

Agenda

- Siemens Overview
- Global Energy Perspectives
- Canadian Energy Market
- 4 Innovations
- Wind Forecasting
- Thoughts for the Future

Page 2 November 2011 Energy Sector © Siemens AG 201

Siemens – A Global Powerhouse

Energy

Divisions

- § Fossil Power Generation
- § Solar & Hydro
- § Oil & Gas
- § Energy Service
- S PowerTransmission

Healthcare

Divisions

- § Imaging & Therapy Systems
- § Clinical Products
- S Diagnostics
- S CustomerSolutions

Industry

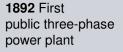
Divisions

- IndustryAutomation
- S DriveTechnologies
- S Customer
 Services

Infrastructure & Cities

Divisions

- § Rail Systems
- § Mobility and Logistics
- S Low and Medium Voltage
- § Smart Grid
- S BuildingTechnologies



€ 80"0 Business Volume – 405,000 Employees – ~5% R&D Investments

Page 3 November 2011 Energy Sector © Siemens AG 201

Siemens Energy Sector – Innovations and strategic decisions for energy over the last 140 years

1866 Dynamo machine

1930 Expansion circuit-breaker

1927 Benson boiler

1964 First SF₆ circuit-breaker

1989 Infinitely variable three-phase compensator

2002 World record in combined cycle power plant efficiency

2008 Most powerful gas turbine 375 MW

1866 1900 1925

1975

2000

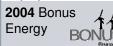
2008

1903 Siemens-Schuckert-Werke

1969 Trafo Union

1969 KWU

1998 Siemens Westinghouse


2001 Demag Delaval

2006 VA TECH T&D VATECIII.

2003 Alstom **Industrial Turbines**

2009 Archimede Solar

2009 Solel SOLEL

2007 Kühnle, Kopp & Kausch AG

November 2011 **Energy Sector** Page 4

Siemens Energy Sector – Newly focused on the markets of tomorrow

Energy products and solutions – in 6 Divisions

Oil & Gas

Fossil Power Generation

Wind **Power** Solar & Hydro

Energy **Service**

Power Transmission

Keystone Pipeline

York Energy Centre

Comber

Thunder Wind Farm Bay Airport **Solar Array**

Bruce Energy Sector

Nanticoke

Page 5

November 2011

Agenda

- Siemens Overview
- **Global Energy Perspectives**
- Canadian Energy Market
- 4 Innovations
- Wind Forecasting
- Thoughts for the Future

Page 6 November 2011 Energy Sector © Siemens AG 201

Megatrends to 2050 – shaping the future

Urbanization

Urban populations will double to 6 billion

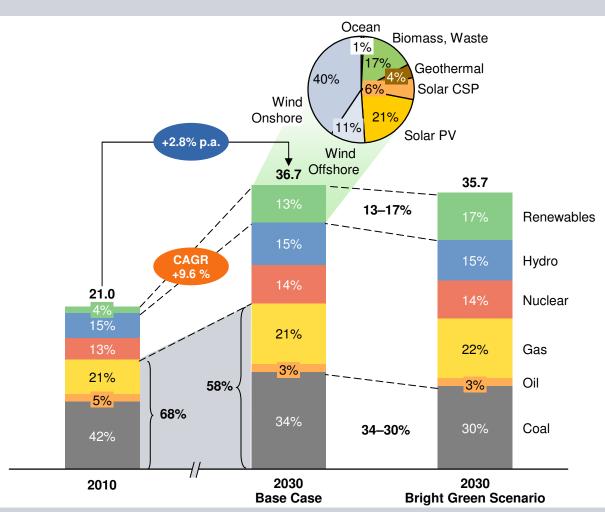
Demographic change

Average age worldwide will increase from 26 to 38 years

Climate change

CO₂ productivity must grow by factor of 15 to prevent temperature rising more than 2°C

