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Motivation: Loss of Slater’s CQ

Primal-dual interior-point methods assume Slater’s CQ to hold.

However, surprisingly many conic opt / SDP relaxations,
instances arising from applications

(QAP, GP, strengthened MC, SNL, Molecular Conformation)
do not satisfy Slater’s CQ

Lack of Slater’s CQ results in: unbounded dual solutions;
theoretical and numerical difficulties

Solution:
- theoretical facial reduction (Borwein, Wolkowicz’81[1])
- preprocess for regularized smaller problem (C.,Schurr, Wolkowicz’11[4])
- backward stable when # facial reduction step = 1
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Semidefinite Program, SDP

(P) vP = sup
y∈Rm

b>y s.t. A∗y − C � 0

(D) vD = inf
X∈Sn

〈C,X 〉 s.t. A(X ) = b, X � 0

where

Sn : set of n × n symm. matrices,
Sn

+⊂ Sn : PSD matrices, Sn
++⊂ Sn

+ : PD matrices;

C ∈ Sn , b ∈ Rm;

A : Sn → Rm is a linear map, with adjoint A∗;
for A,B ∈ Sn ,
A � B means A− B ∈ Sn

+ , and A � B means A− B ∈ Sn
++ .
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Semidefinite Program, SDP

(P) vP = sup
y∈Rm

b>y s.t. A∗y − C � 0

(D) vD = inf
X∈Sn

〈C,X 〉 s.t. A(X ) = b, X � 0

primal feasible set:

FZ
P := {Z � 0 : Z = C −A∗y}

dual feasible set:

FX
D := {X � 0 : A(X ) = b}
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Semidefinite Program, SDP

(P) vP = sup
y∈Rm

b>y s.t. A∗y − C � 0

(D) vD = inf
X∈Sn

〈C,X 〉 s.t. A(X ) = b, X � 0

Assumptions
A is onto.
(P) is feasible; i.e., wlog, C � 0.
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Semidefinite Program, SDP

(P) vP = sup
y∈Rm

b>y s.t. A∗y − C � 0

(D) vD = inf
X∈Sn

〈C,X 〉 s.t. A(X ) = b, X � 0

Slater’s CQ for (P)

∃ ŷ s.t. Z = C −A∗ŷ � 0

Strong Duality

If Slater’s CQ holds for (P) and opt(P) is bounded above,
then opt(P) = opt(D) and opt(D) is attained.
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Faces of Cones - for Characterization of Optimality

Face
Let F , K be convex cones and F ⊆ K .

F E K : F is a face of K , i.e.,

x , y ∈ K and x + y ∈ F =⇒ x , y ∈ F .

F C K : F is a proper face of K , i.e.,

F E K and F 6= K .

Faces of Sn
+

F E Sn
+ ⇐⇒ F = Q Sn̄

+ Q>

for some Q ∈ Rn×n̄ s.t. Q>Q = I.
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Minimal Faces

Primal and Dual Minimal Faces

f P := face(FZ
P ) E Sn

+ (FZ
P : primal feasible set)

f D := face(FX
D ) E Sn

+ (FX
D : dual feasible set)

Why Are We Interested in Minimal Faces?
Let Z = C −A ∗y . Then

Z ∈ Sn
+ ⇐⇒ Z ∈ f P

f P = QfinSn̄
+ Q>fin for some Qfin ∈ Rn×n̄ satisfying Q>finQfin = I.

Slater’s CQ holds iff
f P = Sn

+ .
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Regularizing (P) Using Minimal Face

Borwein-Wolkowicz’81 [1], f P := face(FZ
P )

(P) is equivalent to the regularized SDP

(Preg) vP = vRP := sup
y

{
b>y : A ∗y − C �f P 0

}
Lagrangian Dual of (Preg) Satisfies Strong Duality:

Let

(Dreg) vDRP := inf
X

{
〈C,X 〉 : A(X ) = b, X �(fP)∗ 0

}
.

Then
vDRP = vRP = vP,

and vDRP is attained.
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Regularizing (P) Using Minimal Face

(P) is equivalent to (Preg), given by

(Preg) sup
y

b>y s.t. g≺(y) � 0, g=(y) = 0,

where g≺(y) := Q>fin(A∗y − C)Qfin,

g=(y) :=

[
P>fin(A∗y − C)Pfin

P>fin(A∗y − C)Qfin

]
,[

Pfin Qfin

]
∈ Rn×n is orthogonal.

