
Identifiable Sets in Optimization

Dmitriy Drusvyatskiy (joint work with A. S. Lewis),
School of ORIE, Cornell University

October 15, 2011



Goals

1 Intuitive notion of identifiable sets.

2 Characterizations.

3 Existence, calculus.

4 Connection to previous work (partial smoothness,
prox-regularity).

5 Generic existence (semi-algebraic setting).



Preliminaries

For a function f : Rn → R, a vector v is a Frechét subgradient at
x̄ , denoted v ∈ ∂̂f (x), if

f (x) ≥ f (x̄) + 〈v , x − x̄〉+ o(|x − x̄ |).

The limiting subdifferential at x̄ is

∂f (x̄) = { lim
i→∞

vi : vi ∈ ∂̂f (xi ), xi → x̄ , f (xi )→ f (x̄)}.

Definition (critical points)

x̄ is a critical point of f if 0 ∈ ∂f (x̄).

For convex f , critical points are global minimizers.

If f is C1-smooth, criticality reduces to the classical condition
∇f (x) = 0.
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Sensitivity Analysis

Suppose v̄ ∈ ∂f (x̄) for a function f : Rn → R. Consider the
perturbed functions

fv (x) = f (x)− 〈v , x〉.

Sensitivity question: How do critical points of fv , near x̄ , behave as
v varies near v̄? Observe

0 ∈ ∂fv (x)⇐⇒ v ∈ ∂f (x).

Thus given v̄ ∈ ∂f (x̄), we want to understand how solutions xv of

v ∈ ∂f (x),

vary, as we perturb v near v̄ .
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Motivating Example

Motivating example

Figure: f (x , y) = x2 + |y |, M = {(t, 0) : −1 < t < 1}

Observe (0, 0) ∈ ∂f (0, 0).

All perturbed solutions xv of v ∈ ∂f (x) lie on M =⇒ M
captures all the sensitivity information!

Only the restriction f
∣∣
M

matters!

Goal: Look for small, well-behaved sets capturing only the
essential information.
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Finite identification
Consider the system

v ∈ ∂f (x),

where f : Rn → R and v̄ ∈ ∂f (x̄).

Definition (Identifiable sets)

A set M ⊂ Rn is identifiable at x̄ for v̄ if

xi → x̄ , vi → v̄
vi ∈ ∂f (xi )

}
=⇒ xi ∈ M for all large i ,

Example (Normal cone map)

Let ∂f = NQ for a cube Q ⊂ R3.
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Prototypical results

Proposition (Order of growth)

Suppose M is an identifiable set at x̄ for 0 ∈ ∂̂f (x̄).

x̄ is a (strict) local minimizer of f ⇐⇒ x̄ is a (strict) local
minimizer of f on M.

f grows quadratically near x̄ ⇐⇒ f grows quadratically on M
near x̄ .

Proposition (Uniform projections)

Suppose M is an identifiable set at x̄ for v̄ .

f is prox-regular at x̄ for v̄ ⇐⇒ f
∣∣
M

is prox-regular at x̄ for v̄ .
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Locally minimal identifiable sets

Clearly all of Rn is identifiable at x̄ for v̄ (not interesting). So. . .

Question: What are the smallest possible identifiable sets?

Definition
An identifiable set M at x̄ for v̄ is locally minimal if

M ′ identifiable at x̄ for v̄ =⇒ M ⊂ M ′, locally near x̄ .
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Existence and calculus

Locally minimal identifiable sets exist for

piecewise quadratic functions,

max-type functions: f (x) = max{g1(x), . . . , gk(x)} for
C1-smooth gi .

fully amenable functions: f (x) = g(F (x)) where
1 F is C2-smooth,
2 g is (convex) piecewise quadratic,
3 transversality condition holds.

A strong chain rule is available.
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Topological regularity

Intriguing Question: Do locally minimal identifiable sets exist for
any convex function?

No.
This will follow from the following observation.

Proposition (Topological regularity)

Consider decreasing sequence of open neighborhoods

V1 ⊃ V2 ⊃ V3 ⊃ . . . , with Vi ↓ {v̄}.

Then M is a locally minimal identifiable set at x̄ for v̄ ⇐⇒ M
coincides with (∂f )−1(Vi ), near x̄ , for all large i .
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Existence and calculus

Convex functions may fail to admit locally minimal identifiable sets!

Example

Figure: f (x , y) =
√

x4 + y2.

x

y

Figure: Level sets: [|∇f | < ε].

Level sets of |∇f | get “pinched”. There is no locally minimal
identifiable set at x̄ = (0, 0) for v̄ = (0, 0).
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Algorithmic origins

Intuitive idea of finite identification, in this setting, is old.

