Preprocessing and Reduction for Degenerate Semidefinite Programs

Vris Cheung, Simon Schurr and Henry Wolkowicz

Combinatorics and Optimization University of Waterloo

13th Midwest Optimization Meeting

Motivation: Loss of Slater's CQ

- Primal-dual interior-point methods assume Slater's CQ to hold.
- <u>However</u>, surprisingly many conic opt / SDP relaxations, instances arising from applications (QAP, GP, strengthened MC, SNL, Molecular Conformation) do not satisfy Slater's CQ
- Lack of Slater's CQ results in: unbounded dual solutions; theoretical and numerical difficulties

• Solution:

- theoretical facial reduction (Borwein, Wolkowicz'81[1])
- preprocess for regularized smaller problem (C.,Schurr, Wolkowicz'11[4])
- backward stable when # facial reduction step = 1

- Minimal Faces for Preprocessing
- Theorem of Alternative to Slater's CQ

2 Algorithm

- Backward Stability
- Numerical Results

Minimal Faces for Preprocessing Theorem of Alternative to Slater's CQ

Semidefinite Program, SDP

(P)
$$v_{\mathrm{P}} = \sup_{y \in \mathbb{R}^m} b^\top y$$
 s.t. $\mathcal{A}^* y - C \leq 0$
(D) $v_{\mathrm{D}} = \inf_{X \in \mathbb{S}^n} \langle C, X \rangle$ s.t. $\mathcal{A}(X) = b, X \succeq 0$

where

Minimal Faces for Preprocessing Theorem of Alternative to Slater's CQ

Semidefinite Program, SDP

(P)
$$v_{\mathrm{P}} = \sup_{y \in \mathbb{R}^{m}} b^{\top} y$$
 s.t. $\mathcal{A}^{*} y - C \leq 0$
(D) $v_{\mathrm{D}} = \inf_{X \in \mathbb{S}^{n}} \langle C, X \rangle$ s.t. $\mathcal{A}(X) = b, X \succeq 0$

o primal feasible set:

$$\mathcal{F}_{\mathrm{P}}^{Z} := \{Z \succeq 0 : Z = C - \mathcal{A}^{*}y\}$$

• dual feasible set:

$$\mathcal{F}^{X}_{\mathrm{D}} := \{X \succeq 0 : \mathcal{A}(X) = b\}$$

Minimal Faces for Preprocessing Theorem of Alternative to Slater's CQ

Semidefinite Program, SDP

(P)
$$v_{\mathrm{P}} = \sup_{y \in \mathbb{R}^m} b^\top y$$
 s.t. $\mathcal{A}^* y - C \leq 0$
(D) $v_{\mathrm{D}} = \inf_{X \in \mathbb{S}^n} \langle C, X \rangle$ s.t. $\mathcal{A}(X) = b, X \succeq 0$

Assumptions

- A is onto.
- (P) is feasible; i.e., wlog, $C \succeq 0$.

Minimal Faces for Preprocessing Theorem of Alternative to Slater's CQ

Semidefinite Program, SDP

(P)
$$v_{\mathrm{P}} = \sup_{y \in \mathbb{R}^{m}} b^{\top}y$$
 s.t. $\mathcal{A}^{*}y - C \preceq 0$
(D) $v_{\mathrm{D}} = \inf_{X \in \mathbb{S}^{n}} \langle C, X \rangle$ s.t. $\mathcal{A}(X) = b, X \succeq 0$

Slater's CQ for (P)

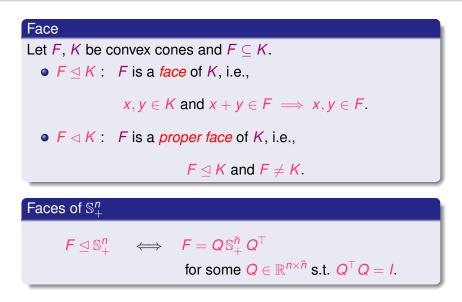
$$\exists \hat{y} \text{ s.t. } Z = C - \mathcal{A}^* \hat{y} \succ 0$$