Generalized Slater’s CQ holds for (Preg):
∃ ŷ s.t. g≺(ŷ) ≺ 0 and g=(ŷ) = 0.
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Slater’s CQ and Theorem of Alternative

Slater’s CQ for (P)

∃ ŷ s.t. Z = C −A∗ŷ � 0

Theorem of the Alternative
Assume that ∃ ỹ s.t. C −A ∗ỹ � 0.
Then Slater’s CQ holds iff

A(D) = 0, 〈C,D〉 = 0, D � 0 =⇒ D = 0. (∗)
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Theorem of Alternative and Primal Minimal Face

Alternative to Slater’s CQ

A(D) = 0, 〈C,D〉 = 0, 0 6= D � 0 (∗)

Determining a proper face f C Sn
+ containing f P

Let D∗ solve (∗). Then

C −A∗y � 0 =⇒ 〈C −A∗y ,D∗〉 = 0,

so FZ
P ⊆ Sn

+ ∩ {D∗}⊥.

Wlog suppose rank (D∗) = n − n̄ < n. Write D∗ = PD+P>, with
D+ � 0, and [P Q] ∈ Rn×n orthogonal.

Then

Z = C −A ∗y � 0 =⇒

[
P>ZP P>ZQ

Q>ZP Q>ZQ

]
∈

[
0 0

0 Sn̄
+

]
,

so FZ
P ⊆ QSn̄

+ Q> C Sn
+ .
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Theorem of Alternative and Primal Minimal Face

Alternative to Slater’s CQ

A(D) = 0, 〈C,D〉 = 0, 0 6= D � 0 (∗)

Two Forms of Reduced Problem

Let D∗ = PD+P> solve (∗), with
D+ ∈ Sn−n̄

+ (n̄ > 0), and [P Q] ∈ Rn×n orthogonal.
Suppose R(Q ·Q>) ∩R(A ∗) is of dim m̄ > 0. Then (P) is equivalent to

sup
y

{
b>y : Z = C −A ∗y , Q>ZQ � 0,P>ZP = 0,P>ZQ = 0

}
,

or sup
v

{
b>(Pv) : C̄ −Q>(A∗Pv)Q �Sn̄

+
0
}
,

where P : Rm̄ → Rm is a one-one map satisfying

R(A ∗P) = R(Q ·Q>) ∩R(A ∗).

In particular, the linear map Q>(A ∗P(·))Q is one-one.
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Auxiliary Problem

Alternative to Slater’s CQ

A C(D) :=

(
A (D)

〈C,D〉

)
= 0, 0 6= D � 0 (∗)

How to find a solution D∗ of (∗)?

use the auxiliary problem

(AP) min
δ,D

δ s.t. ‖A C(D)‖2 ≤ δ,

trace(D) =
√

n,
D � 0.

Both (AP) and its dual satisfy Slater’s CQ.

Suppose (δ∗,D∗) is an optimal solution to (AP).
If δ∗ = 0, then D∗ solves (∗).
If δ∗ > 0, then Slater’s CQ holds for (P).
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Auxiliary Problem and Strict Complementarity

Auxiliary Problem and Reduced Problem

If (0,PD+P>) (with D+ ∈ Sn−n̄
+ and [P Q] orthogonal) solves

(AP) min
δ,D

δ s.t. ‖A C(D)‖2 ≤ δ,

trace(D) =
√

n,

D � 0,

then vP = sup
v

{
b>(Pv) : C̄ −Q>(A∗Pv)Q �Sn̄

+
0
}
.

Strict Complementarity of (AP) with soln. (0,PD+P>)

Slater’s CQ holds for sup
v

{
b>(Pv) : C̄ −Q>(A∗Pv)Q �Sn̄

+
0
}

if and only if

(AP) has a strictly complementary optimal p-d solution pair.
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Facial Reduction Algorithm

iteratively reduces (P) to a smaller equivalent problem
requires at most n − 1 iterations

One iteration of facial reduction

Input( A : Sn → Rm, b ∈ Rm, C ∈ Sn );
Obtain an optimal solution (δ∗,D∗) of

(AP) minδ,D δ s.t. ‖A C(D)‖2 ≤ δ, trace(D) =
√

n, D � 0;

if δ∗ > 0, then
STOP; Slater’s CQ holds for (A , b, c);

else
if D∗ � 0, then

STOP; the unique solution y of the equation C = A ∗y is optimal ;
else

using D∗ =
[
P Q

] [
D+ 0
0 0

] [
P>

Q>

]
, form the equivalent problem

supv

{
b>(Pv) : C̄ − Q>(A∗Pv)Q �Sn̄

+
0
}

;

update: A ∗ ← Ā ∗ := Q>(A ∗P(·))Q, C ← C̄, b ← b̄ := P∗b.
end if

end if
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Nearby Solutions for Reduced Problem

