\bar{\mu}_{i}\right) x_{i j}$
s.t. $\mathrm{e}_{j}<\sum_{i} x_{i j} \leq K_{j}$ $x_{i j} \leq d_{i}, \forall i$
$x_{i j} \geq 0$, integers

Lagrangian Relaxation

- How to solve the subproblems?
- Let's drop index j, define $\bar{c}_{i}=\mu_{i}-c_{i}$.
- Order \bar{c}_{i} in descending order, denote the ordered \bar{c}_{i} by $\bar{c}_{(i)}$.
- Form a function:

$$
p(q)= \begin{cases}0 & \text { if } q=0, \\ \bar{c}_{(1)} q & \text { if } 0 \leq q \leq d_{(1)}, \\ \bar{c}_{(1)} d_{(1)}+\bar{c}_{(2)}\left(q-d_{(1)}\right) & \text { if } d_{(1)} \leq q \leq d_{(1)}+d_{(2)}, \\ \cdots & \\ \sum_{t=1}^{i-1} \bar{c}_{(t)} d_{(t)}+\bar{c}_{(i)}\left(q-\sum_{t=1}^{i-1} d_{(t)}\right) & \text { if } \sum_{t=1}^{i-1} d_{(t)} \leq q \leq \sum_{t=1}^{i} d_{(t)}, \\ \cdots & \\ \sum_{t=1}^{m-1} \bar{c}_{(t)} d_{(t)}+\bar{c}_{(i)}\left(q-\sum_{t=1}^{m-1} d_{(t)}\right) & \text { if } \sum_{t=1}^{m-1} d_{(t)} \leq q \leq \sum_{t=1}^{m} d_{(t)} .\end{cases}
$$

Lagrangian Relaxation

- For ease of notation, let's denote $\sum_{t=1}^{i} d_{(t)}=q_{i}, i=1 \ldots m$, and denote $g(q)+f(q)=h(q)$
- The functions $p(q)$ and $h(q)$ are plotted in the following figure:

- Then all it takes to solve subproblems is to solve $\max p(q)-h(q)$

Lagrangian Relaxation

- Case 2: concave bounded knapsack problem
- The subproblem is a piecewise concave minimization problem
- Thus, one of the breakpoints is optimal.

Lagrangian Relaxation

- Case 3: convex bounded knapsack problem
- The subproblem is a piecewise convex minimization problem, where the break-points are e K and all the breakpoints q_{i} in between.
- Since the function is convex, the optimal solution can either be the unconstrained minimum of the function, or the lower cost breakpoints.

Lagrangian Relaxation

- The previous algorithm gives a Lagrangian LB: $L R(\bar{\mu})=\sum_{j} \operatorname{SP}(\bar{\mu})_{j}+\sum_{i} \bar{\mu}_{i} d_{i}$ for a given $\bar{\mu}$
- we need to choose the best μ that maximizes $L R(\mu)$
- To update μ, we create a Lagrangian dual master problem (DMP) and add a set of cuts using the solution from subproblems at each iteration.

Lagrangian Relaxation

- Lagrangian Dual Master Problem
- Define

$$
V_{j}=\left\{\begin{array}{l}
e_{j} y_{j}^{c} \leq \sum_{i} x_{i j} \leq K_{j} y_{j}^{c}+e_{j} y_{j}^{e} \\
x_{i j} \leq d_{i} \\
y_{j}^{e}+y_{j}^{c} \leq 1 \\
y_{j}^{e}, y_{j}^{c} \in\{0,1\} \\
x_{i j} \geq 0
\end{array}\right\}
$$

where $\left|V_{j}\right|=H_{j}$
$\theta_{j}=\min _{\left(x_{i j}^{h}, y_{j}^{\left.b_{j}^{h}, y_{j}^{h}\right) \in V_{j}}\right.}\left\{F_{j}\left(y_{j}^{e^{h}}+y_{j}^{c^{h}}\right)+y_{j}^{c^{h}} g_{j}\left(\sum_{i} x_{i j}^{h}\right)+y_{j}^{c^{h}} f_{j}\left(\sum_{i} x_{i j}^{h}\right)+\sum_{i}\left(c_{i j}-\mu_{i}\right) x_{i j}^{h}\right\}$