Strong Duality

If Slater's CQ holds for (P) and opt(P) is bounded above, then opt(P) = opt(D) and opt(D) is attained.
 Theory
 Minimal Faces for Preprocessing

 Algorithm
 Theorem of Alternative to Slater's CQ

Faces of Cones - for Characterization of Optimality



Minimal Faces

Primal and Dual Minimal Faces

$$\begin{split} f_{\mathrm{P}} &:= \mathsf{face}(\mathcal{F}_{\mathrm{P}}^{Z}) \trianglelefteq \mathbb{S}_{+}^{n} \\ f_{\mathrm{D}} &:= \mathsf{face}(\mathcal{F}_{\mathrm{D}}^{X}) \trianglelefteq \mathbb{S}_{+}^{n} \end{split}$$

- $(\mathcal{F}_{P}^{Z} : \text{primal feasible set})$ $(\mathcal{F}_{D}^{X} : \text{dual feasible set})$
- Why Are We Interested in Minimal Faces?
 - Let $Z = C A^* y$. Then

$$Z \in \mathbb{S}^n_+ \iff Z \in f_{\mathrm{P}}$$

• $f_{\mathrm{P}} = \mathbf{Q}_{\mathrm{fin}} \mathbb{S}_{+}^{\bar{n}} \mathbf{Q}_{\mathrm{fin}}^{\top}$ for some $\mathbf{Q}_{\mathrm{fin}} \in \mathbb{R}^{n \times \bar{n}}$ satisfying $\mathbf{Q}_{\mathrm{fin}}^{\top} \mathbf{Q}_{\mathrm{fin}} = I$.

Slater's CQ holds iff

$$f_{\mathrm{P}} = \mathbb{S}^n_+$$
.

Regularizing (P) Using Minimal Face

Borwein-Wolkowicz'81 [1], $f_{\rm P} := \operatorname{face}(\mathcal{F}_{\rm P}^Z)$

(P) is equivalent to the regularized SDP

$$(\mathbf{P}_{\mathrm{reg}}) \qquad \mathbf{v}_{\mathrm{P}} = \mathbf{v}_{\mathrm{RP}} := \sup_{\mathbf{y}} \left\{ \mathbf{b}^{\top} \mathbf{y} : \mathcal{A}^* \mathbf{y} - \mathbf{C} \preceq_{\mathbf{f}_{\mathrm{P}}} \mathbf{0} \right\}$$

Theory

Algorithm

Lagrangian Dual of (P_{reg}) Satisfies Strong Duality:

Let

$$(\mathbf{D}_{\operatorname{reg}}) \quad \mathbf{V}_{\operatorname{DRP}} := \inf_{X} \big\{ \langle C, X \rangle : \mathcal{A}(X) = b, \ X \succeq_{(f_{P})^{*}} \mathbf{0} \big\}.$$

Then

$$V_{\rm DRP} = V_{\rm RP} = V_{\rm P},$$

and *v*_{DRP} is <u>attained</u>.

Regularizing (P) Using Minimal Face

Theory

Algorithm

(P) is equivalent to (P_{reg}), given by

$$(\mathbf{P}_{\mathrm{reg}}) \qquad \sup_{y} \ b^{\top}y \ \text{s.t.} \ g^{\prec}(y) \leq 0, \ g^{=}(y) = 0,$$

where

$$egin{aligned} g^{\prec}(y) &:= & \mathcal{Q}_{ ext{fin}}^{ op}(\mathcal{A}^*y - \mathcal{C})\mathcal{Q}_{ ext{fin}}, \ g^{=}(y) &:= egin{bmatrix} P_{ ext{fin}}^{ op}(\mathcal{A}^*y - \mathcal{C})P_{ ext{fin}}\ P_{ ext{fin}}^{ op}(\mathcal{A}^*y - \mathcal{C})\mathcal{Q}_{ ext{fin}} \end{bmatrix}, \ egin{bmatrix} P_{ ext{fin}} & \mathcal{Q}_{ ext{fin}} \end{bmatrix} \in \mathbb{R}^{n imes n} ext{ is orthogonal.} \end{aligned}$$

