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Stochastic Inverse Problems > UQ Examples

Probabilistic or Stochastic models?
Predicting future events: Fighting the curse of dimensionality

Many applications are affected by a relatively large amount of uncertainty in the
input data such as model coefficients, forcing terms, boundary conditions,
geometry, etc.

A simple example includes financial markets where this may depend on the
number of economic factors, number of underlying assets or the number of
time points/time steps

More complicated examples include environmental predictions, e.g.
subsurface, combustion and turbulent flows, earthquake engineering,
biomedical applications, etc.

The model itself may contain an incomplete description of parameters,
processes or fields (not possible or too costly to measure).

There may be small, unresolved scales in the model that act as a kind of
background noise (i.e. macro behavior from micro structure).

All these and many others introduce uncertainty in the model.
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Stochastic Inverse Problems > UQ Examples

Stokes-Darcy problem

The fluid velocity and porous media piezometric head (Darcy pressure) satisfy(
ut − ν4u+∇p = ff (x, t),∇ · u = 0, in Ωf ,

S0φt −∇ · (K∇φ) = fp, in Ωp,

initial conditions + coupling conditions across I.

Typical values of hydraulic conductivity K. Source: Bear (1979).
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Stochastic Inverse Problems > UQ Examples

Inverse problems in random media
Thermal, acoustic waves & reaction-diffusion problems

1 1. Stochastic Optimal Control:

The advantage of our novel approach over classical methods is that,
considering random input data, we control statistical moments (mean
value, variance, covariance, etc.) or even the whole probability distribution
of physical quantities of interest

2 2. Parameter Identification for SPDEs: Climate Modeling

Given a set of measurements {η(ω, x, t)} corresponding to some quantity of
interest Q(u) (e.g. average temperature) that depends on the solution u of
the SPDE, minimize the functional

E
h‚‚Q`u(ω, ·)

´
− η(ω, ·)

‚‚2
i
,

s.t. the stochastic solution u and the optimal stochastic coefficients
satisfying the state system
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The Computational Stochastic PDE
Forward Problem: From Real World to Predictions to Decisions

Output

Input
-coefficients, 
-forcing terms
-geometry
-boundary conditions

System

complex system of 
Partial Differential Equations (PDEs)

Quantities of Interest

QOI

Prediction

GOAL:  Decision 

Verification
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The Computational Stochastic PDE
Forward Problem: From Real World to Predictions to Decisions

Output

Input
-coefficients, 
-forcing terms
-geometry
-boundary conditions

System

complex system of 
Partial Differential Equations (PDEs)

Quantities of Interest

QOI

Prediction

GOAL:  Decision 

Verification

Uncertainty

-statistical information
-functional of the solution

HIGH - DIMENSIONAL
-interpolation / integration

Stochastic FEM
-Collocation
-Galerkin, 
-Monte Carlo, etc
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Stochastic Inverse Problems > Problem Setting > SPDEs

Stochastic formulation of uncertainty
A simplified general setting

Consider an operator L, linear or nonlinear, on a domain D ⊂ Rd, which
depends on some coefficients a(ω, x) with x ∈ D, ω ∈ Ω and (Ω,F , P ) a
complete probability space. The forcing f = f(ω, x) and the solution
u = u(ω, x) are random fields s.t.

L(a)(u) = f a.e. in D (1)

equipped with suitable boundary conditions.

A1. the solution to (1) has realizations in the Banach space W (D), i.e.
u(·, ω) ∈W (D) almost surely

‖u(·, ω)‖W (D) ≤ C‖f(·, ω)‖W∗(D)

A2. the forcing term f ∈ L2
P (Ω;W ∗(D)) is such that the solution u is unique

and bounded in L2
P (Ω;W (D)).
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Stochastic Inverse Problems > Problem Setting > SPDEs

Examples
Linear and Nonlinear Elliptic SPDEs

Example: The linear elliptic problem
−∇ · (a(ω, ·)∇u(ω, ·)) = f(ω, ·) in Ω×D,

u(ω, ·) = 0 on Ω× ∂D,
with a(ω, ·) uniformly bounded and coercive and f(ω, ·) square integrable with
respect to P , satisfies assumptions A1 and A2 with W (D) = H1

0 (D).

Example: The nonlinear elliptic problem

Similarly, for k ∈ N+,
−∇ · (a(ω, ·)∇u(ω, ·)) + u(ω, ·)|u(ω, ·)|k = f(ω, ·) in Ω×D,

u(ω, ·) = 0 on Ω× ∂D,

satisfies assumptions A1 and A2 with W (D) = H1
0 (D) ∩ Lk+2(D)
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Stochastic Inverse Problems > Problem Setting > Goal of the UQ computations

Goal of the computations
Stochastic QoI and Inverse problems

Forward Problem: to approximate u or some statistical QoI depending on u:

