The Legendre-Fenchel conjugate for a product of positive definite quadratic forms

13th Midwest Optimization Meeting \& Workshop on Large Scale Optimization and Applications

Minghua Lin
Department of Combinatorics \& Optimization University of Waterloo

Based on a joint work with G. Sinnamon

Oct 15, 2011

The Legendre-Fenchel transform (or LF conjugate) of a function $f: X \in \mathbf{R} \cup\{+\infty\}$ is a function defined on the topological dual space of X as

$$
y \in X^{*} \mapsto f^{*}(y):=\sup _{x \in X}\{\langle y, x\rangle-f(x)\}
$$

Given a function $h: \mathbf{R}^{n} \rightarrow \mathbf{R}$, its LF conjugate is defined as

$$
h^{*}(x)=\sup _{y \in R^{n}}\left\{x^{T} y-h(y)\right\}
$$

Eg. If $A \succ 0$, let q_{A} denote the quadratic form

$$
q_{A}(y)=\frac{1}{2} y^{T} A y .
$$

Then

$$
q_{A}^{*}(y)=\frac{1}{2} y^{T} A^{-1} y .
$$

Hiriart-Urruty \& Martinez-Legaz (HM 2003) found the LF conjugate of the following operations:

1. inverting a strictly monotone convex function;
2. post-composing an arbitrary function with a strictly monotone concave function;
3. multiplying two positively valued strictly monotone convex functions.

Remark Their formulas show that, even for one-dimensional functions, the conjugate of the product cannot be expressed in a simple way...

What is the LF conjugate of the product function

$$
y \in \mathbf{R}^{n} \mapsto f(y):=q_{A}(y) q_{B}(y)
$$

where $A, B \succ 0$?

In his review paper, Hiriart-Urruty (H 2007) posed it as an open question in the field of nonlinear analysis and optimization.

Theorem. Zhao (Z 2010 a): Let $A, B \succ 0$, and let $f(y)=q_{A}(y) q_{B}(y)$ be convex. Then at any point $y \in \mathbf{R}^{n}$, the value of the conjugate $f^{*}(x)$ is finite, and $f^{*}(x)=0$ if $x=0$; otherwise, if $x \neq 0$,

$$
f^{*}(x)=3 \alpha^{1 / 3}\left(\frac{x^{T}(A+\alpha B)^{-1} x}{4}\right)^{2 / 3}
$$

where $\alpha>0$ satisfies

$$
2=\frac{x^{\top}(A+\alpha B)^{-1} x}{x^{T}(A+\alpha B)^{-1} A(A+\alpha B)^{-1} x}
$$

Corollary. (Z 2010 a): If $x \neq 0$,

$$
\begin{aligned}
& f^{*}(x)=\frac{3}{2} \alpha^{1 / 3}\left\{\left[\frac{2 q_{A}^{*}(x)-\alpha x^{T}\left(A B^{-1} A+\alpha A\right)^{-1} x}{4}\right]^{2 / 3}\right. \\
&\left.+\left[\frac{2 q_{B}^{*}(x)-\alpha x^{T}\left(B+\alpha B A^{-1} B\right)^{-1} x}{4 \alpha}\right]^{2 / 3}\right\} .
\end{aligned}
$$

Let $A_{1}, \ldots, A_{m} \succ 0, m \geq 2$, and let $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be the product $q_{A_{1}} \ldots q_{A_{m}}$, i.e.,

$$
g(y)=\prod_{i=1}^{m} \frac{1}{2} y^{\top} A_{i} y:=\prod_{i=1}^{m} q_{A_{i}}(y)
$$

When is the $g(y)$ convex?

