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Facility Location Problem 

• How to allocate facilities such that:

– Total cost is minimized

– All customers’ demands are satisfied within 

the capacities of operating facilities.



Facility Location(FL) Models

• FL with Concave Cost
– Unit cost decreases as output increases due to 

economies of scale

• Examples include concave production costs in Romeijin 
et al. 2010 and Cohen and Moon 1991, concave site 
dependent costs in Dupont 2008, concave transportation 
costs in Lin et al. 2006, concave operating costs as a 
function of the number of assigned clients in Hajiaghayi 
et al. 2003,and concave technology acquisition costs in 
Dasci and Verter 2001.

• Solution Methodologies include branch-and-bound 
(Dupont 2008), piecewise linear approximation (Dasci 
and Verter 2001), Benders decomposition (Cohen and 
Moon 1991) and greedy heuristics (Hajiaghayi et al. 
2003, Romeijin et al. 2010, Lin et al. 2006).



Facility Location(FL) Models

• FL with Convex Cost 
– Unit cost increases as output increases due to 

over-utilization of resources, overtime, and facility 

congestion.
• Examples include location models that consider waiting times 

and congestion (Desrochers et al. 1995, Elhedhli 2006), 

strategic inventory-location (Benjaafar et al. 2004) and 

stochastic transportation problems (Holmberg 1995).

• Solution methodologies include tangential piecewise 

approximations (Elhedhli 2006, Benjaafar et al. 2004, 

Holmberg 1995), column generation (Desrochers et al. 1995), 

and branch-and-bound (Holmberg 1995).



Facility Location(FL) Models

• FL with Both Convex and Concave Cost
– Broek et al. 2006 studied a FL model with inverse 

S-shaped cost function. Schütz et al. 2008 

extended the formers’ work to a stochastic case 
considering both short-run and long-run 

scenarios. But both cost functions is linear after 
after deflection point capturing only economies of 

scale.

– Solution approach is piecewise approximation and 

Lagrangian relaxation.



Facility Location(FL) Models

– A typical phenomenon in economics

• E.g. a typical function often used by 
economists is cubic function as follows:

3 2( )h q aq bq cq d= + − +

q

( )h q

e



Facility Location(FL) Models

• Our model

– Index
• i : customers

• j : facilities

– Parameters:

• demand of customer i

• capacity at facility j

• transportation cost from facility j to 

customer i

• fixed cost of facility j

• economic point at facility j
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Facility Location(FL) Models

• Our model

– Functions

• represents concave part of production cost

• represents convex part of production cost

– Decision variables

• quantity supplied by facility j to customer i

•

•
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Our Model
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Our Model

• Advantages

– No approximation on the production cost function

• No need to introduce extra binary variables

– Decomposable in terms of 

• : facility j is closed

• : facility j is producing under

• : facility j is producing above 
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Lagrangian Relaxation

• Lagrangian Subproblems

– Relax on constrain set (2): 

• Resulted in the following relaxed problem:

• Subject to constrain set (3), (4), (5), (6)

– Given    , the problem decomposes in terms of 
facilities

•

• Subject to constrain (3), (4), (5), (6)

• Futher decompose in terms of 
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Lagrangian Relaxation
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Lagrangian Relaxation

• Add cuts to subproblems

– is valid in subproblems, though 
redundant in original model.

– Then Case 2 and Case 3 become:
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Lagrangian Relaxation

• How to solve the subproblems?

– Let’s drop index   , define                .  

– Order      in descending order, denote the 
ordered      by      .

– Form a function:
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Lagrangian Relaxation

– For ease of notation, let’s denote                            , 

and denote  

– The functions         and         are plotted in the 

following figure:

– Then all it takes to solve subproblems is to solve   
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Lagrangian Relaxation

• Case 2: concave bounded knapsack problem

– The subproblem is a piecewise concave 
minimization problem

– Thus, one of the breakpoints is optimal.
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Lagrangian Relaxation

• Case 3: convex bounded knapsack problem

– The subproblem is a piecewise convex 

minimization problem, where the break-points are  

,     and all the breakpoints      in between.

– Since the function is convex, the optimal solution 

can either be the unconstrained minimum of the 
function, or the lower cost breakpoints.
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Lagrangian Relaxation

• The previous algorithm gives a Lagrangian 

LB:                                           for a given

• we need to choose the best      that 

maximizes

• To update     , we create a Lagrangian dual 

master problem (DMP) and add a set of cuts 

using the solution from subproblems at each 

iteration.
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Lagrangian Relaxation

• Lagrangian Dual Master Problem

– Define  

where  
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Lagrangian Relaxation

• Lagrangian Dual Master Problem:

max
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Solution Methodology
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Column Generation Heuristics

• How to get a feasible solution

– Resort to DW, i.e. the dual problem of DMP

– Construct a feasible solution                        , and 
being set accordingly.  
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Column Generation Heuristics

• How to find a better feasible solution?

– Embed the whole process into branching tree

– The branching rule:

– Note that the resulting branch-and-price do not 

guarantee an optimal solution due to

• Concavity of function g in the objective function

• Partial branching, i.e. no further branching on       or 
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Column Generation Heuristics

• Three Heuristics based on branch-and-price

– 1st heuristic (Lagrangian heuristic)  

• Solve DMP at the root node, construct a feasible solution and stop

– 2nd heuristic (column generation heuristic) 

• branching is performed on open facilities that are operating under 
economies of scale based on the feasible solution obtained at each 
node

– 3rd heuristic (enhanced column generation heuristic)

• branching is performed on all open facilities based on the feasible 
solution obtained at each node

– Branching is halted when:

• Lagrangian lower bound exceeds incumbent

• Closing any facility will result in an infeasible problem

• All nodes can be created by the branching rule have been searched



Numerical test

• Test bed

– A collection of 55 facility location instances of 
Holmberg et al. 1999.

– Three types of function 

– 4 cost structures for each type of function (based 

on fixed costs, production costs, variable costs )

• The 3 cost components are about the same percentage of 
total cost 

• Fixed costs dominate

• Production costs dominate

• Variable costs dominate
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Numerical test

• A summary of instance features



Numerical test

• A plot of three function type



Numerical test

• Results of function type 1



Numerical test

• Results of function type 2



Numerical test

• Results of function type 3



Numerical test

• Performance of solution methodology

– The average gaps for the Lagrangian, the CG, 

and the enhanced CG heuristics are 
6.5%,1.11%, and .89% respectively.

– The CG heuristic improves the optimality gap by 
an average of 5.7% at the expense of increasing 

the computational time and the number of 

iterations six fold.

– The CG heuristic consumes on average one third 

of the CPU time (154.56s vs 570.41s) and one 
tenth of the number of columns generated.

– The enhanced CG heuristic does not improve 
much over the CG heuristic.



Numerical test

• Observations of solution structure

– The solution contains a number of facilities 
operating under economies of scale only when 

variable costs are dominant.

– When production costs are dominant, the 
minimum, maximum, and average utilization is 

very close to one another.

– Facilities are more congested when fixed costs 

dominate.
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