Φu = 〈Φ(u)〉 := E [Φ(u)] =

Z
Ω

Z
D

Φ(u(ω, x), ω, x)dxP(dω)

e.g. u = E[u](x), OR V aru = E[(eu)2](x), where eu = u− u,

OR P {u ≥ u0} = P [{ω ∈ Ω : u(ω) ≥ u0}] = E
ˆ
χ{u≥u0}

˜
,

OR even statistics of functionals of u, i.e. φ(u) =

Z
Σ⊂D

u(·, x)dx

Inverse Problem: Given a set of measurements {η(ω, x, t)} corresponding to
some statistical QoI Q(u) (e.g. expectation, inverse CDF, etc) depending on the
solution u to the SPDE, minimize the functionalZ

D

h‚‚Q`u(ω, ·)
´
− η(ω, ·)

‚‚2
i
,

s.t. the random u and the optimal stochastic coefficients satisfy the state (1)

Department of Mathematics C. Trenchea



Stochastic Inverse Problems > Problem Setting > Goal of the UQ computations

Goal of the computations
Stochastic QoI and Inverse problems

Forward Problem: to approximate u or some statistical QoI depending on u:

Φu = 〈Φ(u)〉 := E [Φ(u)] =

Z
Ω

Z
D

Φ(u(ω, x), ω, x)dxP(dω)

e.g. u = E[u](x), OR V aru = E[(eu)2](x), where eu = u− u,

OR P {u ≥ u0} = P [{ω ∈ Ω : u(ω) ≥ u0}] = E
ˆ
χ{u≥u0}

˜
,

OR even statistics of functionals of u, i.e. φ(u) =

Z
Σ⊂D

u(·, x)dx

Inverse Problem: Given a set of measurements {η(ω, x, t)} corresponding to
some statistical QoI Q(u) (e.g. expectation, inverse CDF, etc) depending on the
solution u to the SPDE, minimize the functionalZ

D

h‚‚Q`u(ω, ·)
´
− η(ω, ·)

‚‚2
i
,

s.t. the random u and the optimal stochastic coefficients satisfy the state (1)

Department of Mathematics C. Trenchea



Stochastic Inverse Problems > SOptC

Stochastic optimal control
Part 1. Theory applications to linear SPDEs

Let amin, amax > 0 and denote Uad the set of admissible coefficients s.t.

Uad = {a ∈ L∞(Ω;L∞(D)) : P(amin ≤ a(ω, x) ≤ amax, a.e. x ∈ D) = 1}

Let u(ω, x) and a(ω, x) be given target and coefficient random fields

The stochastic optimal control problems: minimize the functionals

J1(f, u) = E
»

1

2
‖u(ω, x)− u(ω, x)‖2L2(D) +

α

2
‖f(ω, x)‖2L2(D)

–
(P1)

J2(f, u) =
1

2

‚‚E[u](x)− E[u](x)
‚‚2

L2(D)
+
α

2

‚‚E[f ](x)
‚‚2

L2(D)
(P2)

over all u ∈ L2
P (Ω;H1

0 (D) ∩H2(D)) and f ∈ L2
P (Ω, L2(D)), subject to

−∇ · (a(ω, x)∇u(ω, x)) = f(ω, x) in Ω×D

Remark: Can replace E[·] with higher order statistics or even Φ−1[·], the inverse
CDF
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Stochastic optimal control
Part 2. Theory applications to linear SPDEs

Theorem [GTW11]

(eu, ef) is the unique optimal pair in problem (P1) or (P2) if and only if there
exists an adjoint or co-state stochastic process ξ ∈ L2

P (Ω;H1
0 (D)) such that8<:

−∇ · (a(ω, x)∇ξ(ω, x)) = F
`eu(ω, x)− u(ω, x)

´
in Ω×D,ef(ω, x) = − 1

α
ξ(ω, x) a.e. in Ω×D,

ξ(ω, x) = 0 on Ω× ∂D,

where F[·] = Id[·] for problem (P1) and F[·] = E[·] for problem (P2)

The optimal control ef , the optimal state eu and the optimal adjoint state
ξ(ω, x) can be determined from solving the minimization problems (P1) or
(P2) directly or by solving the system of couple stochastic PDEs:8<:

−∇ · (a(ω, x)∇eu(ω, x)) = − 1
α
ξ(ω, x)

−∇ · (a(ω, x)∇ξ(ω, x)) = F
`eu(ω, x)− u(ω, x)

´
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Stochastic Inverse Problems > SPiD

Stochastic parameter identification
Part 1. Theory for applications to linear SPDEs

Given a perturbed stochastic observation u of the state, determine the
coefficient a such that u(a) = u (or even E[u(a)] = E[u] if it exists)

The diffusion coeff. can not be a Gaussian field (finite probability becomes
negative). Use nonlinear transformations, e.g.

a(ω, x) = amin + arctan(γ(ω, x)), γ ∼ N(µ(·), %(·, ·))

The stochastic identification problems: minimize the functionals

J3(a, u) = E
»

1

2
‖u(ω, x)− u(ω, x)‖2L2(D) +

β

2
‖a(ω, x)‖2L2(D)

–
(P3)

J4(a, u) =
1

2

‚‚E[u](x)− E[u](x)
‚‚2

L2(D)
+
β

2

‚‚E[a](x)
‚‚2

L2(D)
(P4)

over all u ∈ L2
P (Ω;H1

0 (D) ∩H2(D)) and a ∈ Uad = L∞(Ω;L∞(D)), s.t.

