Identifiable Sets in Optimization

Dmitriy Drusvyatskiy (joint work with A. S. Lewis), School of ORIE, Cornell University

October 15, 2011

Goals

- 1 Intuitive notion of identifiable sets.
- 2 Characterizations.
- Existence, calculus.
- Connection to previous work (partial smoothness, prox-regularity).
- Generic existence (semi-algebraic setting).

For a function $f: \mathbf{R}^n \to \overline{\mathbf{R}}$, a vector v is a Frechét subgradient at \bar{x} , denoted $v \in \hat{\partial} f(x)$, if

$$f(x) \ge f(\bar{x}) + \langle v, x - \bar{x} \rangle + o(|x - \bar{x}|).$$

For a function $f: \mathbf{R}^n \to \overline{\mathbf{R}}$, a vector v is a Frechét subgradient at \bar{x} , denoted $v \in \hat{\partial} f(x)$, if

$$f(x) \ge f(\bar{x}) + \langle v, x - \bar{x} \rangle + o(|x - \bar{x}|).$$

The limiting subdifferential at \bar{x} is

$$\partial f(\bar{x}) = \{ \lim_{i \to \infty} v_i : v_i \in \hat{\partial} f(x_i), x_i \to \bar{x}, f(x_i) \to f(\bar{x}) \}.$$

For a function $f: \mathbf{R}^n \to \overline{\mathbf{R}}$, a vector v is a Frechét subgradient at \bar{x} , denoted $v \in \hat{\partial} f(x)$, if

$$f(x) \ge f(\bar{x}) + \langle v, x - \bar{x} \rangle + o(|x - \bar{x}|).$$

The limiting subdifferential at \bar{x} is

$$\partial f(\bar{x}) = \{ \lim_{i \to \infty} v_i : v_i \in \hat{\partial} f(x_i), x_i \to \bar{x}, f(x_i) \to f(\bar{x}) \}.$$

Definition (critical points)

 \bar{x} is a critical point of f if $0 \in \partial f(\bar{x})$.

For a function $f: \mathbf{R}^n \to \overline{\mathbf{R}}$, a vector v is a Frechét subgradient at \bar{x} , denoted $v \in \hat{\partial} f(x)$, if

$$f(x) \ge f(\bar{x}) + \langle v, x - \bar{x} \rangle + o(|x - \bar{x}|).$$

The limiting subdifferential at \bar{x} is

$$\partial f(\bar{x}) = \{ \lim_{i \to \infty} v_i : v_i \in \hat{\partial} f(x_i), x_i \to \bar{x}, f(x_i) \to f(\bar{x}) \}.$$

Definition (critical points)

 \bar{x} is a critical point of f if $0 \in \partial f(\bar{x})$.

• For convex f, critical points are global minimizers.

For a function $f: \mathbf{R}^n \to \overline{\mathbf{R}}$, a vector v is a Frechét subgradient at \bar{x} , denoted $v \in \hat{\partial} f(x)$, if

$$f(x) \ge f(\bar{x}) + \langle v, x - \bar{x} \rangle + o(|x - \bar{x}|).$$

The limiting subdifferential at \bar{x} is

$$\partial f(\bar{x}) = \{ \lim_{i \to \infty} v_i : v_i \in \hat{\partial} f(x_i), x_i \to \bar{x}, f(x_i) \to f(\bar{x}) \}.$$

Definition (critical points)

 \bar{x} is a critical point of f if $0 \in \partial f(\bar{x})$.

- For convex f, critical points are global minimizers.
- If f is \mathbb{C}^1 -smooth, criticality reduces to the classical condition $\nabla f(x) = 0$.

Suppose $\overline{v} \in \partial f(\overline{x})$ for a function $f : \mathbb{R}^n \to \overline{\mathbb{R}}$. Consider the perturbed functions

$$f_v(x) = f(x) - \langle v, x \rangle.$$

Suppose $\overline{v} \in \partial f(\overline{x})$ for a function $f : \mathbb{R}^n \to \overline{\mathbb{R}}$. Consider the perturbed functions

$$f_{v}(x) = f(x) - \langle v, x \rangle.$$

Sensitivity question: How do critical points of f_v , near \bar{x} , behave as v varies near \bar{v} ?