Generalized Slater's CQ holds for (P_{reg}) : $\exists \hat{y} \text{ s.t. } g^{\prec}(\hat{y}) \prec 0 \text{ and } g^{=}(\hat{y}) = 0.$

Slater's CQ and Theorem of Alternative

Theory

Algorithm

Slater's CQ for (P)

$$\exists \hat{y} \text{ s.t. } Z = C - \mathcal{A}^* \hat{y} \succ 0$$

Theorem of the Alternative

Assume that $\exists \tilde{y} \text{ s.t. } C - \mathcal{A}^* \tilde{y} \succeq 0$. Then Slater's CQ holds iff

 $\mathcal{A}(D) = 0, \ \langle C, D \rangle = 0, \ D \succeq 0 \implies D = 0.$ (*)

Theorem of Alternative and Primal Minimal Face

Theory

Algorithm

Alternative to Slater's CQ

$$\mathcal{A}(D) = 0, \ \langle C, D \rangle = 0, \ 0 \neq D \succeq 0$$
 (*)

Determining a proper face $f \triangleleft \mathbb{S}^n_+$ containing f_P

$$C - \mathcal{A}^* y \succeq 0 \implies \langle C - \mathcal{A}^* y, D^* \rangle = 0,$$

so $\mathcal{F}_{\mathrm{P}}^{Z} \subseteq \mathbb{S}_{+}^{n} \cap \{D^{*}\}^{\perp}$.

• Wlog suppose rank $(D^*) = n - \bar{n} < n$. Write $D^* = PD_+P^\top$, with $D_+ \succ 0$, and $[P \ Q] \in \mathbb{R}^{n \times n}$ orthogonal.

Then

$$Z = C - \mathcal{A}^* y \succeq 0 \implies \begin{bmatrix} P^\top Z P & P^\top Z Q \\ Q^\top Z P & Q^\top Z Q \end{bmatrix} \in \begin{bmatrix} 0 & 0 \\ 0 & \mathbb{S}_+^{\bar{n}} \end{bmatrix}$$

so $\mathcal{F}_{\mathrm{P}}^{Z} \subseteq \mathcal{Q}\mathbb{S}_{+}^{\bar{n}} \mathcal{Q}^{\top} \lhd \mathbb{S}_{+}^{n}$.

Theorem of Alternative and Primal Minimal Face

Theory

Algorithm

Alternative to Slater's CQ

$$\mathcal{A}(D) = 0, \ \langle C, D \rangle = 0, \ 0 \neq D \succeq 0$$
 (*)

Two Forms of Reduced Problem

Let $D^* = PD_+P^{\top}$ solve (*), with $D_+ \in \mathbb{S}^{n-\bar{n}}_+$ ($\bar{n} > 0$), and [P Q] $\in \mathbb{R}^{n \times n}$ orthogonal. Suppose $\mathcal{R}(Q \cdot Q^{\top}) \cap \mathcal{R}(\mathcal{A}^*)$ is of dim $\bar{m} > 0$. Then (P) is equivalent to $\sup_{y} \left\{ b^{\top}y : Z = C - \mathcal{A}^*y, \ Q^{\top}ZQ \succeq 0, P^{\top}ZP = 0, P^{\top}ZQ = 0 \right\},$ or $\sup_{y} \left\{ b^{\top}(\mathcal{P}v) : \bar{C} - Q^{\top}(\mathcal{A}^*\mathcal{P}v)Q \succeq_{\mathbb{S}^{\bar{n}}_+} 0 \right\},$ where $\mathcal{P} : \mathbb{R}^{\bar{m}} \to \mathbb{R}^m$ is a one-one map satisfying $\mathcal{R}(\mathcal{A}^*\mathcal{P}) = \mathcal{R}(Q \cdot Q^{\top}) \cap \mathcal{R}(\mathcal{A}^*).$

In particular, the linear map $Q^{\top}(\mathcal{A}^*\mathcal{P}(\cdot))Q$ is one-one.