−∇ · (a(ω, x)∇u(ω, x)) = f(ω, x) in Ω×D

Remark: Given f ∈ L2
P (Ω;L2(D)) then (u, a) from above is said to be an

admissible element if (P3) or (P4) is bounded.
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β
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0 (D)) is the solution of the nonlinear SPDE
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Finite dimensional noise assumption
Transform SBVP to parameterized deterministic BVP

We assume that the random fields a(ω, x) and f(ω, x) depend on a finite
number of random variables Y(ω) = [Y1(ω), . . . , YN (ω)] : Ω→ RN , namely

aN (ω, x) = a(Y(ω), x), fN (ω, x) = f(Y(ω), x) ⇒ uN = u(Y(ω), x)

Finite-D noise: N terms of log-truncated Karhunen-Loève expansion

a(ω, x) ≈ aN (ω, x) = amin + eb0(x)+
PN
n=1

√
λn bn(x)Yn(ω)

(λn, bn(x)) eigenpairs of TCov[log(a)] and the random variables Yn satisfy
E[Yn] = 0, Cov[Yn, Ym] = δnm.

Remark: u (and/or ξ) is in general analytic wrt Y

Γn ≡ Yn(Ω) ⊂ R and ΓN =
QN
n=1 Γn ⊂ RN where N is large.

[Y1, Y2, . . . , YN ] have a joint probability density function ρ : ΓN → R+,
with ρ ∈ L∞(ΓN ), i.e. for y ∈ ΓN (transform the measure P to RN )

P
“
Z ∈ γ ⊂ ΓN

”
=

Z
γ

ρ(y) dy ⇒ E[u](x) =

Z
ΓN

u(y, x)ρ(y)dy
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Stochastic Inverse Problems > SPiD > Linear SPDEs

Applications to stochastic parameter iD
Parametrized equivalent (deterministic) formulation

ba(ω, x) = max{amin,min{− 1
β
∇eu(ω, x)∇ξ(ω, x), amax}} a.e. in Ω×D

Strong formulation: find u(y, x), ξ(y, x) ∈ Hρ = L2
ρ(Γ

N ;H1
0 (D)) s.t.8<:

−∇ · (ba(y, x)∇u(y, x)) = f(y, x) for a.e. x ∈ D,

−∇ · (ba(y, x)∇ξ(y, x)) = E
`
u(y, x)− u(y, x)

´
for a.e. x ∈ D,

where y ∈ ΓN ⊂ RN and x ∈ D

Weak formulation: find u, ξ ∈ Hρ s.t., ∀v ∈ Hρ8>>><>>>:

Z
ΓN

(ba∇u,∇v)L2(D)ρ(y) dy =

Z
ΓN

(f, v)L2(D)ρ(y) dy

Z
ΓN

(ba∇ξ,∇v)L2(D)ρ(y) dy =

Z
ΓN

((u− u), v)L2(D)ρ(y) dy
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Z
ΓN

((u− u), v)L2(D)ρ(y) dy
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Stochastic polynomial approximation

Approximating spaces: Let Th be a triangulation of D and p = (p1, . . . , pN )

Wh(D) ⊂W (D) contains cont. piecewise polynomials defined in Th
J (p) ⊂ NN is an index set and define the multivariate polynomial space

PJ (p)(Γ
N ) = span

nQN
n=1 y

pn
n , with p ∈ J (p)

o
⊂ L2

ρ(Γ
N )

E.g. Tensor products: maxn αnpn ≤ p (Intractable for large N),
Total degree:

PN
n=1 αnpn ≤ p, Hyperbolic cross:

QN
n=1(pn + 1)αn ≤ p+ 1,

Smolyak space:
PN
n=1 αnf(pn) ≤ f(p) where f(p) =

8><>:
0, p = 0
1, p = 1
dlog2(p)e, p ≥ 2

TD:
P
n pn ≤ p HC:

Q
n(pn + 1) ≤ (p + 1)
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Stochastic polynomial approximation
Fully discrete approximations

Fully discrete approximations up ∈ PJ (p)(Γ
N )⊗Wh(D):

up(y, x) =
MX
k=1

uk(x)ψk(y) with uk ∈Wh(D)

M = dim
ˆ
PJ (p)(Γ

N )
˜

and {ψk}Mk=1 form a basis for PJ (p)(Γ
N ),

e.g. multivariate Legendre, Hermite, etc.

Stochastic collocation FEM: ⇐⇒ uh(yk) := πhu(yk) ∈Wh(D), yk ∈ ΓN

However, we also want to recover u : ΓN → R approximated by the fully
discrete SCFEM up ∈ PJ (p)(Γ

N )⊗Wh(D):

up(y, ·) =
X
k∈K

uh(yk, ·)lpk (y)
“

= I(N)
p

h
uh
i”
.