Globalization


BRIC countries will contribute 50% of global economic growth

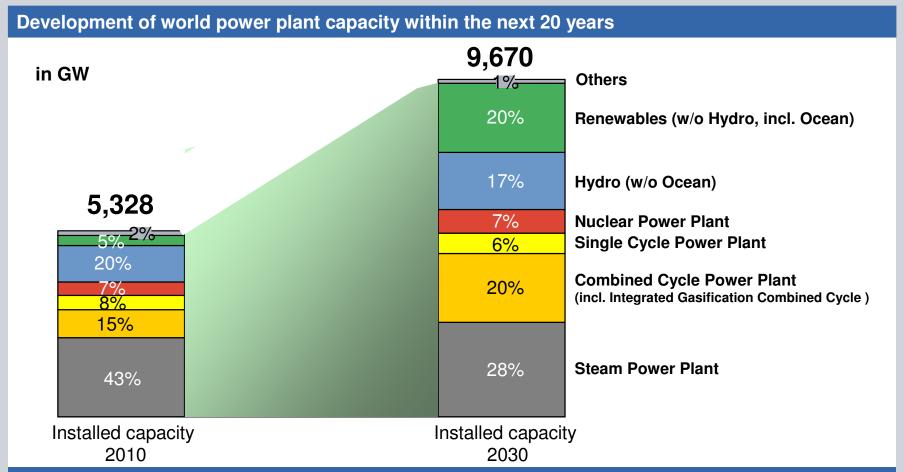
Source: United Nations, The Lancet, Climate Works/European Climate Foundation, Economist

Page 7 November 2011 Energy Sector © Siemens AG 201

Trends in power generation – Two possible scenarios

World power generation (in 1000 TWh)

Bright Green Scenario assumptions:


- § Cost-cuts in renewables
- § Energy storage available
- § Expansion of transmission grids
- S Gas to compensate for intermittency of renewables

Source: Siemens

Page 8 November 2011

Energy demand – Doubling the installed capacity by 2030

Power generation capacity built in > 100 years to double within two decades

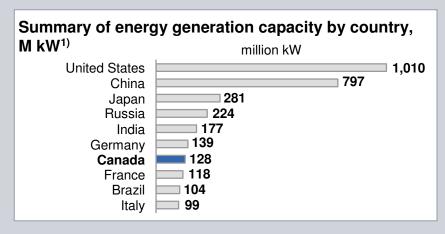
Page 9 November 2011 Energy Sector © Siemens AG 2011

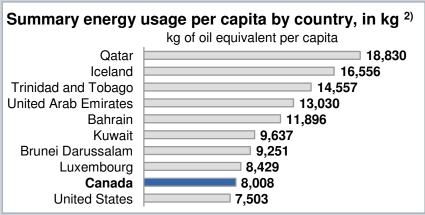
On the way to a sustainable energy system

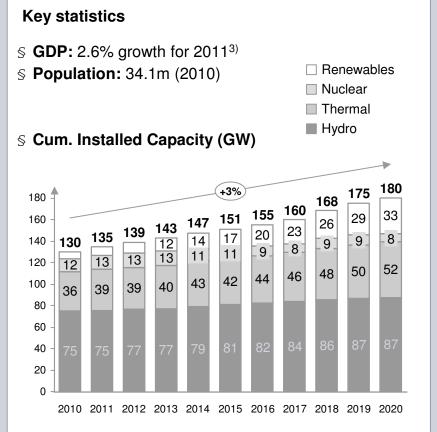
19 th century	20th century	Start of 21st century	End of 21st century	
Electrification of society: Age of coal	Large-scale generation of electrical energy with fossil fuels	Megatrends force process of rethinking	The new power age: Electricity becomes the form of energy	
Energy system not sustainable Sustainable energy system				
Generation and load closely coordinated	Generation follows load	Increasingly decentralized, fluctuating power generation	Load follows generation with intelligent grids	
Fossil fuels, hydro power	Fossil fuels, hydro power, nuclear power	Fossil fuels, hydro power, nuclear power, biomass, wind, solar	Renewable energies, "clean" coal, gas, nuclear power	
No environmental concerns Environmental awareness				

