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Low-Rank Matrix Approximaton

We are interested in approximating a given m-by-n matrix M with
the product of two matrices U and V :

M ≈ UV = X,

where U has dimension m-by-r and V has dimension r-by-n
Equivalently, X has dimension m-by-n and rank(X) ≤ r.

If each column of M represents an element of a dataset, we have that

M(:, i) ≈
r∑

k=1

U(:, k) V (k, i) for all i,

i.e., each column of M is reconstructed through a linear combination
of the columns of U .
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Linear dimensionality reduction

Matrix factorization allows to represent the columns of M in a smaller
dimensional space defined by the columns of U . Coordinates of the
columns of M in this space are given by the columns of V .
−→ compression (mn� mr + nr), visualization, interpretation.
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Matrix approximation and optimization
Low-rank matrix approximation can be formulated as unconstrained
optimization problems, e.g., minimizing the sum of squared errors

min
U,V
||M − UV ||2F =

∑
ij

(M − UV )2ij .

This is a well-known problem with nice properties (e.g., all local minima
are global) and which can be solved efficiently.

In particular, truncating the singular value decomposition (SVD):

M = U ΣV T =

rk(M)∑
i=1

σi U:i V
T
:i , UTU = Im, V

TV = In,

gives an optimal rank-r solution

Mk = argminX,rank(X)≤r ||M −X||2F =

r∑
i=1

σi U:i V
T
:i .
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Missing data

In some cases, some entries are missing/unknown.

For example, we would like to predict how much someone is going to like a
movie based on its movie preferences :

Movies

Users



2 3 2 ? ?
? 1 ? 3 2
1 ? 4 1 ?
5 4 ? 3 2
? 1 2 ? 4
1 ? 3 4 3


Huge potential in electronic commerce sites (movies, books, music, . . . ).
Good recommendations will increase the propensity of a purchase.
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Collaborative Filtering for Recommendation Systems
Objective. Automatic predictions (filtering) about the interests of a user
by collecting taste information from many users (collaborating).

Method. The behavior of users is modeled using linear combinations of
’feature’ users (related to age, sex, culture, etc.)

M(i, :)︸ ︷︷ ︸
user i

≈
r∑

k=1

U(i, k)︸ ︷︷ ︸
weights

V (k, :)︸ ︷︷ ︸
feature user k

Equivalently, movies ratings are modeled as linear combinations of
’feature’ movies (related to different types - child oriented, serious vs.
escapist, thriller, romantic, actors, etc.).

M(:, j)︸ ︷︷ ︸
movie j

≈
r∑

k=1

U(:, k)︸ ︷︷ ︸
type k

V (k, j)︸ ︷︷ ︸
weights
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Example

M =


2 3 2 ? ?
? 1 ? 3 2
1 ? 4 1 ?
5 4 ? 3 2
? 1 2 ? 4
1 ? 3 4 3



≈


0.5 0.6 −0.1
0.8 −0.2 −0.3
0.8 −0.7 0.6
−2 2.3 1.8
−0.2 0.3 0.9
1 −0.2 −0.2


 1.7 2.1 3.7 5 4.1

2.2 3.2 0.8 5 0.5
2 0.6 2.6 0.9 5

 = UV

=


2 2.9 2.1 5.4 1.9
0.3 0.9 2 2.7 1.7
1 −0.2 4 1 5.9
5.3 4.2 −0.9 3.1 2
2.1 1.1 1.8 1.3 2.8
0.9 1.3 3 3.8 3


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For example, using a rank-2 factorization on the Netflix dataset,
female vs. male and serious vs. escapist behaviors were extracted.

Koren, Bell, Volinsky, Matrix Factorization Techniques for Recommender Systems, 2009.
Winners of the Netflix prize 1,000,000$.
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Weighting

In other applications, it might be necessary to give different importances
for each entry of the data matrix, e.g.,

� when the number of samples and/or the expected variance vary
among the data;

� when one wants to emphasize a localized part of the data;

� . . .

[LPW97] Lu, Pei and Wang, Weighted low-rank approximation of general complex matrices and
its application in the design of 2-D digital filters, IEEE Trans. Circuits Syst. I, Vol. 44, pp.
650–655, 1997.
[HVB07] Ho, Van Dooren and Blondel, Weighted Nonnegative Matrix Factorization and Face
Feature Extraction, 2007.
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Weighted Low-Rank Approximation (WLRA)

Giving different importances to the entries of M , we obtain the following
optimization problem

min
U∈Rm×r,V ∈Rr×n

||M − UV ||2W =
∑
ij

Wij(M − UV )2ij ,

where W ≥ 0 is the weighting matrix. For missing data, Wij = 0.

What can we say about this optimization problem? When can we expect
to solve it up to global optimality? Is this a difficult problem in general?
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Special case: rank(W ) = 1

If the weight matrix W is rank-one, i.e., W = xyT ≥ 0,

||M − UV T ||2W =
∑
i,j

xiyj (M − UV T )2ij

=
∑
i,j

(
(
√
W ◦M)ij︸ ︷︷ ︸

M ′

− (
√
xi Ui:)︸ ︷︷ ︸
U ′

(
√
yj V

T
j: )︸ ︷︷ ︸

V ′

)2
,

where ◦ is the component-wise product.