Suppose $\overline{v} \in \partial f(\overline{x})$ for a function $f : \mathbb{R}^n \to \overline{\mathbb{R}}$. Consider the perturbed functions

$$f_{\nu}(x) = f(x) - \langle v, x \rangle.$$

Sensitivity question: How do critical points of f_v , near \bar{x} , behave as v varies near \bar{v} ? Observe

$$0 \in \partial f_v(x) \iff v \in \partial f(x).$$

Suppose $\overline{v} \in \partial f(\overline{x})$ for a function $f : \mathbb{R}^n \to \overline{\mathbb{R}}$. Consider the perturbed functions

$$f_{\nu}(x) = f(x) - \langle \nu, x \rangle.$$

Sensitivity question: How do critical points of f_v , near \bar{x} , behave as v varies near \bar{v} ? Observe

$$0 \in \partial f_v(x) \iff v \in \partial f(x).$$

Thus given $\bar{v} \in \partial f(\bar{x})$, we want to understand how solutions x_v of

$$v \in \partial f(x),$$

vary, as we perturb v near \bar{v} .

Motivating example

Figure:
$$f(x,y) = x^2 + |y|$$
, $M = \{(t,0) : -1 < t < 1\}$

Motivating example

Figure:
$$f(x,y) = x^2 + |y|$$
, $M = \{(t,0) : -1 < t < 1\}$

• Observe $(0,0) \in \partial f(0,0)$.

Motivating example

Figure:
$$f(x,y) = x^2 + |y|$$
, $M = \{(t,0) : -1 < t < 1\}$

• Observe $(0,0) \in \partial f(0,0)$.

All perturbed solutions x_v of $v \in \partial f(x)$ lie on M

Motivating example

Figure:
$$f(x,y) = x^2 + |y|$$
, $M = \{(t,0) : -1 < t < 1\}$

• Observe $(0,0) \in \partial f(0,0)$.

All perturbed solutions x_v of $v \in \partial f(x)$ lie on $M \Longrightarrow M$ captures all the sensitivity information!

Motivating example

Figure:
$$f(x,y) = x^2 + |y|$$
, $M = \{(t,0) : -1 < t < 1\}$

• Observe $(0,0) \in \partial f(0,0)$.

All perturbed solutions x_v of $v \in \partial f(x)$ lie on $M \Longrightarrow M$ captures all the sensitivity information!

• Only the restriction $f|_{M}$ matters!

Motivating example

Figure:
$$f(x,y) = x^2 + |y|$$
, $M = \{(t,0) : -1 < t < 1\}$

• Observe $(0,0) \in \partial f(0,0)$.

All perturbed solutions x_v of $v \in \partial f(x)$ lie on $M \Longrightarrow M$ captures all the sensitivity information!

- Only the restriction $f|_{M}$ matters!
- Goal: Look for small, well-behaved sets capturing only the essential information.

Consider the system

$$v \in \partial f(x)$$
,

where $f : \mathbf{R}^n \to \overline{\mathbf{R}}$ and $\overline{\mathbf{v}} \in \partial f(\overline{\mathbf{x}})$.

Consider the system

$$v \in \partial f(x)$$
,

where $f : \mathbf{R}^n \to \overline{\mathbf{R}}$ and $\overline{\mathbf{v}} \in \partial f(\overline{\mathbf{x}})$.

Definition (Identifiable sets)

A set $M \subset \mathbb{R}^n$ is identifiable at \bar{x} for \bar{v} if

$$\left. \begin{array}{l} x_i \to \bar{x}, v_i \to \bar{v} \\ v_i \in \partial f(x_i) \end{array} \right\} \Longrightarrow x_i \in M \text{ for all large } i,$$

Consider the system

$$v \in \partial f(x)$$
,

where $f : \mathbf{R}^n \to \overline{\mathbf{R}}$ and $\overline{\mathbf{v}} \in \partial f(\overline{\mathbf{x}})$.