Page 10 November 2011 Energy Sector © Siemens AG 201

Agenda


- Siemens Overview
- Global Energy Perspectives
- Canadian Energy Market
- Innovations
- Wind Forecasting
- Thoughts for the Future


Page 11 November 2011 Energy Sector © Siemens AG 201


Canada is world's #7 energy producer, and one of its greatest users per capita

Canada macroeconomic snapshot

- 1) EIA International Energy Statistics data as of 2008
- 3) "Global Forecast Update" Scotiabank Group, 2011-08-05 Source: CAN E Market Transparency Project
- 2) IEA data as compiled by the World Bank
- 4) Statistics Canada, CANSIM, table 052-0005 and Catalogue no. 91-520-X.

Canadian energy market is heavily influenced by politics in Canadian provinces and US exports

Theresa to refine further

PEST analysis of Canada's energy market

Political Factors

- S Canadian provincial and federal government push renewable energy – esp. wind; continued investment depends on continuation of renewable incentive programs
- S Political instability in the in OPEC nations may create a surge in demand for Canadian oil
- S Canada exports oil and electricity to the US and its markets are therefore tied to US policy

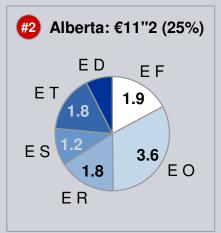
Economic Factors

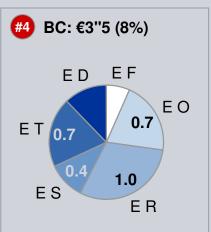
- Stable financial institutions create positive investment climate
- S A weak global economy may delay or postpone future energy projects
- Increased competition in several segments (transformers, solar, wind) have driven prices down
- Strong dollar prolongs difficulties in manufacturing sector
- Free trade agreements with EU and Brazil may shift trade balance

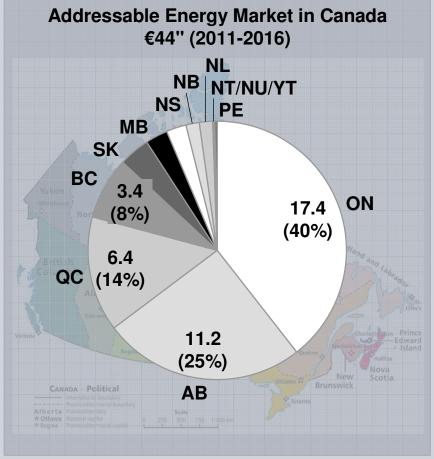
Social Factors

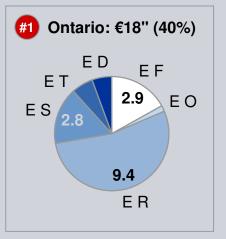
- S Renewables programs established at provincial level
- S Call for regulation of coal-fired generation across Canada
- S Urbanization in Canada increased from 15% to 40% between 1978 and 2008, driving urban demand for electricity
- S Workforce demographics and supportive immigration policy are creating highly diverse workplace