Minimal Faces for Preprocessing Theorem of Alternative to Slater's CQ

Auxiliary Problem

Alternative to Slater's CQ

$$\mathcal{A}_{C}(D) := \begin{pmatrix} \mathcal{A}(D) \\ \langle C, D \rangle \end{pmatrix} = 0, \ 0 \neq D \succeq 0$$
 (*)

How to find a solution D^* of (*)?

• use the auxiliary problem

(AP)
$$\min_{\delta,D} \delta \text{ s.t. } \|\mathcal{A}_{C}(D)\|_{2} \leq \delta,$$
$$\operatorname{trace}(D) = \sqrt{n},$$
$$D \succeq 0.$$

- Both (AP) and its dual satisfy Slater's CQ.
- Suppose (δ*, D*) is an optimal solution to (AP). If δ* = 0, then D* solves (*). If δ* > 0, then Slater's CQ holds for (P).

Theory Minimal Faces for Preprocessing Algorithm Theorem of Alternative to Slater's CQ

Auxiliary Problem and Strict Complementarity

Auxiliary Problem and Reduced Problem

If $(0, PD_+P^{\top})$ (with $D_+ \in \mathbb{S}_+^{n-\bar{n}}$ and $[P \ Q]$ orthogonal) solves

$$AP) \qquad \min_{\delta,D} \ \delta \ \text{ s.t. } \|\mathcal{A}_{\mathcal{C}}(D)\|_{2} \leq \delta,$$

trace(D) =
$$\sqrt{n}$$
,
D > 0.

then

$$\mathbf{V}_{\mathbf{P}} = \sup_{\mathbf{v}} \left\{ b^{\top}(\mathcal{P}\mathbf{v}) : \bar{\mathbf{C}} - \mathbf{Q}^{\top}(\mathcal{A}^*\mathcal{P}\mathbf{v})\mathbf{Q} \succeq_{\mathbb{S}^{\bar{n}}_{+}} \mathbf{0} \right\}.$$

Strict Complementarity of (AP) with soln. $(0, PD_+P^\top)$

Slater's CQ holds for
$$\sup_{v} \left\{ b^{\top}(\mathcal{P}v) : \overline{C} - Q^{\top}(\mathcal{A}^*\mathcal{P}v)Q \succeq_{\mathbb{S}^{\overline{p}}_{+}} 0 \right\}$$

if and only if

(AP) has a strictly complementary optimal p-d solution pair.

Facial Reduction Algorithm

- iteratively reduces (P) to a smaller equivalent problem
- requires at most n 1 iterations

One iteration of facial reduction

```
Input( \mathcal{A} : \mathbb{S}^n \to \mathbb{R}^m, b \in \mathbb{R}^m, C \in \mathbb{S}^n):
Obtain an optimal solution (\delta^*, D^*) of
                 (AP) \min_{\delta | D|} \delta s.t. \|\mathcal{A}_{C}(D)\|_{2} < \delta, trace(D) = \sqrt{n}, D \succ 0;
if \delta^* > 0, then
        STOP; Slater's CQ holds for (A, b, c);
else
        if D^* \succ 0, then
                  STOP; the unique solution y of the equation C = A^* y is optimal;
        else
                 using D^* = \begin{bmatrix} P & Q \end{bmatrix} \begin{bmatrix} D_+ & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} P^\top \\ Q^\top \end{bmatrix}, form the equivalent problem
                                  \sup_{v} \left\{ b^{\top}(\mathcal{P}v) : \overline{C} - Q^{\top}(\mathcal{A}^*\mathcal{P}v)Q \succeq_{\mathbb{S}^{\overline{n}}} 0 \right\};
                  update: \mathcal{A}^* \leftarrow \bar{\mathcal{A}}^* := Q^\top (\mathcal{A}^* \mathcal{P}(\cdot))Q, \quad C \leftarrow \bar{C}, \quad b \leftarrow \bar{b} := \mathcal{P}^* b.
        end if
end if
```

Theory Backward Stability Algorithm Numerical Results

Nearby Solutions for Reduced Problem

Assumptions

Let
$$(\delta^*, D^*)$$
 solve (AP),
 $D^* = \begin{bmatrix} P & Q \end{bmatrix} \begin{bmatrix} D_+ & 0 \\ 0 & D_e \end{bmatrix} \begin{bmatrix} P^\top \\ Q^\top \end{bmatrix}$ with $D_+ \succ 0$,
and $\mathcal{R}(Q \cdot Q^\top) \cap \mathcal{R}(\mathcal{A}^*) \neq \{0\}$.