Lagrangian Relaxation

- Lagrangian Dual Master Problem:
$\max \sum_{i} \mu_{i} d_{i}+\sum_{j} \theta_{j}$
s.t. $\sum_{i} x_{i j} \mu_{i}+\theta_{j} \leq F_{j}\left(y_{j}^{e}+y_{j}^{c}\right)+y_{j}^{e} g_{j}\left(\sum_{i} x_{i j}\right)+y_{j}^{c} f_{j}\left(\sum_{i} x_{i j}\right)+\sum_{i} c_{i j} x_{i j}$
$\forall \mathrm{j}$

$$
\begin{gathered}
\left(x_{i j}, y_{j}^{e}, y_{j}^{c}\right) \in V_{j} \\
\mu_{i} \geq 0
\end{gathered}
$$

Solution Methodology

Column Generation Heuristics

- How to get a feasible solution
- Resort to DW, i.e. the dual problem of DMP

$$
\begin{array}{ll}
\min \sum_{j=1}^{n} \sum_{h=1}^{H_{j}} b_{j}^{h} \lambda_{j}^{h} & \\
\text { s.t. } \sum_{j=1}^{n} \sum_{h=1}^{H_{j}} x_{i j}^{h} \lambda_{j}^{h} \geq d_{i}, & \forall \mathrm{i}=1, \ldots, \mathrm{~m} \\
\sum_{h=1}^{H_{j}} \lambda_{j}^{h}=1, & \forall \mathrm{j}=1, \ldots, \mathrm{n} \\
\lambda_{j}^{h} \geq 0, & \forall j=1, \ldots, n ; \forall h=1, \ldots, H_{j}
\end{array}
$$

- Construct a feasible solution $\bar{x}_{i j}=\sum_{h=1}^{H_{j}} x_{i j}^{h} \lambda_{j}^{h}$, and $\left(\bar{y}^{e}, \bar{y}^{c}\right)$ being set accordingly.

Column Generation Heuristics

- How to find a better feasible solution?
- Embed the whole process into branching tree
- The branching rule:

$$
y_{j}^{e}+y_{j}^{c}=1 \text { or } 0
$$

- Note that the resulting branch-and-price do not guarantee an optimal solution due to
- Concavity of function g in the objective function
- Partial branching, i.e. no further branching on y^{e} or y^{c}

Column Generation Heuristics

- Three Heuristics based on branch-and-price
- $1^{\text {st }}$ heuristic (Lagrangian heuristic)
- Solve DMP at the root node, construct a feasible solution and stop
$-2^{\text {nd }}$ heuristic (column generation heuristic)
- branching is performed on open facilities that are operating under economies of scale based on the feasible solution obtained at each node
$-3^{\text {rd }}$ heuristic (enhanced column generation heuristic)
- branching is performed on all open facilities based on the feasible solution obtained at each node
- Branching is halted when:
- Lagrangian lower bound exceeds incumbent
- Closing any facility will result in an infeasible problem
- All nodes can be created by the branching rule have been searched

Numerical test

- Test bed
- A collection of 55 facility location instances of Holmberg et al. 1999.
- Three types of function $h(q)$
- 4 cost structures for each type of function (based on fixed costs, production costs, variable costs)
- The 3 cost components are about the same percentage of total cost
- Fixed costs dominate
- Production costs dominate
- Variable costs dominate

Numerical test

- A summary of instance features

| Instance | n | m | K / D | Instance | n | m | K / D | Instance | n | m | K / D | Instance | n | m | K / D | Instance | n | m | K / D |
| :---: |
| p1 | 10 | 50 | 1.74 | p 12 | 10 | 50 | 2.06 | p 23 | 20 | 50 | 3.5 | p 34 | 30 | 150 | 4.04 | p 45 | 20 | 80 | 4.14 |
| p2 | 10 | 50 | 1.74 | p13 | 20 | 50 | 2.77 | p24 | 20 | 50 | 3.5 | p35 | 30 | 150 | 4.04 | p46 | 30 | 70 | 7.1 |
| p3 | 10 | 50 | 1.74 | p14 | 20 | 50 | 2.77 | p25 | 30 | 150 | 4.12 | p36 | 30 | 150 | 4.04 | p47 | 10 | 90 | 1.76 |
| p4 | 10 | 50 | 1.74 | p15 | 20 | 50 | 2.77 | p26 | 30 | 150 | 4.12 | p37 | 30 | 150 | 6.06 | p48 | 20 | 80 | 4.06 |
| p5 | 10 | 50 | 1.37 | p16 | 20 | 50 | 2.77 | p27 | 30 | 150 | 4.12 | p38 | 30 | 150 | 6.06 | p49 | 30 | 70 | 7.08 |
| p6 | 10 | 50 | 1.37 | p17 | 20 | 50 | 2.8 | p28 | 30 | 150 | 4.12 | p39 | 30 | 150 | 6.06 | p50 | 10 | 100 | 1.89 |
| p7 | 10 | 50 | 1.37 | p18 | 20 | 50 | 2.8 | p29 | 30 | 150 | 3.03 | p40 | 30 | 150 | 6.06 | p51 | 20 | 100 | 3.98 |
| p8 | 10 | 50 | 1.37 | p19 | 20 | 50 | 2.8 | p30 | 30 | 150 | 3.03 | p41 | 10 | 90 | 2.12 | p52 | 10 | 100 | 1.6 |
| p9 | 10 | 50 | 2.06 | p20 | 20 | 50 | 2.8 | p31 | 30 | 150 | 3.03 | p42 | 20 | 80 | 4.99 | p53 | 20 | 100 | 3.37 |
| p10 | 10 | 50 | 2.06 | p21 | 20 | 50 | 3.5 | p32 | 30 | 150 | 3.03 | p43 | 30 | 70 | 8.28 | p54 | 10 | 100 | 1.52 |
| p11 | 10 | 50 | 2.06 | p22 | 20 | 50 | 3.5 | p33 | 30 | 150 | 4.04 | p44 | 10 | 90 | 1.76 | p55 | 20 | 100 | 3.21 |