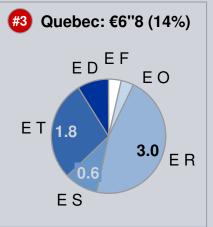
Technological Factors

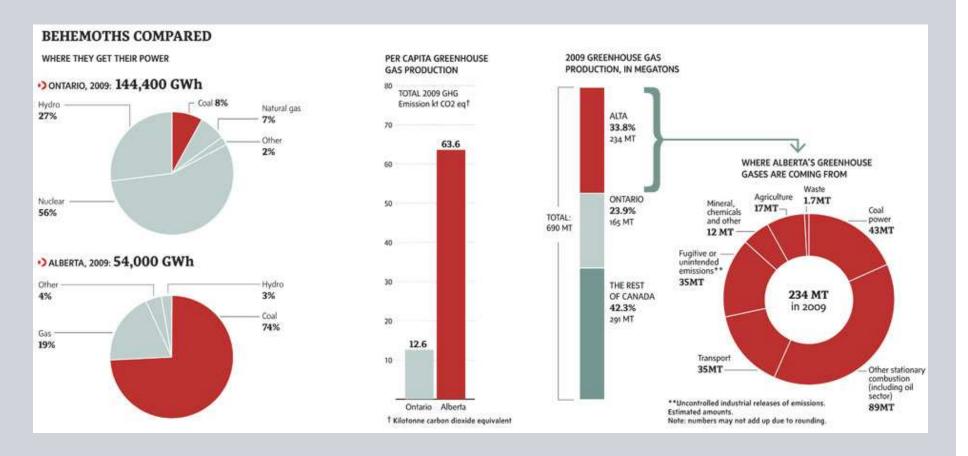

- S Canada's aging energy infrastructure requires maintenance to continue operation
- S Generation investments will focus on efficiency and lowering environmental footprint
- S Demand management programs in selected provinces are creating incremental investment in transmission and distribution systems
- S New market players enter the Canadian energy market with new innovations


Source: CAN E Market Transparency Team, Statistics Canada: www.statcan.gc.ca




Ontario, Alberta, Quebec, BC are the top 4 energy markets in Canada – Wind is Growing Fastest


Top Canadian markets by total addressable market (2011-2016, EUR)



Alberta and Ontario are main greenhouse gas producers

Power & greenhouse gas production: Ontario vs. Alberta

Source: Globe and Mail, Sept 12 2011

Page 15 November 2011

Market spike expected in 2013

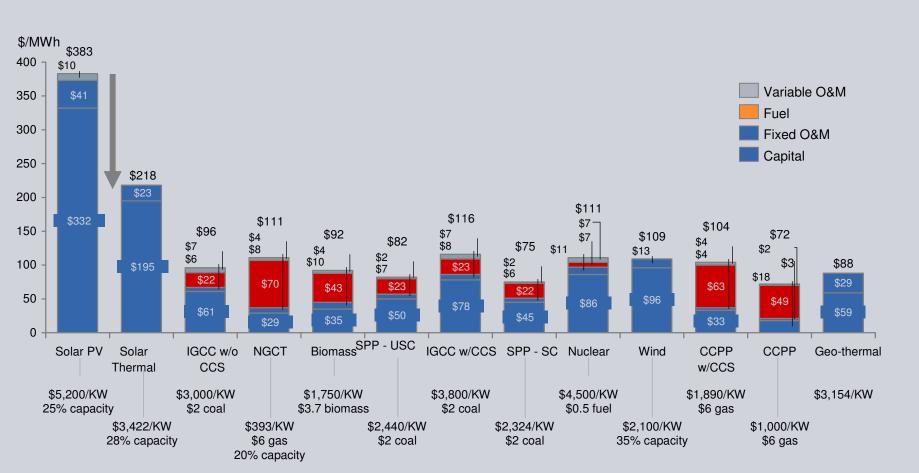
November 2011

Clarification on provincial nature of Canadian wind markets

Implications / recommendations for E W

- **Alberta** merchant market, price competition, carbon offsets
- Quebec: Concluding entail offering, second tranche of installations expected, complimentary to large hydro
- Ontario: FIT program is pioneering clean development,
- 4 Atlantic Canada Comfit on Nova Scotia, simultaneous development with Lower Churchill

¹⁾ Absolute values being aligned as part of MEP / SR2012
Source: CAN E Market Transparency Project, Canada Wind Power Outlook 2010 to 2020 Global Data Research, July 2011, CanWea, NRCan, IESO Long term plan 2011, IESO