⇒ Moments become simple interpolatory quadrature approx.:

E [u] ≈ E [up] ≈
X
k∈K

uh(yk, ·) ρ(yk)

Z
ΓN

lpk (y)dy| {z }
wk
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The generalized SC (gSC) FEM
Sparse approximation for high-dimensional problems

1 Given a (mixed) sequence of 1d polynomial interpolant operators

U m(i)
n : C0(Γn)→ Pm(i)−1(Γn) with increasing number of points

-The i-th interpolant uses m(i) abscissas ϑin =
˘
yin,1, . . . , y

i
n,mi

¯
⊂ Γn

-Typical choice is m(i) ≈ 2i (double the points on each level)

2 Take differences of consecutive hierarchical operators:

∆i
n = U m(i)

n −U m(i−1)
n , U m(0) = 0

3 For integers p ∈ N the gSC sparse approximation is given by:

up = A m,g(p,N)(u) =
X

i∈NN :g(i)≤p

“
∆
m(i1)
1 ⊗ · · · ⊗∆

m(iN )
N

”
(u)

where i = (i1, . . . , iN ) ∈ NN+ is a multi-index and g : NN → N a strictly
increasing function

Can build sparse approximations (grids) corresponding to any polynomial
space PJ (p)(Γ

N ), e.g. total degree, hyperbolic cross, Smolyak, etc.
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The gSCFEM sparse approximation
Equivalent formulation

up = A m,g(p,N)(u) =
X

i∈NN :g(i)≤p

c(i)
“
U m(i1)

1 ⊗ · · · ⊗U m(iN )
N

”
(u) (2)

with c(i) =
P

j∈{0,1}N
g(i+j)≤p

(−1)|j|1

linear combination of tensor product grids, with a relatively low number of
points (but maintain the asymptotic accuracy)
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The gSCFEM sparse approximation
Equivalent formulation

up = A m,g(p,N)(u) =
X

i∈NN :g(i)≤p

c(i)
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U m(i1)

1 ⊗ · · · ⊗U m(iN )
N
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(u) (2)

with c(i) =
P

j∈{0,1}N
g(i+j)≤p

(−1)|j|1

linear combination of tensor product grids, with a relatively low number of
points (but maintain the asymptotic accuracy)

Example: Anisotropic Smolyak sparse grids [NTW08ab]. Let m(i) = 2i+1 − 1,
g(i) =

PN
n=1 αn(in − 1) and define the set

Yα(p,N) :=
n

i ∈ NN+ , i ≥ 1 : g(i) ≤ pαmin

o
Then from (2) for integers p ∈ N we get that

A (p,N) =
X

i∈Yα(p,N)

c(i)
“
U m(i1)

1 ⊗ · · · ⊗U m(iN )
N

”
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The gSCFEM sparse approximation
Equivalent formulation

up = A m,g(p,N)(u) =
X

i∈NN :g(i)≤p

c(i)
“
U m(i1)

1 ⊗ · · · ⊗U m(iN )
N

”
(u) (2)

with c(i) =
P

j∈{0,1}N
g(i+j)≤p

(−1)|j|1

linear combination of tensor product grids, with a relatively low number of
points (but maintain the asymptotic accuracy)

Example: Anisotropic Smolyak sparse grids [NTW08ab]. Let m(i) = 2i+1 − 1,
g(i) =

PN
n=1 αn(in − 1) and define the set

Yα(p,N) :=
n

i ∈ NN+ , i ≥ 1 : g(i) ≤ pαmin

o
To compute the approximation up we interpolate on the “sparse grid”

Hα(p,N) =
[

i∈Yα(p,N)

“
ϑi11 × · · · × ϑ

iN
N

”
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Generated C-C anisotropic sparse grids
Correspondng indices (i1, i2) ∈ Yα(7, 2)
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Stochastic Inverse Problems > gSCFEM

Convergence of gSC approximation

Recall: convergence of sparse isotropic SC: εSG(M) ≈ O
“
M−σ/(log(2N))

”
Theorem [NTW08b]

For functions u ∈ C0(ΓN ;W (D)), the anisotropic sparse approximation
approach satisfies:

ε(M) = ‖u− up‖L2
ρ,N
≤ C(α, N)M−σ/G (σ,N),

where G (σ,N) =
PN
n=1 σ/%̂n

An analogous result holds for the Gaussian abscissas

σ = r when u ∈ W(N)
r (bdd mixed derivatives of order r)

For highly isotropic problems G (σ,N) ≈ log(2N)

For highly anisotropic problems, i.e. the larger the ratio αmax/αmin

becomes, the smaller the constant C3(α, N) and G (σ,N) << log(2N)

limN→∞ C(α, N) = C∗ <∞ NO curse of dimensionality!
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Convergence in E[u] for nonlinear SPDE
N = 21, . . . , 121, . . .∞ random variables
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Stochastic Inverse Problems > Error estimates

Error estimates for (P4)
Fully discrete stochastic identification approximation

If in the state equation we use conductivity coefficients of the following form

1

2
(κmin + κmax) +

1

π
(κmin − κmax) arctan(κ(ω, x)), (3)

then the set Uad of admissible conductivity coefficients becomes

Uad = L∞(Ω;L∞(D))

and the optimality condition corresponding to the cost functional (J4) subject to