Definition (Identifiable sets)

A set $M \subset \mathbb{R}^n$ is identifiable at \bar{x} for \bar{v} if

$$\left. \begin{array}{l} x_i \to \bar{x}, v_i \to \bar{v} \\ v_i \in \partial f(x_i) \end{array} \right\} \Longrightarrow x_i \in M \text{ for all large } i,$$

Example (Normal cone map)

Consider the system

$$v \in \partial f(x)$$
,

where $f : \mathbf{R}^n \to \overline{\mathbf{R}}$ and $\bar{\mathbf{v}} \in \partial f(\bar{\mathbf{x}})$.

Definition (Identifiable sets)

A set $M \subset \mathbb{R}^n$ is identifiable at \bar{x} for \bar{v} if

$$\left. \begin{array}{l} x_i \to \bar{x}, v_i \to \bar{v} \\ v_i \in \partial f(x_i) \end{array} \right\} \Longrightarrow x_i \in M \text{ for all large } i,$$

Example (Normal cone map)

Consider the system

$$v \in \partial f(x)$$
,

where $f: \mathbf{R}^n \to \overline{\mathbf{R}}$ and $\bar{\mathbf{v}} \in \partial f(\bar{\mathbf{x}})$.

Definition (Identifiable sets)

A set $M \subset \mathbb{R}^n$ is identifiable at \bar{x} for \bar{v} if

$$\left. \begin{array}{l} x_i \to \bar{x}, v_i \to \bar{v} \\ v_i \in \partial f(x_i) \end{array} \right\} \Longrightarrow x_i \in M \text{ for all large } i,$$

Example (Normal cone map)

Consider the system

$$v \in \partial f(x)$$
,

where $f : \mathbf{R}^n \to \overline{\mathbf{R}}$ and $\bar{\mathbf{v}} \in \partial f(\bar{\mathbf{x}})$.

Definition (Identifiable sets)

A set $M \subset \mathbb{R}^n$ is identifiable at \bar{x} for \bar{v} if

$$\left. \begin{array}{l} x_i \to \bar{x}, v_i \to \bar{v} \\ v_i \in \partial f(x_i) \end{array} \right\} \Longrightarrow x_i \in M \text{ for all large } i,$$

Example (Normal cone map)

Proposition (Order of growth) Suppose M is an identifiable set at \bar{x} for $0 \in \hat{\partial} f(\bar{x})$.

Proposition (Order of growth)

Suppose M is an identifiable set at \bar{x} for $0 \in \hat{\partial} f(\bar{x})$.

• \bar{x} is a (strict) local minimizer of $f \iff \bar{x}$ is a (strict) local minimizer of f on M.

Proposition (Order of growth)

Suppose M is an identifiable set at \bar{x} for $0 \in \hat{\partial} f(\bar{x})$.

- \bar{x} is a (strict) local minimizer of $f \iff \bar{x}$ is a (strict) local minimizer of f on M.
- f grows quadratically near $\bar{x} \iff f$ grows quadratically on M near \bar{x} .

Proposition (Order of growth)

Suppose M is an identifiable set at \bar{x} for $0 \in \hat{\partial} f(\bar{x})$.

- \bar{x} is a (strict) local minimizer of $f \iff \bar{x}$ is a (strict) local minimizer of f on M.
- f grows quadratically near $\bar{x} \iff f$ grows quadratically on M near \bar{x} .

Proposition (Uniform projections)

Suppose M is an identifiable set at \bar{x} for \bar{v} .

f is prox-regular at \bar{x} for $\bar{v} \iff f|_{M}$ is prox-regular at \bar{x} for \bar{v} .

Locally minimal identifiable sets

Clearly all of \mathbf{R}^n is identifiable at \bar{x} for \bar{v} (not interesting). So. . .

Locally minimal identifiable sets

Clearly all of \mathbb{R}^n is identifiable at \bar{x} for \bar{v} (not interesting). So... Question: What are the smallest possible identifiable sets?

Locally minimal identifiable sets

Clearly all of \mathbb{R}^n is identifiable at \bar{x} for \bar{v} (not interesting). So... Question: What are the smallest possible identifiable sets?

Definition

An identifiable set M at \bar{x} for \bar{v} is locally minimal if

M' identifiable at \bar{x} for $\bar{v} \Longrightarrow M \subset M'$, locally near \bar{x} .