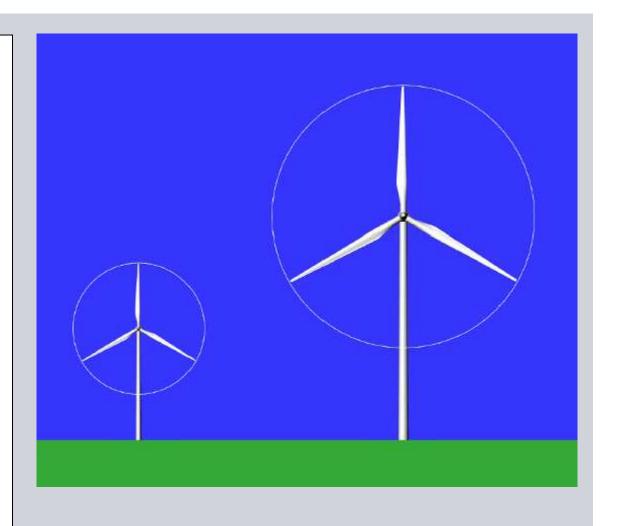


Agenda

- Siemens Overview
- Global Energy Perspectives
- Canadian Energy Market
- **Innovations**
- Wind Forecasting
- Thoughts for the Future

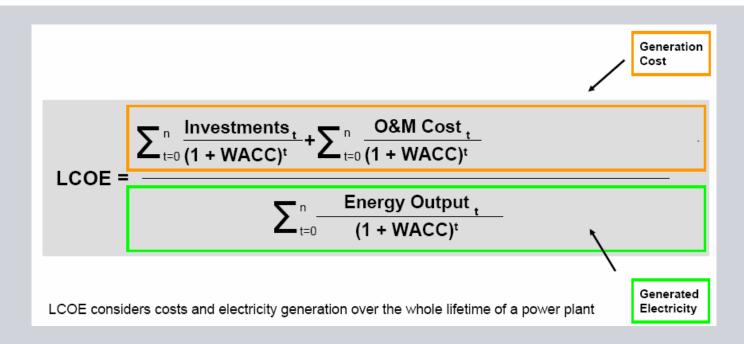
Page 17 November 2011 Energy Sector © Siemens AG 201

Econonmics and Technnology Generation LCOE Comparison — (without Carbon Pricing)


Note: Assumed cost of equity of 12%, cost of debt 7.5%, 55% debt and escalation of 4.5%; general inflation rate of 2.5%; analysis excludes tax benefits; assumes baseload capacity if not stated ICGG – Integrated Gasification Combined Cycle; CCS – Carbon, Capturing and Storage; NGCT – Natural Gas Combustion Turbine; USC – Ultra Super Critical; SC – Super Critical

Source: EIA; multiple industry reports and company filings; Booz & Company analysis

What is the fundamental challenge?


The problem is the square cube law

- If we multiply all dimensions by two...
 - The blade length increases linearly with the scaling factor – the blade is two times longer
 - The rotor area increases with the scaling factor squared – the rotor area is four times larger
 - The volume of the equipment increases with the scaling factor cubed – the weight is eight times larger
- In other words, when we double the size, we get four times as much energy, but have a machine that is eight times heavier

The Fundamentals of Competition

- Reduction of investment
 - WTG investment
 - BOP investment
- Reduction of O&M Cost
- Increase of energy output

Page 20 November 2011 Energy Sector © Siemens AG 2011

The SWT-3.0-101 wind turbine with direct drive technology is designed for low cost of energy

SIEMENS

SWT-3.0-101 wind turbine generator

IEC Class:

Rotor diameter: 101 m

Blade length: 49 m

Swept area: 8,000 m²

Hub height: 80-100 m

Power regulation: pitch regulated, VS

Annual output at 8.5 m/s: 12.4 GWh¹⁾

Blade weight: 10.3 tons

Rotor weight: 60 t

Nacelle weight: 73 t

80 m tower weight (IEC IIB): 170 t

Serial production: 2011

Total number installed: 5²⁾

Units ordered: 25

Page 21 November 2011

¹⁾ Power curve revision 1 2) June 2011

The SWT-2.3-101 wind turbine optimizes your energy yield in moderate wind conditions