−∇ ·
„
{1

2
(κmin + κmax) +

1

π
(κmin − κmax) arctan(κ(ω, x))}∇u(ω, x)

«
= f(ω, x)

writes now

1

1 + (̊κ(ω, x))2
∇η(ω, x)∇ů(ω, x) + βκ̊(ω, x) = 0 a.e. in Ω×D, (4)

where η ∈ L2
P (Ω;H1

0 (D)) is the solution of

−∇·
`
{1

2
(κmin+κmax)+

1

π
(κmin−κmax)arctan(̊κ(ω, x))}∇η(ω, x)

´
= E

`
ů(·, x)−u(·, x)

´
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Stochastic Inverse Problems > Error estimates

The nonlinear problems to be considered are of the type

F (β, ϕ) ≡ ϕ+ TG(β, ϕ) = 0, (5)

where T ∈ L(Y,X), G is a C2 mapping from Λ×X into Y , and X,Y are
Banach spaces, and Λ is a compact interval of R.

Definition

We say that (λ, ϕ(λ)) : λ ∈ Λ is a branch of solutions of (5) if λ→ ϕ(λ) is a
continuous function from Λ into X such that F (λ, ϕ(λ)) = 0. The branch is
called a nonsingular branch if we also have that DϕF (λ, ϕ) is an isomorphism
from X into X for all λ ∈ Λ.

Approximations are defined by introducing an approximating operator
TN,h,M ∈ L(Y,XN,h,M ), with XN,h,M ⊂ X. Then we seek ϕN,h,M ∈ XN,h,M

such that

ϕN,h,M + TN,h,MG(λ, ϕN,h,M ) = 0. (6)
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Stochastic Inverse Problems > Error estimates

Suppose that (5) has a branch of nonsingular solutions {(λ, ϕ(λ)) : λ ∈ Λ}. We
make the following assumptions. First, there is another Banach space Z
contained in Y , with continuous imbedding, such that

DϕG(λ, ϕ) ∈ L(X,Z), ∀λ ∈ Λ, ∀ϕ ∈ X. (7)

Concerning the operator TN,h,M , we assume that

lim
h→0,N,M→∞

‖(TN,h,M − T )g‖X = 0, ∀g ∈ Y, (8)

and

lim
h→0,N,M→∞

‖TN,h,M − T‖L(Z,X) = 0. (9)

Note that if Z ⊂ Y is compact embedding, then DϕF (λ, ϕ) ∈ L(X,X) is
compact.
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Stochastic Inverse Problems > Error estimates

Theorem

Let X,Y be Banach spaces and Λ a compact set of R. Assume that G is a C2

mapping from Λ×X into Y , D2G is bounded on all bounded subsets of Λ×X.
Assume that (7)-(9) hold and that {(λ, ϕ(λ)) : λ ∈ Λ} is a branch of
nonsingular solutions of (5). Then there exists a neighborhood O of the origin
in X and (for h ≤ h0 small enough and N,M large enough ) a unique C2

function λ 7→ ϕN,h,M ∈ X such that

{(λ, ϕN,h,M (λ))} is a branch of nonsingular solutions of (6), (10)

ϕN,h,M (λ)− ϕ(λ) ∈ O. (11)

Moreover, there exists a constant C independent of h, p and λ such that

‖ϕN,h,M (λ)− ϕ(λ)‖X ≤ C‖(TN,h,M − T )G(λ, ϕ(λ))‖X , ∀λ ∈ Λ. (12)

We shall recast the optimality system corresponding to (P4) and its
discretization (16) into a form that fits the above framework. We note that the
theorem holds without major modification.
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Stochastic Inverse Problems > Error estimates

Let
W (D) := W 1,6

0 (D), W ′(D) := W−1, 65 (D),

and define the spaces

X =
`
L6
P (Ω;W (D))

´2
, Y =

`
L6
P (Ω;W ′(D))

´4
, Z =

`
L6
P (Ω;L2(D))

´4
.

We also introduce the following approximating spaces

XN :=
`
L6
ρ(Γ

N ;W (D))
´2
, XN,h :=

`
L6
ρ(Γ

N ;Wh(D))
´2
,

XN,h,M :=
n
v ∈ C0(ΓN ;Wh(D)) : v(γ, x)=

MX
m=1

vm(x)`m(y), {vm}Mm=1 ∈Wh(D)
o2

.