For $y \neq 0$, the gradient and the Hessian matrix of g are given by,

$$
\begin{gathered}
\nabla g(y)=2 g(y) \sum_{i=1}^{m} \frac{A_{i} y}{y^{\top} A_{i} y} \\
\nabla^{2} g(y)=2 g(y)\left(\sum_{i=1}^{m} \frac{A_{i}}{y^{\top} A_{i} y}+2 \sum_{i=1}^{m} \sum_{j \neq i} \frac{A_{i} y y^{T} A_{j}}{y^{\top} A_{i} y y^{\top} A_{j} y}\right) .
\end{gathered}
$$

Theorem. Zhao (Z 2010 b): Let $A_{i} \succ 0, i=1, \cdots, m$. If
$\kappa\left(A_{j}^{-\frac{1}{2}} A_{i} A_{j}^{-\frac{1}{2}}\right) \leq \frac{\sqrt{4 m-2}+2}{\sqrt{4 m-2}-2}$ for all $i, j=1, \cdots, m, i \neq j$,
then the product of m quadratic forms $g=\prod_{i=1}^{m} q_{A_{i}}$ is convex.

Theorem. Lin \& Sinnamon (LS 2011 a): Let $A_{i} \succ 0$, $i=1, \cdots, m$. If
$\kappa\left(A_{j}^{-\frac{1}{2}} A_{i} A_{j}^{-\frac{1}{2}}\right) \leq\left(\frac{\sqrt{2 m-2}+1}{\sqrt{2 m-2}-1}\right)^{2}$ for all $i, j=1, \cdots, m, i \neq j$,
then the product of m quadratic forms $g=\prod_{i=1}^{m} q_{A_{i}}$ is convex. If $m=2$ the condition is also necessary for the convexity of g.

Remark For $m \geq 2,2 \sqrt{2 m-2}>\sqrt{4 m-2}$ so

$$
\left(\frac{\sqrt{2 m-2}+1}{\sqrt{2 m-2}-1}\right)^{2}>\frac{\sqrt{4 m-2}+2}{\sqrt{4 m-2}-2}
$$

Lemma. (LS 2011 a): Suppose $A, B \succ 0$ and let $\kappa=\kappa\left(A^{-1 / 2} B A^{-1 / 2}\right)$. Then for $x, y \in \mathbb{R}^{n}$, with $y \neq 0$, we have

$$
2 \frac{x^{\top} A y}{y^{\top} A y} \frac{x^{\top} B y}{y^{\top} B y} \geq-\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{2}\left(\frac{x^{\top} A x}{y^{\top} A y}+\frac{x^{\top} B x}{y^{\top} B y}\right) .
$$

The inequality is sharp.

A connection to generalized Wielandt inequality

Generalized Wielandt inequality Let A be an invertible $n \times n$ matrix. If $x, y \in \mathbb{C}^{n}$ and $\Phi, \Psi \in[0, \pi / 2]$ satisfy

$$
\left|y^{*} x\right| \leq\|x\|\|y\| \cos \Phi \quad \text { and } \quad \cot (\Psi / 2)=\kappa(A) \cot (\Phi / 2)
$$

then

$$
\left|(A y)^{*}(A x)\right| \leq\|A x\|\|A y\| \cos \psi
$$

Suppose V is a non-trivial real or complex vector space. Let $\langle\cdot, \cdot\rangle_{1}$ and $\langle\cdot, \cdot\rangle_{2}$ be inner products on V and define m, M by,

$$
\begin{aligned}
& m=\inf _{0 \neq v \in V} \frac{\|v\|_{2}}{\|v\|_{1}} \\
& M=\sup _{0 \neq v \in V} \frac{\|v\|_{2}}{\|v\|_{1}}
\end{aligned}
$$

Here, as usual, $\|v\|_{1}=\sqrt{\langle v, v\rangle_{1}}$ and $\|v\|_{2}=\sqrt{\langle v, v\rangle_{2}}$. If V is a complex space and $\langle\cdot, \cdot\rangle_{1}$ and $\langle\cdot, \cdot\rangle_{2}$ are complex inner products the angles φ and ψ are defined by $0 \leq \varphi \leq \pi, 0 \leq \psi \leq \pi$,

$$
\cos \varphi=\frac{\operatorname{Re}\langle u, v\rangle_{1}}{\|u\|_{1}\|v\|_{1}}, \quad \cos \psi=\frac{\operatorname{Re}\langle u, v\rangle_{2}}{\|u\|_{2}\|v\|_{2}} .
$$