Numerical test

- A plot of three function type

Numerical test

- Results of function type 1

	InitialLagrangean heuristic			Column Generation (CG) heuristic			Enhanced CG heuristic			Cost structure			Facility status		Capacity utilization		
	Gap	Time	Cols	Gap	Time	Cols	Gap	Time	Cols	Fixed	Prod	Var	Opn	ES	Umax	Umin	Uavg
Base Case																	
Max	23.01	390.86	1126	2.65	3205.79	11794	2.65	4988.04	61455	44.45	63.21	45.36	19	3	89.11	71.37	72.80
Avg	6.57	78.60	297.29	0.86	670	3389.69	0.66	516.73	12484.56	27.96	40.04	32.00	11.29	0.49	58.16	50.13	54.60
Min	0	1.51	79	0	2.70	130	0	7.22	558	13.14	30.05	18.77	5	0	51.07	27.46	47.17
Dominant fixed costs																	
Max	53.67	1236.43	1148	3.98	16872.55	29792	2.49	22098.06	1128727	80.77	28.96	21.57	17	1	94.25	78.92	80.89
Avg	12.62	175.59	417.44	0.78	1177.83	3802.67	0.59	1151.18	50375.69	69.91	18.48	11.60	9.69	0.07	64.37	57.60	60.51
Min	0	2.06	94	0	3.09	138	0	10.36	635	58.21	12.46	4.40	4	0	53.22	37.06	51.91
Dominant production costs																	
Max	15.86	797.70	1277	2.26	5085.60	17425	1.33	17864.77	917680	11.14	90.35	14.67	16	1	94.18	71.34	72.80
Avg	4.99	147.94	411.36	0.48	984.70	3895.35	0.42	1339.96	60428.17	6.43	84.01	9.56	9.62	0.02	65.69	58.36	60.86
Min	0	2.09	95	0	3.63	162	0	10.33	724	3.49	78.48	5.12	4	0	55.22	47.02	54.52
Dominant variable costs																	
Max	7.712	620.88	2097	1.067	6552.84	26985	0.64	1143.46	18645	22.73	24.85	87.80	19	16	100	61.39	72.80
Avg	0.860	80.47	347.44	0.232	807.01	4273.04	0.09	138.90	2580.08	10.58	14.51	74.91	13.71	5.42	67.28	27.68	49.55
Min	01	1.00	65	01	2.95	151	0	8.31	653	3.97	7.60	54.30	9	0	50.84	3.21	30.05