Some algorithms for solving minx∈Q f (x) would stop in finite
time (proximal point algorithm Rockafellar ’76).

Many algorithms would generate iterates that eventually lie on
a distinguished subset of Q

(subgradient projection
Calamai-Moré ’87, Newton-like methods Burke-Moré ’88,
stochastic gradient methods Wright ’11).

One may try to exploit a nice identifiable set, if one exists;
perhaps a C2-manifold.
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Identifiable manifolds

For simplicity, we work with normal cones to a set Q ⊂ Rn, that is

N̂Q(x) := ∂̂δQ(x), NQ(x) := ∂δQ(x).

When there exists an identifiable subset M ⊂ Q that is a manifold,
things simplify drastically.

Proposition (Identifiable manifolds)

Identifiable manifolds M ⊂ Q are automatically locally minimal.
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Partly smooth manifolds
To get a good handle on sensitivity analysis, Lewis ’03 introduced
partly smooth manifolds.

Definition
Q is partly smooth, with respect to M, at x̄ ∈ M for v̄ ∈ NQ(x̄),
if there exist open neighborhoods U of x̄ and V of v̄ satisfying

1 (regularity) V ∩ NQ(x) ⊂ N̂Q(x) for each x ∈ U ∩M,

2 (sharpness) span N̂Q(x̄) = NM(x̄).

3 (continuity) The mapping x 7→ V ∩ NQ(x) is continuous on
M at x̄ .
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Partly smooth manifolds

Theorem (Characterization)

Consider a C2-manifold M with x̄ ∈ M ⊂ Q. Then the following are
equivalent.

1 M is an identifiable manifold around x̄ for v̄ .
2 Q is partly smooth with respect to M at x̄ for v̄ .

Q is prox-regular at x̄ for v̄ .
the strong inclusion v̄ ∈ ri N̂Q(x) holds.

Implication ⇑ was mostly proven in Hare-Lewis ’04.
Equivalence yields intuitive interpretation of partial smoothness,
prox-regularity, and nondegeneracy (all sophisticated concepts).
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Smooth dependence
Consider

P(v) : max 〈v , x〉,
s.t. x ∈ Q.

When is there a smooth dependence of critical points on v?
This is a difficult question in general, but when an identifiable
manifold exists, it is straightforward! Just need to consider
curvature of M.
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Smooth dependence

Theorem (Sensitivity)

Suppose M is an identifiable manifold at x̄ for v̄ and x̄ is a local
maximizer of 〈v̄ , ·〉 restricted to M. Then the following are equivalent.

1 In a localized sense, the critical point map,

v 7→ N−1Q (v),

is single-valued, C1-smooth, and onto a neighborhood of x̄ in M.
2 Second-order decay: There exists ρ > 0 such that,

〈v̄ , x̄〉 ≥ 〈v̄ , x〉+ ρ|x − x̄ |2, for all x ∈ M near x̄ .
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Generic Properties

How typical are identifiable manifolds? Second-order growth
at minimizers?

We answer this question in the setting of semi-algebraic sets:

represented as finite union of sets, each defined by finitely
many polynomial inequalities.

Large class of sets for which the word typical has a canonical
meaning.
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Generic Properties

Theorem
Suppose f : Rn → R is semi-algebraic. Consider the perturbed
functions

fv (x) := f (x)− 〈v , x〉.

Then for a “typical” v ∈ Rn,

1 fv has finitely many critical points xv .
2 fv admits an identifiable manifold Mv near each critical point xv

for 0.
3 every local minimizer xv of fv restricted to Mv is a strong local

minimizer of fv , that is

fv (x) > fv (xv ) + ρ|x − xv |2, for all x near xv .

This extends a result of Bolte, Daniilidis, Lewis ’11.
Second-order sufficient conditions for optimality are almost
necessary (Spingarn-Rockafellar ’79).
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Summary

Presented the intuitive notion of identifiable sets.

Showed how these objects relate to previously developed
concepts (Partial Smoothness, prox-regularity, etc).

Existence of identifiable sets (manifolds) leads to significant
insight about the problem.



Future directions

Could consider identifiability for more general perturbations

min
x∈Rn

f (x , v),

or more generally
v ∈ G (x),

for some set-valued mapping G . (Variational Inequalities,
equilibria)

Compute identifiable manifolds for common convex cones
(positive polynomials and the SOS cone).

Explore duality of identifiable sets.

Example

Semi-definite cone Sn
+ stratifies into partly smooth manifolds

{X ∈ Sn
+ : rank X = k}, for k = 0, . . . , n,

and is self-dual. Natural duality between these manifolds.
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Thank you.
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