Locally minimal identifiable sets exist for

Locally minimal identifiable sets exist for

• piecewise quadratic functions,

Locally minimal identifiable sets exist for

- piecewise quadratic functions,
- max-type functions: $f(x) = \max\{g_1(x), \dots, g_k(x)\}$ for \mathbb{C}^1 -smooth g_i .

Locally minimal identifiable sets exist for

- piecewise quadratic functions,
- max-type functions: $f(x) = \max\{g_1(x), \dots, g_k(x)\}$ for \mathbb{C}^1 -smooth g_i .
- fully amenable functions: f(x) = g(F(x)) where
 - \bigcirc F is \mathbb{C}^2 -smooth,
 - g is (convex) piecewise quadratic,
 - transversality condition holds.

Locally minimal identifiable sets exist for

- piecewise quadratic functions,
- max-type functions: $f(x) = \max\{g_1(x), \dots, g_k(x)\}$ for \mathbb{C}^1 -smooth g_i .
- fully amenable functions: f(x) = g(F(x)) where
 - **1** F is \mathbb{C}^2 -smooth,
 - g is (convex) piecewise quadratic,
 - transversality condition holds.

A strong chain rule is available.

Intriguing Question: Do locally minimal identifiable sets exist for any convex function?

Intriguing Question: Do locally minimal identifiable sets exist for any convex function? No.

Intriguing Question: Do locally minimal identifiable sets exist for any convex function? No.

This will follow from the following observation.

Intriguing Question: Do locally minimal identifiable sets exist for any convex function? No.

This will follow from the following observation.

Proposition (Topological regularity)

Consider decreasing sequence of open neighborhoods

$$V_1 \supset V_2 \supset V_3 \supset \ldots$$
, with $V_i \downarrow \{\bar{v}\}$.

Intriguing Question: Do locally minimal identifiable sets exist for any convex function? No.

This will follow from the following observation.

Proposition (Topological regularity)

Consider decreasing sequence of open neighborhoods

$$V_1 \supset V_2 \supset V_3 \supset \ldots$$
, with $V_i \downarrow \{\bar{v}\}$.

Intriguing Question: Do locally minimal identifiable sets exist for any convex function? No.

This will follow from the following observation.

Proposition (Topological regularity)

Consider decreasing sequence of open neighborhoods

$$V_1 \supset V_2 \supset V_3 \supset \ldots$$
, with $V_i \downarrow \{\bar{v}\}$.

Intriguing Question: Do locally minimal identifiable sets exist for any convex function? No.

This will follow from the following observation.

Proposition (Topological regularity)

Consider decreasing sequence of open neighborhoods

$$V_1 \supset V_2 \supset V_3 \supset \ldots$$
, with $V_i \downarrow \{\bar{v}\}$.

Figure: $f(x, y) = \sqrt{x^4 + y^2}$.

Figure: $f(x, y) = \sqrt{x^4 + y^2}$.

Figure: $f(x, y) = \sqrt{x^4 + y^2}$.

Figure: Level sets: $[|\nabla f| < \epsilon]$.

Figure: $f(x, y) = \sqrt{x^4 + y^2}$.

Figure: Level sets: $[|\nabla f| < \epsilon]$.

Convex functions may fail to admit locally minimal identifiable sets! Example

Figure: $f(x, y) = \sqrt{x^4 + y^2}$.

Level sets of $|\nabla f|$ get "pinched".

Figure: Level sets: $[|\nabla f| < \epsilon]$.

Convex functions may fail to admit locally minimal identifiable sets! Example

Figure: $f(x, y) = \sqrt{x^4 + y^2}$.

Figure: Level sets: $[|\nabla f| < \epsilon]$.

Level sets of $|\nabla f|$ get "pinched". There is no locally minimal identifiable set at $\bar{x} = (0,0)$ for $\bar{v} = (0,0)$.

• Intuitive idea of finite identification, in this setting, is old.

- Intuitive idea of finite identification, in this setting, is old.
- Some algorithms for solving $\min_{x \in Q} f(x)$ would stop in finite time (proximal point algorithm Rockafellar '76).