SWT-2.3-101 wind turbine generator

IEC Class:

Rotor diameter: 101 m

Blade length: 49 m

Swept area: 8,000 m²

Hub height: 80-100 m

Power regulation: pitch regulated, VS

Annual output at 8.5 m/s: 10.5 GWh¹⁾

Blade weight: 10.3 tons

Rotor weight: 60 t Nacelle weight: 82 t

80 m tower weight (IEC IIB): 170 t

Serial production: 2009
Total number installed: 454²⁾

Page 22 November 2011

¹⁾ Power curve revision 2 2) June 2011

SWT-2.3-113: Direct drive turbine with 113 m rotor improved energy yield and acoustic performance

Technical data

IEC class: IIB / IIIA

Nominal power: 2,300 kW

Rotor diameter: 113 m

Blade length: 55 m

Swept area: 10,000 m²

Hub height: 79.5m and 99.5m

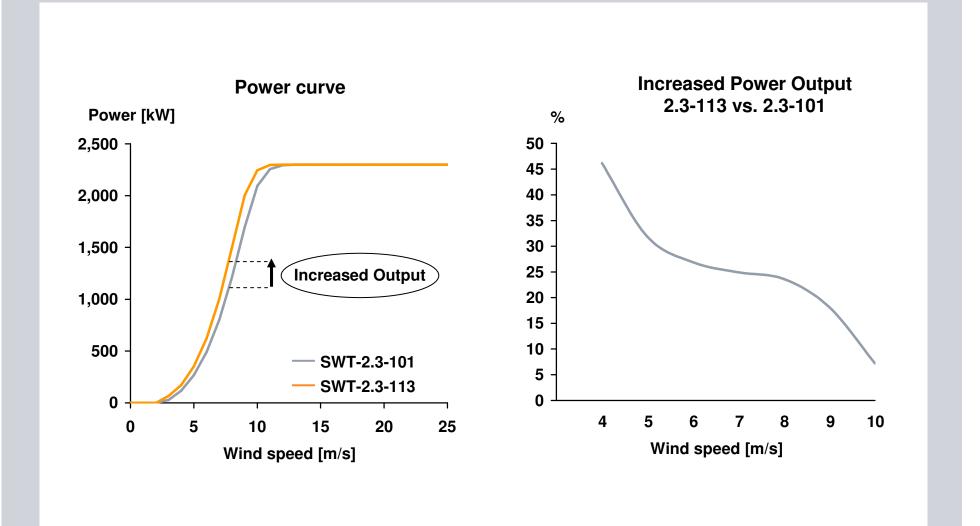
Rotor weight: 67 t

Nacelle weight: 73 t

Power regulation: Pitch regulation, variable

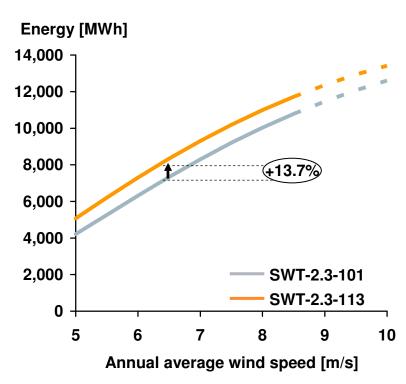
speed

Prototype installed: March 2011


Pilot series 2011 Serial production: 2012

Page 23 November 2011 Energy Sector © Siemens AG 201

SWT-2.3-113 Direct Drive: Enhanced Efficiency



Page 24 November 2011 Energy Sector © Siemens AG 201

SWT-2.3-113 Annual Energy Production (AEP) up 13.7%

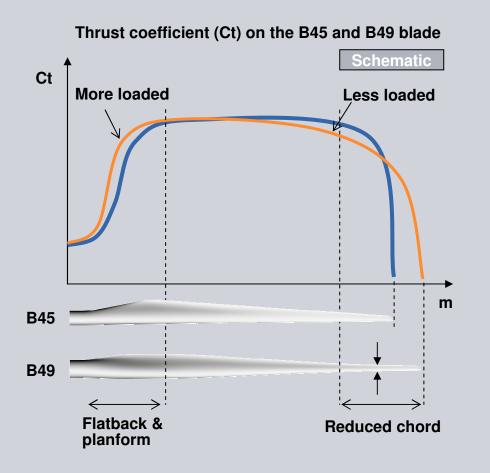
SWT- 2.3-113			
Annual average			
wind speed	AEP (kWh)		
[m/s]			
5.0	5,077		
5.5	6,206		
6.0	7,302		
6.5	8,341		
7.0	9,306		
7.5	10,192		
8.0	10,996		
8.5	11,720		
9.0	12,363		
9.5	12,928		
10.0	13,417		

Page 25 November 2011 Energy Sector © Siemens AG 201