WLRA can be recovered from the SVD decomposition of (
√
W ◦M).

As far as we know, none other (nontrivial) complexity result is known.
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Complexity of rank-one WLRA
Let consider the simplest case : r = 1.

min
u∈Rm,v∈Rn

||M − uvT ||2W =
∑
ij

Wij(Mij − uivj)2.

Is the problem difficult?

Example.

M =

 1 0 1
0 1 1
1 1 1

 , and W =

 1 100 2
100 1 2
1 1 1

 .

Imposing ||u||2 = 1, WLRA has two degrees of freedom left :

u =

 u1
u2√

1− u21 − u22

 , v∗ = argminv ||M − uvT ||W (LS).
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Local minima of rank-one WLRA
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Complexity of WLRA

In order to prove its NP-hardness, we use a reduction from the
maximum-edge biclique problem (MBP):

Given a bipartite graph Gb = (V1 ∪ V2, E ∈ (V1 × V2)),
Find the maximum-edge complete bipartite subgraph (biclique).

Applications: text mining, web community discovery, collaborative filtering
[Peet03] R. Peeters, The maximum edge biclique problem is NP-complete, Discrete Applied
Mathematics, 131(3): 651-654, 2003.
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Link with Neighborhood Methods. . .

To make a prediction for Joe, the system finds similar users who also like the movies he likes,
and then determines which other movies they liked. In this case, all three liked Saving Private
Ryan, so that is the first recommendation. Two of them liked Dune, so that is next, and so on.

Midwest Optimization Meeting Weighted Low-Rank Approximation is NP-hard 15



Reduction to WLRA

Let M ∈ {0, 1}m×n be the biadjacency matrix of the graph G,

With (u, v) binary variables to indicate which vertices belong to the
solution

u =
(

1 0 1
)T
, v =

(
1 0 1

)T
,

uvT =

 1 0 1
0 0 0
1 0 1

 ,

bicliques of G can be represented as binary rank-one matrices.
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Reduction to WLRA
Let M ∈ {0, 1}m×n be the biadjacency matrix of the graph G, then

max
u∈{0,1}m,v∈{0,1}n

∑
ij

(uvT )ij

(uvT )ij = 0 for i, j such that Mij = 0,

is an exact formulation of the biclique problem. Noting that∑
ij

(uvT )ij =
∑
ij

(uvT )2ij =
∑
ij

Mij(uv
T )ij = 2

∑
ij

Mij(uv
T )ij − (uv)2ij

and since M is binary, we have the equivalence with

min
u∈Rm,v∈Rn

||M ||2F − 2
∑
ij

Mij(uv
T )ij + (uv)2ij = ||M − uvT ||2F

(uvT )ij = 0 for i, j such that Mij = 0.

Hence, the biclique problem is equivalent to finding the best rank-one
approximation of M , where zeros of M must be approximated by zeros.
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Reduction to WLRA

Because zeros have to be approximated by zeros, we give them more
importance using a weight d� 1:

M =

 1 0 1
0 1 1
1 0 1

 and W =

 1 d 1
d 1 1
1 d 1

 ,

and the corresponding rank-one WLRA problem is:

min
u∈Rm,v∈Rn

||M − uvT ||2W .

Theorem. For d ≥ (2|E|)6, rounding optimal solutions of rank-one
WLRA generate optimal solutions of the biclique problem.

Corollary. Weighted low-rank approximation is NP-hard.
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Missing Data (i.e., W binary)

The construction works as follows:

M =


1 0 1
0 1 1
1 1 1

0 0
0 0
0 0

0 0 0
0 0 0

d 0
0 d

 and W =


1 1 1
1 1 1
1 1 1

1 0
0 1
0 0

0 1 0
1 0 0

1 0
0 1

 .

Theorem. For d ≥ (2|E|)4, rounding optimal solutions of rank-one
WLRA generate optimal solutions of the biclique problem.

Corollary. Low-rank matrix approximation with missing data is NP-hard.
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Complexity of Weighted Low-Rank Approximations

min
U∈Rm×r,V ∈Rr×n

||M − UV ||2W =
∑
ij

Wij(M − UV )2
ij

(WLRA)
� If rank(W ) = 1, solvable in polynomial time

� If rank(W ) is free, even the rank-one problem is NP-hard

� Open questions:
I Complexity for rank(W ) fixed (e.g., rank(W )= 2)?

I Approximability results (i.e., up to a multiplicative constant factor)?

I Complexity given additional assumptions on the data matrix?
For example, in some cases (sufficiently numerous entries,
well-distributed, low level of noise), the original uncorrupted low-rank
matrix can be recovered accurately, with a technique based on convex
optimization (nuclear norm minimization).
Candès, Plan, Tight oracle bounds for low-rank matrix recovery from a minimal
number of random measurements, arXiv:1001.0339v1.
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Reference. G., Glineur, Low-Rank Matrix Approximation with Weights or
Missing Data is NP-hard, to appear in SIAM J. Mat. Anal. Appl.

Talk and paper available on sites.google.com/site/nicolasgillis/

Thank you for your attention!
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