- Intuitive idea of finite identification, in this setting, is old.
- Some algorithms for solving $\min_{x \in Q} f(x)$ would stop in finite time (proximal point algorithm Rockafellar '76).
- Many algorithms would generate iterates that eventually lie on a distinguished subset of Q

- Intuitive idea of finite identification, in this setting, is old.
- Some algorithms for solving $\min_{x \in Q} f(x)$ would stop in finite time (proximal point algorithm Rockafellar '76).
- Many algorithms would generate iterates that eventually lie on a distinguished subset of Q (subgradient projection Calamai-Moré '87, Newton-like methods Burke-Moré '88, stochastic gradient methods Wright '11).

- Intuitive idea of finite identification, in this setting, is old.
- Some algorithms for solving $\min_{x \in Q} f(x)$ would stop in finite time (proximal point algorithm Rockafellar '76).
- Many algorithms would generate iterates that eventually lie on a distinguished subset of Q (subgradient projection Calamai-Moré '87, Newton-like methods Burke-Moré '88, stochastic gradient methods Wright '11).
- One may try to exploit a nice identifiable set, if one exists; perhaps a C²-manifold.

Identifiable manifolds

For simplicity, we work with normal cones to a set $Q \subset \mathbf{R}^n$, that is

$$\hat{N}_Q(x) := \hat{\partial} \delta_Q(x), \qquad N_Q(x) := \partial \delta_Q(x).$$

Identifiable manifolds

For simplicity, we work with normal cones to a set $Q \subset \mathbf{R}^n$, that is

$$\hat{N}_Q(x) := \hat{\partial} \delta_Q(x), \qquad N_Q(x) := \partial \delta_Q(x).$$

When there exists an identifiable subset $M \subset Q$ that is a manifold, things simplify drastically.

Identifiable manifolds

For simplicity, we work with normal cones to a set $Q \subset \mathbf{R}^n$, that is

$$\hat{N}_Q(x) := \hat{\partial} \delta_Q(x), \qquad N_Q(x) := \partial \delta_Q(x).$$

When there exists an identifiable subset $M \subset Q$ that is a manifold, things simplify drastically.

Proposition (Identifiable manifolds)

Identifiable manifolds $M \subset Q$ are automatically locally minimal.

To get a good handle on sensitivity analysis, Lewis '03 introduced partly smooth manifolds.

To get a good handle on sensitivity analysis, Lewis '03 introduced partly smooth manifolds.

Definition

Q is partly smooth, with respect to M, at $\bar{x} \in M$ for $\bar{v} \in N_Q(\bar{x})$, if there exist open neighborhoods U of \bar{x} and V of \bar{v} satisfying

To get a good handle on sensitivity analysis, Lewis '03 introduced partly smooth manifolds.

Definition

Q is partly smooth, with respect to M, at $\bar{x} \in M$ for $\bar{v} \in N_Q(\bar{x})$, if there exist open neighborhoods U of \bar{x} and V of \bar{v} satisfying

- **1** (regularity) $V \cap N_Q(x) \subset \hat{N}_Q(x)$ for each $x \in U \cap M$,
- (sharpness) span $\hat{N}_Q(\bar{x}) = N_M(\bar{x})$.
- **3** (continuity) The mapping $x \mapsto V \cap N_Q(x)$ is continuous on M at \bar{x} .

Theorem (Characterization)

Theorem (Characterization)

- **1** M is an identifiable manifold around \bar{x} for \bar{v} .
- Q is partly smooth with respect to M at \bar{x} for \bar{v} .
 - Q is prox-regular at \bar{x} for \bar{v} .
 - the strong inclusion $\bar{v} \in \operatorname{ri} \hat{N}_Q(x)$ holds.

Theorem (Characterization)

- **1** M is an identifiable manifold around \bar{x} for \bar{v} .
- Q is partly smooth with respect to M at \bar{x} for \bar{v} .
 - Q is prox-regular at \bar{x} for \bar{v} .
 - the strong inclusion $\bar{v} \in \operatorname{ri} \hat{N}_Q(x)$ holds.
- Implication ↑ was mostly proven in Hare-Lewis '04.

Theorem (Characterization)

- **1** M is an identifiable manifold around \bar{x} for \bar{v} .
- Q is partly smooth with respect to M at \bar{x} for \bar{v} .
 - Q is prox-regular at \bar{x} for \bar{v} .
 - the strong inclusion $\bar{v} \in \operatorname{ri} \hat{N}_Q(x)$ holds.
 - Implication ↑ was mostly proven in Hare-Lewis '04.
 - Equivalence yields intuitive interpretation of partial smoothness, prox-regularity, and nondegeneracy (all sophisticated concepts).

$$P(v)$$
: max $\langle v, x \rangle$,
s.t. $x \in Q$.