Let the operator T ∈ L(Y,X) be defined as follows: T (θ,Θ, f, τ) = (v, ζ) iffZ
Ω

Z
D

1
2
(κmin+κmax)∇v(ω)·∇z dxdP =

Z
Ω

Z
D

− 1
π

(κmin−κmax)θ(ω) ·∇z+f(ω)z dxdP,Z
Ω

Z
D

1
2
(κmin+κmax)∇ζ(ω)·∇z dxdP =

Z
Ω

Z
D

− 1
π

(κmin− κmax)Θ(ω) ·∇z+τ(ω)z dxdP,

for all z ∈W (D).
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Stochastic Inverse Problems > Error estimates

We denote now by R(φ) the unique real root of

R(1 +R2) = φ,

namely

R(φ) =
3

s
φ

2
+

r
φ2

4
+

1

27
+

3

s
φ

2
−
r
φ2

4
+

1

27

and remark that the optimality condition writes as

κ(ω, x) = R(− 1

β
∇u(ω, x)∇η(ω, x)) a.e. in Ω×D. (13)

Next we define the nonlinear mapping G : Λ×X → Y as follows:

G(λ, (v, ζ)) = (− arctan(R(− 1

β
∇v∇ζ))∇v,− arctan(R(− 1

β
∇v∇ζ))∇ζ, f,E(v − u)),

where f ∈ L2
P (Ω;L2(D)) is the given data.

Clearly the solution to the optimality system is equivalent to

(u, η) + TG(λ, (u, η)) = 0.
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Stochastic Inverse Problems > Error estimates

The discrete operator TN,h,M ∈ L(Y,XN,h,M ) is defined a similar manner, by
TN,h,M (θ,Θ, f, τ) = (vN,h,M , ζN,h,M ), where (vN,h,M , ζN,h,M ) satisfies (16).
First let denote by (vN , ζN ) ∈ XN the Karhunen-Loève truncation solution,
corresponding to (θN ,ΘN , fN , τN ), the K-L truncation of the (θ,Θ, f, τ):Z

Ω

Z
D

1
2
(κmin+κmax)∇vN (ω)·∇z dxdP =

Z
Ω

Z
D

− 1
π

(κmin−κmax)θN (ω) ·∇z+fN (ω)z dxdP,Z
Ω

Z
D

1
2
(κmin+κmax)∇ζN (ω)·∇z dxdP =

Z
Ω

Z
D

− 1
π

(κmin−κmax)ΘN (ω) ·∇z+τN (ω)z dxdP,

(14)

and equivalentlyZ
ΓN

Z
D

1
2
(κmin+κmax)∇vN (γ)·∇z dxdρ

=

Z
ΓN

Z
D

− 1
π

(κmin−κmax)θN (γ) ·∇z+fN (γ)z dxdρ,Z
ΓN

Z
D

1
2
(κmin+κmax)∇ζN (γ)·∇z dxdρ

=

Z
ΓN

Z
D

− 1
π

(κmin−κmax)ΘN (γ) ·∇z+τN (γ)z dxdρ,

for all z ∈W (D).
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Secondly, let denote by (vN,h, ζN,h) ∈ XN,h the solution to the following
problem Z

ΓN

Z
D

1
2
(κmin+κmax)∇vN,h(γ)·∇zh dxdρ

=

Z
ΓN

Z
D

− 1
π

(κmin−κmax)θN (γ) ·∇zh + fN (γ)zh dxdρ,Z
ΓN

Z
D

1
2
(κmin+κmax)∇ζN,h(γ)·∇zh dxdρ

=

Z
ΓN

Z
D

− 1
π

(κmin−κmax)ΘN (γ) ·∇zh + τN (γ)zh dxdρ,

(15)

for all zh ∈Wh(D).
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Thirdly, we use Lagrange interpolation to approximate the solution to (15) in ΓN

vN,h,M (γ, x) ≈
MX
m=1

vN,h(γm, x)`m(γ), ζN,h,M (γ, x) ≈
MX
m=1

ζN,h(γm, x)`m(γ),

for any interpolating nodes, and multi-index m.
Finally, the discrete operator TN,h,M (θ,Θ, f, τ) = (vN,h,M , ζN,h,M ) is defined as

MX
m=1

“Z
ΓN

`m(γ)dρ
”“Z

D

1
2
(κmin+κmax)∇vN,h,M (γm, x)·∇zh dx

”
=

MX
m=1

“Z
ΓN

`m(γ)dρ
”“Z

D

− 1
π

(κmin−κmax)θN (γm, x) ·∇zh + fN (γm, x)zh dx
”
,

MX
m=1

“Z
ΓN

`m(γ)dρ
”“Z

D

1
2
(κmin + κmax)∇ζN,h,M (γm, x)·∇zh dx

”
=

MX
m=1

“Z
ΓN

`m(γ)dρ
”“Z

D

− 1
π

(κmin − κmax)ΘN (γm, x) ·∇zh + τN (γm, x)zh dx
”
.

(16)

The discrete optimality system is of the form

(vN,h,M , ζN,h,M ) + TN,h,MG(λ, (vN,h,M , ζN,h,M )) = 0. (17)
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We now proceed with the verification of (8), (9). For clarity of exposition, we
split the error into the errors due to Karhunen-Loève truncation, finite-element
approximation and the Lagrange interpolation error:

‖(v − vN,h,M , ζ − ζN,h,M )‖X ≤ ‖(v − vN , ζ − ζN )‖X + ‖(vN − vN,h, ζN − ζN,h)‖X
+ ‖(vN,h − vN,h,M , ζN,h − ζN,h,M )‖X .