Theory Backward Stability Algorithm Numerical Results

Nearby Solutions for Reduced Problem

v feas \implies dist(v, original fea. region) is small

Given any v s.t. $\overline{C} - \overline{A}^* v \succeq 0$, there exists y s.t. $C - A^* y \succeq 0$ and

 $\|\boldsymbol{y} - \mathcal{P}\boldsymbol{v}\| \leq \xi \cdot \|\boldsymbol{C} - \mathcal{A}^*\boldsymbol{y}\|,$

where $\xi > 0$ depends on \mathcal{A} , C, and D^* :

$$\begin{split} \xi &:= \frac{3\sqrt{2}}{\sigma_{\min}(\mathcal{A})} \left[\alpha(\mathcal{A}, \mathcal{C}) \frac{\|D^*\|}{\lambda_{\min}(D_+)} \right]^{1/2},\\ \text{and} \quad \alpha(\mathcal{A}, \mathcal{C}) &:= \begin{cases} \frac{\delta^*}{\sigma_{\min}(\mathcal{A})} & \text{if } \mathcal{C} \in \mathcal{R}(\mathcal{A}^*),\\ \frac{\delta^*}{\sigma_{\min}(\mathcal{A}_{\mathcal{C}})} & \text{if } \mathcal{C} \notin \mathcal{R}(\mathcal{A}^*). \end{cases} \end{split}$$

Theory Backward Stability Algorithm Numerical Results

Nearby Solutions for Original Problem

facial reduction steps = 1: y feas \implies dist(y, reduced fea. region) is small

Suppose $\exists \hat{v} \text{ s.t. } \delta_2^* := \lambda_{\min}(\bar{C} - \bar{\mathcal{A}}^* \hat{v}) > 0$. Given any *y* such that

 $Z = C - \mathcal{A}^*(y + y_Q) \succeq 0,$ there exists *v* such that $\overline{C} - \overline{\mathcal{A}}^* v \succeq 0$ and

$$\|\boldsymbol{y} - \mathcal{P}\boldsymbol{v}\| \leq \zeta \cdot \|\boldsymbol{Z}\| \cdot \frac{\delta_2^* + \sigma_{\max}(\mathcal{A}^*) \|\boldsymbol{y} - \mathcal{P}\hat{\boldsymbol{v}}\|}{\delta_2^* + \zeta \sigma_{\max}(\mathcal{A}^*) \|\boldsymbol{Z}\|}$$

where $\zeta > 0$ depends on \mathcal{A} , C, and D^* :

and

$$\zeta := \frac{2\sqrt{2}}{\sigma_{\min}(\mathcal{A}_{PQ}^{*})} \left[\alpha(\mathcal{A}, \mathcal{C}) \frac{\|D^{*}\|}{\lambda_{\min}(D_{+})} \right]^{1/2},$$

$$\mathcal{A}_{PQ}^{*} u := \sum_{i=1}^{m-\bar{m}} u_{i} (PP^{\top} \widehat{A}_{\bar{m}+i} PP^{\top} + PP^{\top} \widehat{A}_{\bar{m}+i} QQ^{\top} + QQ^{\top} \widehat{A}_{\bar{m}+i} PP^{\top}),$$

$$\mathcal{R} (\mathcal{A}^{*}) = \operatorname{span}(\widehat{A}_{1}, \dots, \widehat{A}_{m}) \text{ with } \mathcal{R} (\mathcal{A}^{*}) \cap \mathcal{R} (Q \cdot Q^{\top}) = \operatorname{span}(\widehat{A}_{1}, \dots, \widehat{A}_{\bar{m}}).$$

