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The Legendre-Fenchel transform (or LF conjugate) of a function
f : X ∈ R ∪ {+∞} is a function defined on the topological dual
space of X as

y ∈ X ∗ 7→ f ∗(y) := sup
x∈X

{⟨y , x⟩ − f (x)}.



Given a function h : Rn → R, its LF conjugate is defined as

h∗(x) = sup
y∈Rn

{xT y − h(y)}.



Eg. If A ≻ 0, let qA denote the quadratic form

qA(y) =
1

2
yTAy .

Then

q∗A(y) =
1

2
yTA−1y .



Hiriart-Urruty & Martinez-Legaz (HM 2003) found the LF
conjugate of the following operations:

1. inverting a strictly monotone convex function;
2. post-composing an arbitrary function with a strictly monotone
concave function;
3. multiplying two positively valued strictly monotone convex
functions.

Remark Their formulas show that, even for one-dimensional
functions, the conjugate of the product cannot be expressed in a
simple way...



What is the LF conjugate of the product function

y ∈ Rn 7→ f (y) := qA(y)qB(y),

where A,B ≻ 0?

In his review paper, Hiriart-Urruty (H 2007) posed it as an open
question in the field of nonlinear analysis and optimization.



Theorem. Zhao (Z 2010 a): Let A,B ≻ 0, and let
f (y) = qA(y)qB(y) be convex. Then at any point y ∈ Rn, the
value of the conjugate f ∗(x) is finite, and f ∗(x) = 0 if x = 0;
otherwise, if x ̸= 0,

f ∗(x) = 3α1/3

(
xT (A+ αB)−1x

4

)2/3

,

where α > 0 satisfies

2 =
xT (A+ αB)−1x

xT (A+ αB)−1A(A+ αB)−1x
.



Corollary. (Z 2010 a): If x ̸= 0,

f ∗(x) =
3

2
α1/3

{[
2q∗A(x)− αxT (AB−1A+ αA)−1x

4

]2/3

+

[
2q∗B(x)− αxT (B + αBA−1B)−1x

4α

]2/3}
.



Let A1, . . . ,Am ≻ 0, m ≥ 2, and let g : Rn → R be the product
qA1 . . . qAm , i.e.,

g(y) =
m∏
i=1

1

2
yTAiy :=

m∏
i=1

qAi
(y).



When is the g(y) convex?



For y ̸= 0, the gradient and the Hessian matrix of g are given by,

∇g(y) = 2g(y)
m∑
i=1

Aiy

yTAiy
;

∇2g(y) = 2g(y)

 m∑
i=1

Ai

yTAiy
+ 2

m∑
i=1

∑
j ̸=i

Aiyy
TAj

yTAiyyTAjy

 .



Theorem. Zhao (Z 2010 b): Let Ai ≻ 0, i = 1, · · · ,m. If

κ(A
− 1

2
j AiA

− 1
2

j ) ≤
√
4m − 2 + 2√
4m − 2− 2

for all i , j = 1, · · · ,m, i ̸= j ,

then the product of m quadratic forms g =
∏m

i=1 qAi
is convex.



Theorem. Lin & Sinnamon (LS 2011 a): Let Ai ≻ 0,
i = 1, · · · ,m. If

κ(A
− 1

2
j AiA

− 1
2

j ) ≤
(√

2m − 2 + 1√
2m − 2− 1

)2

for all i , j = 1, · · · ,m, i ̸= j ,

then the product of m quadratic forms g =
∏m

i=1 qAi
is convex. If

m = 2 the condition is also necessary for the convexity of g .

Remark For m ≥ 2, 2
√
2m − 2 >

√
4m − 2 so(√

2m − 2 + 1√
2m − 2− 1

)2

>

√
4m − 2 + 2√
4m − 2− 2

.



Lemma. (LS 2011 a): Suppose A,B ≻ 0 and let
κ = κ(A−1/2BA−1/2). Then for x , y ∈ Rn, with y ̸= 0, we have

2
xTAy

yTAy

xTBy

yTBy
≥ −

(√
κ− 1√
κ+ 1

)2(
xTAx

yTAy
+

xTBx

yTBy

)
.

The inequality is sharp.



A connection to generalized Wielandt inequality

Generalized Wielandt inequality Let A be an invertible n × n
matrix. If x , y ∈ Cn and Φ,Ψ ∈ [0, π/2] satisfy

|y∗x | ≤ ∥x∥∥y∥ cosΦ and cot(Ψ/2) = κ(A) cot(Φ/2),

then
|(Ay)∗(Ax)| ≤ ∥Ax∥∥Ay∥ cosΨ.



Suppose V is a non-trivial real or complex vector space. Let ⟨·, ·⟩1
and ⟨·, ·⟩2 be inner products on V and define m, M by,

m = inf
0 ̸=v∈V

∥v∥2
∥v∥1

,

M = sup
0 ̸=v∈V

∥v∥2
∥v∥1

Here, as usual, ∥v∥1 =
√

⟨v , v⟩1 and ∥v∥2 =
√

⟨v , v⟩2. If V is a
complex space and ⟨·, ·⟩1 and ⟨·, ·⟩2 are complex inner products the
angles φ and ψ are defined by 0 ≤ φ ≤ π, 0 ≤ ψ ≤ π,

cosφ =
Re⟨u, v⟩1
∥u∥1∥v∥1

, cosψ =
Re⟨u, v⟩2
∥u∥2∥v∥2

.



Theorem. (LS 2011 b): With the notation given above, we have
the following variant of generalized Wielandt inequality

−χ+ cosφ

1− χ cosφ
≤ cosψ ≤ χ+ cosφ

1 + χ cosφ
,

where χ = (M2 −m2)/(M2 +m2).



Using our notation,

2
xTAy

yTAy

xTBy

yTBy
≥ −

(√
κ− 1√
κ+ 1

)2(
xTAx

yTAy
+

xTBx

yTBy

)
.

can be reformulated as

2 cosφ cosψ ≥ −
(
M −m

M +m

)2(∥x∥1
∥x∥2

∥y∥2
∥y∥1

+
∥x∥2
∥x∥1

∥y∥1
∥y∥2

)
,



Corollary. (LS 2011 b)

cosφ cosψ ≥ −
(
M −m

M +m

)2

.

If cosφ ≥ 0, then cosψ cosφ ≥ −χ+cosφ
1−χ cosφ cosφ, otherwise, we have

cosψ cosφ ≥ χ+cosφ
1+χ cosφ cosφ. In any case, it is easy to verify that

min

{
−χ+ cosφ

1− χ cosφ
cosφ,

χ+ cosφ

1 + χ cosφ
cosφ

}
≥ −

(
M −m

M +m

)2

.



There are no solved problems, there are only more-or-less
solved problems. –H. Poincaré

Query Can we find g∗(x) under weaker assumption? When is the
product of m positive definite quadratic forms quasi-convex?



Future consideration

1. The LF-conjugate of 1
g(x) .

2. Characterization of the convexity of g(x).
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