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Goals

© Intuitive notion of identifiable sets.

@ Characterizations.

© Existence, calculus.

© Connection to previous work (partial smoothness,
prox-regularity).

@ Generic existence (semi-algebraic setting).
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Preliminaries

For a function f: R” — R, a vector v is a Frechét subgradient at
X, denoted v € Of(x), if

f(x) > f(x)+ (v,x — Xx) + o(|x — X|).
The limiting subdifferential at X is

OF (%) ={Jim v; : v; € O (xi), xi = X, F(x;) = F(X)}.

Definition (critical points)
X is a critical point of f if 0 € Of(%).

@ For convex f, critical points are global minimizers.

e If f is Cl-smooth, criticality reduces to the classical condition
Vf(x)=0.
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Sensitivity Analysis

Suppose v € 9f () for a function f: R™ — R. Consider the
perturbed functions

fu(x) = f(x) — (v, x).

Sensitivity question: How do critical points of f,, near X, behave as
v varies near v? Observe

0 € 0fy(x) <= v € Of(x).
Thus given v € 9f(X), we want to understand how solutions x, of
v € Of(x),

vary, as we perturb v near v.
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Figure: f(x,y) =x2+|y|, M={(t,0): -1<t<1}

e Observe (0,0) € 0f(0,0).
All perturbed solutions x, of v € 9f(x) lieon M = M
captures all the sensitivity information!

@ Only the restriction f | v matters!

@ Goal: Look for small, well-behaved sets capturing only the
essential information.
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Prototypical results

Proposition (Order of growth)
Suppose M is an identifiable set at X for 0 € Of(x).

@ X is a (strict) local minimizer of f <= X is a (strict) local
minimizer of f on M.

e f grows quadratically near x <= f grows quadratically on M
near X.

Proposition (Uniform projections)
Suppose M is an identifiable set at x for v.

f is prox-regular at X for v <= f‘M 1s proz-reqular at X for v.
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Locally minimal identifiable sets

Clearly all of R" is identifiable at x for ¥ (not interesting). So...
Question: What are the smallest possible identifiable sets?

Definition
An identifiable set M at x for v is locally minimal if

M’ identifiable at x for v = M C M’, locally near Xx.
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Existence and calculus

Locally minimal identifiable sets exist for
@ piecewise quadratic functions,
e max-type functions: f(x) = max{gi(x),...,gk(x)} for
Cl-smooth g;.
e fully amenable functions: f(x) = g(F(x)) where

@ F is C2-smooth,
@ g is (convex) piecewise quadratic,
© transversality condition holds.

A strong chain rule is available.
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Existence and calculus

Convex functions may fail to admit locally minimal identifiable sets!

Example

Figure: f(x,y) = /x* + y2. Figure: Level sets: [|Vf]| < €].

Level sets of |Vf]| get “pinched”. There is no locally minimal
identifiable set at x = (0,0) for v = (0, 0).
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Algorithmic origins

@ Intuitive idea of finite identification, in this setting, is old.

@ Some algorithms for solving min,cq f(x) would stop in finite
time (proximal point algorithm Rockafellar '76).

@ Many algorithms would generate iterates that eventually lie on
a distinguished subset of @ (subgradient projection
Calamai-Moré '87, Newton-like methods Burke-Moré '88,
stochastic gradient methods Wright '11).

@ One may try to exploit a nice identifiable set, if one exists;
perhaps a C2-manifold.
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Identifiable manifolds

For simplicity, we work with normal cones to a set @ C R”, that is

~

No(x) := ddo(x),  No(x) = ddg(x).

When there exists an identifiable subset M C @ that is a manifold,
things simplify drastically.

Proposition (ldentifiable manifolds)

Identifiable manifolds M C Q are automatically locally minimal.
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To get a good handle on sensitivity analysis, Lewis '03 introduced
partly smooth manifolds.

Definition
Q is partly smooth, with respect to M, at x € M for v € Ng(x),
if there exist open neighborhoods U of x and V of v satisfying
Q (regularity) V N Ng(x) C Ng(x) for each x € UN M,
@ (sharpness) span Ng(X) = Ny (x).

@ (continuity) The mapping x — V N Ng(x) is continuous on
M at x.
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Partly smooth manifolds

Theorem (Characterization)

Consider a C?-manifold M with x € M C Q. Then the following are
equivalent.
@ M is an identifiable manifold around x for v.
Q@ o Q is partly smooth with respect to M at x for v.
o @ is prox-regular at x for v.
o the strong inclusion v € ri Ng(x) holds.

@ Implication 1 was mostly proven in Hare-Lewis '04.
@ Equivalence yields intuitive interpretation of partial smoothness,
prox-regularity, and nondegeneracy (all sophisticated concepts).
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Smooth dependence

Consider

P(v): max (v,x),
st. x€ Q.

@ When is there a smooth dependence of critical points on v?
@ This is a difficult question in general, but when an identifiable
manifold exists, it is straightforward! Just need to consider

curvature of M.
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Smooth dependence

Theorem (Sensitivity)

Suppose M is an identifiable manifold at x for v and X is a local
maximizer of (v, -) restricted to M. Then the following are equivalent.

© In a localized sense, the critical point map,
-1
v Ngo(v),

is single-valued, Cl_smooth, and onto a neighborhood of x in M.
@ Second-order decay: There exists p > 0 such that,

(v,X) > (v,x) + p|x — x|?, for all x € M near X.
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Generic Properties

@ How typical are identifiable manifolds? Second-order growth
at minimizers?

@ We answer this question in the setting of semi-algebraic sets:
represented as finite union of sets, each defined by finitely
many polynomial inequalities.

@ Large class of sets for which the word typical has a canonical
meaning.
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Generic Properties

Theorem B
Suppose f: R" — R is semi-algebraic. Consider the perturbed
functions

fu(x) := f(x) = (v, x).
Then for a “typical” v € R",
@ 1, has finitely many critical points x,.
@ f, admits an identifiable manifold M,, near each critical point x,
for Q.
© every local minimizer x,, of f, restricted to M,, is a strong local
minimizer of f,,, that is

f,(x) > f,(x,) + p|x — x,|?, for all x near x,.

This extends a result of Bolte, Daniilidis, Lewis '11.
Second-order sufficient conditions for optimality are almost
necessary (Spingarn-Rockafellar '79).



@ Presented the intuitive notion of identifiable sets.

@ Showed how these objects relate to previously developed
concepts (Partial Smoothness, prox-regularity, etc).

e Existence of identifiable sets (manifolds) leads to significant
insight about the problem.
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Future directions

@ Could consider identifiability for more general perturbations

min f(x, v
x€R" ( ’ )’
or more generally
v e G(x),
for some set-valued mapping G. (Variational Inequalities,

equilibria)

@ Compute identifiable manifolds for common convex cones
(positive polynomials and the SOS cone).

@ Explore duality of identifiable sets.

Example

Semi-definite cone S'| stratifies into partly smooth manifolds
{X €8] :rank X = k}, for k=0,...,n,

and is self-dual. Natural duality between these manifolds.



Thank you.
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