Consider

$$P(v)$$
: max $\langle v, x \rangle$,
s.t. $x \in Q$.

• When is there a smooth dependence of critical points on v?

$$P(v)$$
: max $\langle v, x \rangle$,
s.t. $x \in Q$.

- When is there a smooth dependence of critical points on v?
- This is a difficult question in general,

$$P(v)$$
: max $\langle v, x \rangle$,
s.t. $x \in Q$.

- When is there a smooth dependence of critical points on v?
- This is a difficult question in general, but when an identifiable manifold exists, it is straightforward!

$$P(v)$$
: max $\langle v, x \rangle$,
s.t. $x \in Q$.

- When is there a smooth dependence of critical points on v?
- This is a difficult question in general, but when an identifiable manifold exists, it is straightforward! Just need to consider curvature of M.

Theorem (Sensitivity)

Suppose M is an identifiable manifold at \bar{x} for \bar{v} and \bar{x} is a local maximizer of $\langle \bar{v}, \cdot \rangle$ restricted to M. Then the following are equivalent.

Smooth dependence

Theorem (Sensitivity)

Suppose M is an identifiable manifold at \bar{x} for \bar{v} and \bar{x} is a local maximizer of $\langle \bar{v}, \cdot \rangle$ restricted to M. Then the following are equivalent.

• In a localized sense, the critical point map,

$$v\mapsto N_Q^{-1}(v),$$

is single-valued, C^1 -smooth, and onto a neighborhood of \bar{x} in M.

Smooth dependence

Theorem (Sensitivity)

Suppose M is an identifiable manifold at \bar{x} for \bar{v} and \bar{x} is a local maximizer of $\langle \bar{v}, \cdot \rangle$ restricted to M. Then the following are equivalent.

• In a localized sense, the critical point map,

$$v\mapsto N_Q^{-1}(v),$$

is single-valued, \mathbf{C}^1 -smooth, and onto a neighborhood of \bar{x} in M.

2 Second-order decay: There exists $\rho > 0$ such that,

$$\langle \bar{v}, \bar{x} \rangle \ge \langle \bar{v}, x \rangle + \rho |x - \bar{x}|^2$$
, for all $x \in M$ near \bar{x} .

 How typical are identifiable manifolds? Second-order growth at minimizers?

- How typical are identifiable manifolds? Second-order growth at minimizers?
- We answer this question in the setting of semi-algebraic sets:

- How typical are identifiable manifolds? Second-order growth at minimizers?
- We answer this question in the setting of semi-algebraic sets: represented as finite union of sets, each defined by finitely many polynomial inequalities.

- How typical are identifiable manifolds? Second-order growth at minimizers?
- We answer this question in the setting of semi-algebraic sets: represented as finite union of sets, each defined by finitely many polynomial inequalities.
- Large class of sets for which the word typical has a canonical meaning.

Theorem

Suppose $f: \mathbf{R}^n \to \overline{\mathbf{R}}$ is semi-algebraic. Consider the perturbed functions

$$f_{\nu}(x) := f(x) - \langle \nu, x \rangle.$$

Then for a "typical" $v \in \mathbf{R}^n$,

Theorem

Suppose $f: \mathbf{R}^n \to \overline{\mathbf{R}}$ is semi-algebraic. Consider the perturbed functions

$$f_{\nu}(x) := f(x) - \langle \nu, x \rangle.$$

Then for a "typical" $v \in \mathbf{R}^n$,

1 f_v has finitely many critical points x_v .

Theorem

Suppose $f: \mathbf{R}^n \to \overline{\mathbf{R}}$ is semi-algebraic. Consider the perturbed functions

$$f_{\nu}(x) := f(x) - \langle \nu, x \rangle.$$

Then for a "typical" $v \in \mathbf{R}^n$,

- f_v has finitely many critical points x_v .
- ② f_v admits an identifiable manifold M_v near each critical point x_v for 0.