Numerical test

- Results of function type 2

	InitialLagrangean heuristic			Column Generation (CG) heuristic			Enhanced CG heuristic			Coststructure			Facility status		Capacity utilization		
	Gap	Time	Cols	Gap	Time	Cols	Gap	Time	Cols	Fixed	Prod	Var	Opn	ES	Umax	Umin	Uavg
Base Cas																	
Max	24.79	2629.58	2134	2.95	13707.28	18496	2.95	2587.74	29518	38.41	50.57	48.36	14	2	81.16	74.82	78.47
Avg	6.50	282.50	545.47	0.93	1485.21	3171.07	0.81	449.54	8123.53	24.16	38.53	37.32	8.60	0.27	75.20	59.30	69.66
Min	0	2.12	78	0	3.74	154	0	17.88	959	13.99	29.60	23.72		0	64.52	32.39	55.00
Dominant fixed costs																	
Max	46.63	4288.36	1862	11.67	36122.19	9328	6.26	29853.99	83636	79.36	26.69	29.10	12	1	92.85	92.77	92.81
Avg	12.37	466.15	558.76	2.67	2153.22	1957.98	2.19	1601.85	8949.47	64.13	18.70	17.18	6.73	0.07	87.32	74.18	84.48
Min	0.31	2.62	90	0	2.95	128	0.13	10.05	547	51.41	12.38	6.78	3	0	82.84	43.22	74.39
Dominant production costs																	
Max	10.09	2090.29	1650	2.72	7152.37	15056	1.56	1839.91	43850	10.11	90.50	18.06	15	1	73.63	72.18	72.80
Avg	3.17	322.57	555.31	0.53	810.04	1880.65	0.38	409.11	6494.53	5.75	83.89	10.37	8.60	0.13	67.87	60.87	66.07
Min	0	2.84	101	0	4.49	169	0	13.74	656	3.20	77.05	5.26	4	0	63.05	40.90	60.38
Dominant variable costs																	
Max	4.98	1042.90	2155	1.30	7021.46	25759	0.45	992.71	16493	22.79	22.78	88.82	18	15	91.58	67.57	81.49
Avg	0.60	183.28	520.64	0.15	791.68	3321.73	0.06	181.77	2857.03	10.37	12.64	76.99	12.55	5.65	78.47	23.95	54.50
Min	0	2.53	109	0	5.65	257	0	15.21	860	3.34	7.26	54.43	8	0	60.07	5.43	31.72

Numerical test

- Results of function type 3

	InitialLagrangean heuristic			Column Generation (CG) heuristic			Enhanced CG heuristic			Cost structure			Facility status		Capacity utilization		
	Gap	Time	Cols	Gap	Time	Cols	Gap	Time	Cols	Fixed	Prod	Var	Opn	ES	Umax	Umin	Uavg
Base Case																	
Max	30.73	2289.22	1699	5.03	16680.61	8341	2.94	3098.23	29843	44.97	65.78	59.56	12	0	100	81.80	95.71
Avg	8.23	238.40	441.49	1.23	1796.57	2186.05	1.02	283.00	5040.42	25.38	33.62	40.99	8.35	0	93.38	70.58	85.41
Min	0	1.33	71	0	3.49	167	0	4.46	191	5.73	10.58	22.34	6	0	76.23	54.80	71.38
Dominant fixed costs																	
Max	61.83	3481.19	1711	21.20	15972.76	8776	10.04	2593.05	96583	88.67	43.47	29.62	10	1	100	99.47	99.89
Avg	17.86	394.71	461.87	4.08	1303.75	1693.09	3.40	464.54	7744.42	63.52	18.71	17.77	6.31	0.11	98.95	75.80	93.59
Min	0	1.28	64	0	2.20	92	0	2.11	92	37.70	2.23	7.53	3	0	85.50	4.57	76.14
Dominant production costs																	
Max	17.99	1309.99	1002	6.17	19674.19	13026	5.97	859.50	25459	37.81	85.17	49.29	13	1	100	93.54	98.76
Avg	7.63	182.17	376.82	1.18	1823.92	2159.22	0.92	172.81	5069.39	17.81	53.21	28.98	8.75	0.02	91.04	74.24	84.80
Min	0	1.68	79	0	5.58	238	0	13.21	748	2.47	19.48	10.23	6	0	75.61	38.66	71.38
Dominant variable costs																	
Max	4.84	1821.17	1709	1.68	5569.64	11960	0.79	661.55	15623	22.72	30.31	91.58	17	11	100	69.00	82.83
Avg	0.84	195.79	500.35	0.21	717.54	2912.24	0.10	135.59	4074.44	9.21	12.45	78.34	11.20	4.04	92.34	26.58	62.25
Min	0	1.11	82	0	4.35	289	0	9.81	764	2.24	2.48	61.35	8	0	71.09	5.43	42.65

Numerical test

- Performance of solution methodology
- The average gaps for the Lagrangian, the CG, and the enhanced CG heuristics are $6.5 \%, 1.11 \%$, and $.89 \%$ respectively.
- The CG heuristic improves the optimality gap by an average of 5.7% at the expense of increasing the computational time and the number of iterations six fold.
- The CG heuristic consumes on average one third of the CPU time (154.56 s vs 570.41 s) and one tenth of the number of columns generated.
- The enhanced CG heuristic does not improve much over the CG heuristic.

Numerical test

- Observations of solution structure
- The solution contains a number of facilities operating under economies of scale only when variable costs are dominant.
- When production costs are dominant, the minimum, maximum, and average utilization is very close to one another.
- Facilities are more congested when fixed costs dominate.

Thanks!