TheoryBackward StabilityAlgorithmNumerical Results

Numerics With/Without Facial Reduction

Computational results

- obtained using SeDuMi on MATLAB 7.11,
- performed on a machine with Intel Duo Core and 4GB RAM.
- First set of results are from specially generated test problems.
- Second set of results are from randomly generated instances where
 - there is a positive duality gap

• $v_{\rm P} = 0$

Theory	Ba
Algorithm	Nu

Backward Stability Numerical Results

Numerics With/Without Facial Reduction

Name	n	m	Optval	Optval
			with facial reduction	without facial reduction
Example 1	3	2	0	-6.30238e-016
Example 2	3	2	0	+0.570395
Example 3 $(v_P = 0, v_D = 1)$	3	4	0	+6.91452e-005
Example 4 (infea. dual)	3	3	0	+Inf
Example 5 (Slater's CQ holds)	10	5	+5.02950e+02 +5.02950e+02	
Example 6	6	8	+1	+1
Example 7	5	3	0	-2.76307e-012
Example 9a	20	20	0	Inf
Example 9b	100	100	0	Inf

[Solved using SeDuMi on MATLAB]

Theory	
Algorithm	

Numerics With/Without Facial Reduction

Name	n	т	Optval	Optval
			with facial reduction	without facial reduction
RandGen1	10	5	+1.5914e-015	+1.16729e-012
RandGen2	100	67	+1.1056e-010	NaN
RandGen3	200	140	+5.0557e-010	NaN
RandGen4	200	140	+1.02803e-009	NaN
RandGen5	120	45	-5.47393e-015	-1.63758e-015
RandGen6	320	140	+5.9077e-025	NaN
RandGen7	40	27	-5.2203e-029	+5.64118e-011
RandGen8	60	40	-2.03227e-029	NaN
RandGen9	60	40	+5.61602e-015	-3.52291e-012
RandGen10	180	100	+2.47204e-010	NaN
RandGen11	255	150	+7.71685e-010	NaN

[Solved using SeDuMi on MATLAB]

Backward Stability Numerical Results

- Minimal representations of the data regularize (P); use min. face f_P (and/or implicit rank reduction)
- goal: a backwards stable preprocessing algorithm to handle (feasible) conic problems for which Slater's CQ (almost) fails

- J.M. Borwein and H. Wolkowicz, *Characterization of optimality for the abstract convex program with finite-dimensional range*, J. Austral. Math. Soc. Ser. A **30** (1980/81), no. 4, 390–411. MR 83i:90156
- Facial reduction for a cone-convex programming problem, J. Austral. Math. Soc. Ser. A 30 (1980/81), no. 3, 369–380. MR 83b:90121
- F. Burkowski, Y-L. Cheung, and H. Wolkowicz, *Semidefinite programming and side chain positioning*, Tech. Report CORR 2011, in progress, University of Waterloo, Waterloo, Ontario, 2011.
- Y-L. Cheung, S. Schurr, and H. Wolkowicz, *Preprocessing and reduction for degenerate semidefinite programs*, Tech. Report CORR 2011-02, University of Waterloo, Waterloo, Ontario, 2011.

Theory Algorithm	Backward Stability Numerical Results

- N. Krislock, F. Rendl, and H. Wolkowicz, *Noisy sensor network localization using semidefinite representations and facial reduction*, Tech. Report CORR 2010-01, University of Waterloo, Waterloo, Ontario, 2010.
- N. Krislock and H. Wolkowicz, *Explicit sensor network localization using semidefinite representations and facial reductions*, SIAM Journal on Optimization **20** (2010), no. 5, 2679–2708.
- N. Krislock and H. Wolkowicz, *Euclidean distance matrices and applications*, Handbook of Semidefinite, Cone and Polynomial Optimization: Theory, Algorithms, Software and Applications, CORR, no. 2009-06, Springer-Verlag, Waterloo, Ontario, to appear.

Backward Stability Numerical Results

Thanks for your attention!

Preprocessing and Reduction for Degenerate Semidefinite Programs

Theory

Algorithm

Vris Cheung, Simon Schurr and Henry Wolkowicz

Combinatorics and Optimization University of Waterloo

13th Midwest Optimization Meeting