Theorem. (LS 2011 b): With the notation given above, we have the following variant of generalized Wielandt inequality

$$
\frac{-\chi+\cos \varphi}{1-\chi \cos \varphi} \leq \cos \psi \leq \frac{\chi+\cos \varphi}{1+\chi \cos \varphi}
$$

where $\chi=\left(M^{2}-m^{2}\right) /\left(M^{2}+m^{2}\right)$.

Using our notation,

$$
2 \frac{x^{\top} A y}{y^{\top} A y} \frac{x^{T} B y}{y^{\top} B y} \geq-\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{2}\left(\frac{x^{T} A x}{y^{T} A y}+\frac{x^{T} B x}{y^{\top} B y}\right)
$$

can be reformulated as

$$
2 \cos \varphi \cos \psi \geq-\left(\frac{M-m}{M+m}\right)^{2}\left(\frac{\|x\|_{1}}{\|x\|_{2}} \frac{\|y\|_{2}}{\|y\|_{1}}+\frac{\|x\|_{2}}{\|x\|_{1}} \frac{\|y\|_{1}}{\|y\|_{2}}\right),
$$

Corollary. (LS 2011 b)

$$
\cos \varphi \cos \psi \geq-\left(\frac{M-m}{M+m}\right)^{2}
$$

If $\cos \varphi \geq 0$, then $\cos \psi \cos \varphi \geq \frac{-\chi+\cos \varphi}{1-\chi \cos \varphi} \cos \varphi$, otherwise, we have $\cos \psi \cos \varphi \geq \frac{\chi+\cos \varphi}{1+\chi \cos \varphi} \cos \varphi$. In any case, it is easy to verify that

$$
\min \left\{\frac{-\chi+\cos \varphi}{1-\chi \cos \varphi} \cos \varphi, \frac{\chi+\cos \varphi}{1+\chi \cos \varphi} \cos \varphi\right\} \geq-\left(\frac{M-m}{M+m}\right)^{2}
$$

There are no solved problems, there are only more-or-less solved problems. -H. Poincaré

Query Can we find $g^{*}(x)$ under weaker assumption? When is the product of m positive definite quadratic forms quasi-convex?

Future consideration

1. The LF-conjugate of $\frac{1}{g(x)}$.
2. Characterization of the convexity of $g(x)$.
(in J. B. Hiriart-Urruty, Potpourri of conjectures and open questions in nonlinear analysis and optimization, SIAM Review, 49 (2007), pp. 255-273.

圊 J. B. Hiriart-Urruty and J. E. Martinez-Legaz, New formulas for the LegendreFenchel transform, J. Math. Anal. Appl., 288 (2003), pp. 544555.

國 M. Lin, G. Sinnamon, A condition for convexity of a product of positive definite qudaratidc forms, SIAM J. Matrix Anal. Appl., 32 (2011) pp. 457-462.
(1) M. Lin, G. Sinnamon, The generalized Wielandt inequality in inner product spaces, submitted.
(Y.B. Zhao, The Legendre-Fenchel conjugate of the product of two positive definite quadratic forms, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 1792-1811.
(1) Y.B. Zhao, Convexity Conditions and the Legendre-Fenchel Transform for the Product of Finitely Many Positive Definite Quadratic Forms, Appl. Math. Optim., 62, (2010), 411-434.
(1) Y.B. Zhao, Convexity Conditions of Kantorovich Function and Related Semi-infinite Linear Matrix Inequalities, J. Comput. Appl. Math., 235 (2011), pp. 43894403.