Theorem

Suppose $f: \mathbf{R}^n \to \overline{\mathbf{R}}$ is semi-algebraic. Consider the perturbed functions

$$f_{\nu}(x) := f(x) - \langle \nu, x \rangle.$$

Then for a "typical" $v \in \mathbf{R}^n$,

- **1** f_v has finitely many critical points x_v .
- ② f_v admits an identifiable manifold M_v near each critical point x_v for 0.
- **3** every local minimizer x_v of f_v restricted to M_v is a strong local minimizer of f_v , that is

$$f_{\nu}(x) > f_{\nu}(x_{\nu}) + \rho |x - x_{\nu}|^2$$
, for all x near x_{ν} .

Theorem

Suppose $f: \mathbf{R}^n \to \overline{\mathbf{R}}$ is semi-algebraic. Consider the perturbed functions

$$f_{\nu}(x) := f(x) - \langle \nu, x \rangle.$$

Then for a "typical" $v \in \mathbf{R}^n$,

- **1** f_v has finitely many critical points x_v .
- ② f_v admits an identifiable manifold M_v near each critical point x_v for 0.
- **3** every local minimizer x_v of f_v restricted to M_v is a strong local minimizer of f_v , that is

$$f_{\nu}(x) > f_{\nu}(x_{\nu}) + \rho |x - x_{\nu}|^2$$
, for all x near x_{ν} .

This extends a result of Bolte, Daniilidis, Lewis '11.

Theorem

Suppose $f: \mathbf{R}^n \to \overline{\mathbf{R}}$ is semi-algebraic. Consider the perturbed functions

$$f_{\nu}(x) := f(x) - \langle \nu, x \rangle.$$

Then for a "typical" $v \in \mathbf{R}^n$,

- f_v has finitely many critical points x_v .
- **2** f_v admits an identifiable manifold M_v near each critical point x_v for 0.
- **9** every local minimizer x_v of f_v restricted to M_v is a strong local minimizer of f_v , that is

$$f_{\nu}(x) > f_{\nu}(x_{\nu}) + \rho |x - x_{\nu}|^2$$
, for all x near x_{ν} .

This extends a result of Bolte, Daniilidis, Lewis '11. Second-order sufficient conditions for optimality are almost necessary (Spingarn-Rockafellar '79).

Summary

- Presented the intuitive notion of identifiable sets.
- Showed how these objects relate to previously developed concepts (Partial Smoothness, prox-regularity, etc).
- Existence of identifiable sets (manifolds) leads to significant insight about the problem.

• Could consider identifiability for more general perturbations

$$\min_{x\in\mathbf{R}^n}f(x,v),$$

• Could consider identifiability for more general perturbations

$$\min_{x \in \mathbf{R}^n} f(x, v),$$

or more generally

$$v \in G(x)$$
,

for some set-valued mapping G. (Variational Inequalities, equilibria)

Could consider identifiability for more general perturbations

$$\min_{x\in\mathbf{R}^n}f(x,v),$$

or more generally

$$v \in G(x)$$
,

for some set-valued mapping G. (Variational Inequalities, equilibria)

 Compute identifiable manifolds for common convex cones (positive polynomials and the SOS cone).

Could consider identifiability for more general perturbations

$$\min_{x \in \mathbf{R}^n} f(x, v),$$

or more generally

$$v \in G(x)$$
,

for some set-valued mapping G. (Variational Inequalities, equilibria)

- Compute identifiable manifolds for common convex cones (positive polynomials and the SOS cone).
- Explore duality of identifiable sets.

Could consider identifiability for more general perturbations

$$\min_{x\in\mathbf{R}^n}f(x,v),$$

or more generally

$$v \in G(x)$$
,

for some set-valued mapping G. (Variational Inequalities, equilibria)

- Compute identifiable manifolds for common convex cones (positive polynomials and the SOS cone).
- Explore duality of identifiable sets.

Example

Semi-definite cone \mathbf{S}_{+}^{n} stratifies into partly smooth manifolds

$$\{X \in \mathbf{S}_{+}^{n} : \operatorname{rank} X = k\}, \text{ for } k = 0, \dots, n,$$

and is self-dual. Natural duality between these manifolds.

Thank you.