From (14) we have

‖(v − vN , ζ − ζN )‖X ≤ C‖(θ − θN ,Θ−ΘN , f − fN , τ − τN )‖Y , (18)

(where C is a constant independent of N) and by Mercer’s result it follows that

‖(v − vN , ζ − ζN )‖X → 0 as N →∞. (19)

Similarly, the error due to the finite element approximation is controlled by the
approximation properties of the finite element space

‖(vN − vN,h, ζN − ζN,h)‖X ≤ Ch‖(vN , ζN )‖L6
P

(Ω,W2,6(D))

≤ Ch‖(θN ,ΘN , fN , τN )‖L6
P

(Ω,L6(D)), (20)

for all θN ,ΘN , fN , τN ∈ L6
P (Ω, L6(D)).
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To extend (20) to the whole space Y , i.e., θN ,ΘN , fN , τN ∈ L6
P (Ω,W−1, 65 (D))

we use a density argument.

Lemma

For (θN ,ΘN , fN , τN ) ∈ L6
P (Ω,W−1, 65 (D))

‖(vN − vN,h, ζN − ζN,h)‖X → 0, as h→ 0. (21)

Proof For any θN ,ΘN , fN , τN ∈ L6
P (Ω,W−1, 65 (D)) there exist sequences of

functions {θNi }, {ΘN
i }, {fNi }, {τNi } ⊂ L6

P (Ω, L6(D)) such that

‖(θNi − θN ,ΘN
i −ΘN , fNi − fN , τNi − τN )‖Y → 0 as i→∞. (22)

Denoting by (vNi , ζ
N
i ) the solution to (14) corresponding to (θNi ,Θ

N
i , f

N
i , τ

N
i )

and by (vN,hi , ζN,hi ) the solution to (15) corresponding to (θNi ,Θ
N
i , f

N
i , τ

N
i ), we

have that

‖(vN − vN,h, ζN − ζN,h)‖X (23)

≤ ‖(vN−vNi , ζN−ζNi )‖X+‖(vNi −vN,hi , ζNi −ζN,hi )‖X+‖(vN,hi −vN,h, ζN,hi −ζN,h)‖X
≤ C‖(θN−θNi ,ΘN−ΘN

i , f
N−fNi , τN−τNi )‖Y +Ch‖(θNi ,ΘN

i , f
N
i , τ

N
i )‖L6

P
(Ω,L6(D)).

For the first and last terms we used the same argument as in (18), for the
second term (20). Putting together (22) and (23) completes the argument. �
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The quadrature error, collocation, Smolyak, etc.

‖(uN,h − uN,h,M , ηN,h − ηN,h,M )‖X ≤ F(w,M)→ 0 as M →∞. (24)
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Lemma

The following approximations hold

∀(θ,Θ, f, τ) ∈ Y ‖(T − TN,h,M )(θ,Θ, f, τ)‖X → 0, (25)

and moreover,

‖T − TN,h,M‖L(Z,X) → 0 (26)

as h→ 0, and N,M →∞.

Proof. For any (θ,Θ, f, τ) ∈ Y , using (19), (20) and (24), we have

‖(T − TN,h,M )(θ,Θ, f, τ)‖X = ‖(v − vN,h,M , ζ − ζN,h,M )‖X
≤ ‖(v−vN , ζ−ζN )‖X + ‖(vN−vN,h, ζN−ζN,h)‖X

+ ‖(vN,h−vN,h,M , ζN,h−ζN,h,M )‖X → 0,

as N →∞, h→ 0,M →∞. This proves (25), while (26) follows from the
continuous embedding of Z ⊂ Y . �
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The Fréchet derivative of G(λ, (u, η)) is

D(u,η)G(λ, (u, η)) · (u, η)

=

"
− arctan[R(− 1

β
∇u∇η)]∇u−

R′(− 1
β
∇u · ∇η)

`
− 1

β
(∇u · ∇η +∇u · ∇η)

´
1 +R2(− 1

β
∇u∇η)

∇u,

− arctan[R(− 1

β
∇u∇η)]∇η −

R′(− 1
β
∇u∇η)

`
− 1

β
(∇u · ∇η +∇u · ∇η)

´
1 +R2(− 1

β
∇u∇η)

∇η, 0,E(u)

#
,

for all (u, η) ∈ X.

Lemma

D(u,η)G(λ, (u, η)) ∈ L(X,Z) for all (u, η) ∈ X. Moreover, G is C2 mapping,
and D2G is bounded on all bounded sets of X.

Proof. For any (u, η), (u, η) ∈ X, because arctan,R′ are bounded with bounded
derivatives, we have

‖D(u,η)G(λ, u, η) · (u, η)‖Z ≤ ‖∇u‖L2
ρ(Γ;L2(D)) + ‖∇η‖L2

ρ(Γ;L2(D))

+
1

β

`
‖u‖X‖η‖X‖u‖X + ‖u‖2X‖η‖X + ‖u‖X‖η‖2X + ‖u‖X‖η‖X‖η‖X

´
≤ C‖(u, η)‖X .