Assumptions

Let (δ∗,D∗) solve (AP),

D∗ =
[
P Q

] [D+ 0

0 Dε

][
P>

Q>

]
with D+ � 0,

and R(Q ·Q>) ∩R(A ∗) 6= {0}.
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Nearby Solutions for Reduced Problem

v feas =⇒ dist(v , original fea. region) is small

Given any v s.t. C̄ − Ā ∗v � 0,
there exists y s.t. C −A ∗y � 0 and

‖y − Pv‖ ≤ ξ · ‖C −A ∗y‖·,

where ξ > 0 depends on A, C, and D∗:

ξ :=
3
√

2
σmin(A )

[
α(A ,C)

‖D∗‖
λmin(D+)

]1/2

,

and α(A , c) :=

{
δ∗

σmin(A )
if C ∈ R (A ∗),

δ∗

σmin(A C )
if C /∈ R (A ∗).

16



Theory
Algorithm

Backward Stability
Numerical Results

Nearby Solutions for Original Problem

# facial reduction steps = 1:
y feas =⇒ dist(y , reduced fea. region) is small

Suppose ∃ v̂ s.t. δ∗2 := λmin(C̄ − Ā∗v̂) > 0. Given any y such that

Z = C −A ∗(y + yQ) � 0,
there exists v such that C̄ − Ā ∗v � 0 and

‖y − Pv‖ ≤ ζ · ‖Z‖ · δ
∗
2 + σmax(A ∗)‖y − P v̂‖
δ∗2 + ζσmax(A ∗)‖Z‖ ,

where ζ > 0 depends on A, C, and D∗:

ζ :=
2
√

2
σmin(A ∗PQ)

[
α(A ,C)

‖D∗‖
λmin(D+)

]1/2

,

A ∗PQu :=
m−m̄∑
i=1

ui (PP>Â m̄+iPP> + PP>Â m̄+iQQ> + QQ>Â m̄+iPP>),

and R (A ∗) = span(Â 1, . . . , Â m) with R (A ∗) ∩R (Q · Q>) = span(Â 1, . . . , Â m̄).
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Numerics With/Without Facial Reduction

Computational results

obtained using SeDuMi on MATLAB 7.11,

performed on a machine with Intel Duo Core and 4GB RAM.

First set of results are from specially generated test problems.

Second set of results are from randomly generated instances where

there is a positive duality gap
vP = 0
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Numerics With/Without Facial Reduction

Name n m Optval Optval
with facial reduction without facial reduction

Example 1 3 2 0 -6.30238e-016

Example 2 3 2 0 +0.570395

Example 3 3 4 0 +6.91452e-005
(vP = 0, vD = 1)

Example 4 3 3 0 +Inf
(infea. dual)

Example 5 10 5 +5.02950e+02 +5.02950e+02
(Slater’s CQ holds)

Example 6 6 8 +1 +1

Example 7 5 3 0 -2.76307e-012

Example 9a 20 20 0 Inf

Example 9b 100 100 0 Inf

[Solved using SeDuMi on MATLAB]
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Numerics With/Without Facial Reduction

Name n m Optval Optval
with facial reduction without facial reduction

RandGen1 10 5 +1.5914e-015 +1.16729e-012

RandGen2 100 67 +1.1056e-010 NaN

RandGen3 200 140 +5.0557e-010 NaN

RandGen4 200 140 +1.02803e-009 NaN

RandGen5 120 45 -5.47393e-015 -1.63758e-015

RandGen6 320 140 +5.9077e-025 NaN

RandGen7 40 27 -5.2203e-029 +5.64118e-011

RandGen8 60 40 -2.03227e-029 NaN

RandGen9 60 40 +5.61602e-015 -3.52291e-012

RandGen10 180 100 +2.47204e-010 NaN

RandGen11 255 150 +7.71685e-010 NaN

[Solved using SeDuMi on MATLAB]
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Conclusion

Minimal representations of the data regularize (P);
use min. face fP (and/or implicit rank reduction)
goal: a backwards stable preprocessing algorithm to
handle (feasible) conic problems for which Slater’s CQ
(almost) fails
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Thanks for your attention!
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