The proof of the second part is a consequence of the boundedness of arctan,R′
and R′′. �
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Theorem

Let {(λ = β, ϕ(λ) = (u(λ), κ(λ));λ ∈ Λ} be a nonsingular branch of solutions.
Then there exists a neighborhood O of the origin in X and, for h ≤ h0 small
enough and N,M sufficiently large, a unique C2 branch of solutions of (17)
such that

ϕN,h,M (λ) ∈ ϕ(λ) +O.
Moreover, if

assumptions in K-L expansion, Smolyak

we have the estimate

‖u− uN,h,M‖
L6
P

(Ω;W
1,6
0 (D))

+ ‖η − ηN,h,M‖
L6
P

(Ω;W
1,6
0 (D))

≤ C(h+ errors in N, M )E(u, η, f, u),

where

E(u, η, f, u) =
`
‖∇u‖

L6
P

(Ω;W
−1, 65 (D))

+ ‖∇η‖
L6
P

(Ω;W
−1, 65 (D))

+ ‖f‖
L6
P

(Ω;W
−1, 65 (D))

+ ‖E(u− u)‖
L6
P

(Ω;W
−1, 65 (D))

´
.
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From the form of κ in (13), we have (using Taylor expansion and boundedness of
R′, Cauchy-Schwarz)

‖κ− κN,h,M‖L3
P

(Ω;L3(D))

≤ C
`
‖(∇u−∇uN,h,M )∇η‖L3

P
(Ω;L3(D)) + ‖∇u(∇η −∇ηN,h,M )‖L3

P
(Ω;L3(D))

´
≤ C

`
‖∇u−∇uN,h,M‖L6

P
(Ω;L6(D)) + ‖∇η −∇ηN,h,M‖L6

P
(Ω;L6(D))

´
.

We remark here that this κ gives the sought coefficient through formula (3).
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Numerical Example
Stochastic parameter identification

Couple an adjoint-based gradient algorithm with gSCFEM to compute the
optimal pair (bu,ba) s.t. J3,4(ba, bu) = inf

(a,u)∈Aad
J3,4(a, u)

J3(a, u) = E
»

1

2
‖u(ω, x)− u(ω, x)‖2L2(D) +

β

2
‖a(ω, x)‖2L2(D)

–
(P3)

J4(a, u) =
1

2

‚‚E[u](x)− E[u](x)
‚‚2

L2(D)
+
β

2

‚‚E[a](x)
‚‚2

L2(D)
(P4)

Stochastic target: u = x(1− x2) +
PN
n=1 sin

`
nπx
L

´
Yn(ω)

Exact random coeff.: ba = (1 + x3) +
PD
d=1 cos

`
mπx
L

´
Yd(ω)

Deterministic initial guess: a = 1 + x

Exact given RHS: f = ∇·(ba(ω, x)∇u(ω, x))

E[Yi] = 0 and E[YiYj ] = δij for i, j ∈ N+, are taken uniform in the interval
[0, 1], and x ∈ R1

GOAL: given the random f , identify the expectation of both the paramter E[a]
and the state E[u] and compare with the exact statistical quantities.
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N = 1 example: inf J3(a, u)
Tracking the expectation of the parameter E[a] and the state E[u]

M = 5
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Tracking the expectation of the parameter E[a] and the state E[u]

M = 5
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N = 11 example: inf J3(a, u)
Tracking the expectation of the parameter E[a] and the state E[u]

M = 1581
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N = 11 example: inf J4(a, u)
MC vs. gSC

M ∼ 109
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N = 5, 10 and 20 examples: MC vs. SC
Tracking the expectation of the state E[u] and control E[κ]

N gSC MC

11 360 7e+09
51 1581 9e+10

121 4801 8e+12
251 11561 1e+15

Table: For ΓN , with N = 11, 51, 121 and 251, we compare the number of
deterministic solutions required by the generalized Stochastic Collocation (gSC)
using Chebyshev abscissas and the Monte Carlo (MC) method using random
abscissas, to reduce the original error in both ‖E[u]− E[u]‖L2(D) and

‖E[a]− E[ba]‖L2(D) by a factor of 106.
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Concluding remarks

High-dimensional problems are a characteristic of modern forward and
inverse UQ. Accurate Monte Carlo-type results take too long and tensor
product methods suffer from the curse of dimensionality

Extensions to fully adaptive gSC: Notice that the coefficient are defined by
the following hierarchical description:

c(i) = up −A m,g(p− 1, N)(u) = up − up−1

and thus local adaptivity is achieved by replacing the basis with hierarchical
piecewise interpolants (unstable multiscale L2 splitting).

Optimal L2 splitting and two sided
estimates for the coefficient using
semi-orthogonal hierarchical basis
functions, e.g. prewavelets

TASMANIAN: Toolkit for Adaptive Stochastic Modeling And
Non-Intrusive ApproximatioN. ORNL multilevel parallel object-oriented
framework for adaptive UQ in high-dimensional spaces supporting terascale
laptop to petascale cluster to exascale supercomputer
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