The 2.3-113 has the same nacelle as the 2.3-101, the main difference is in the generator winding

SIEMENS

- S Generator is dimensioned by torque
- S The 3.0-101 generator has 2000 kNm torque at 16 rpm
- S The 113 m rotor has a rotor speed of 13 rpm to keep down noise
- At 2000 kNm and 13 rpm the power output is 2.3 MW
- The 2.3-113 nacelle shares the same benefits as the 3.0-101 – simple, lightweight nacelle, direct access to hub, passive cooling system with liquid link, etc.


Page 26 November 2011 Energy Sector © Siemens AG 2011

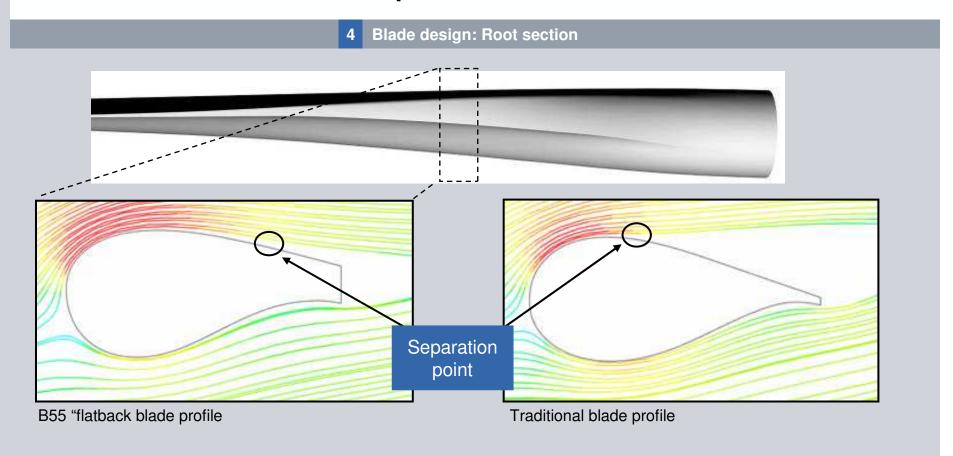
Evolution with a twist of revolution: 15% larger swept area with the same loads

4

Blade design: loads

New aerodynamic profile redistributes loads in the B49 blade, reducing the cumulative bending moment

The root section is more heavily loaded due to the use of special flatback airfoils, and a larger planform (more chord)


The tip section is less heavily loaded due to reduced chord length

—— B45 —— B49

Page 27 November 2011

The new B55 has "flatback" profile in root section

- Flat back airfoil 'opens up' the trailing edge
- Separation point moved further towards the trailing edge giving increased lift

Page 28 November 2011 Energy Sector © Siemens AG 2011

Blade design innovation

First generation blade – B45 (2005)

- Linear leading and trailing edge
- Maximum chord at well-defined shoulder ~20% from root
- Airfoils from aircraft industry
- Inboard part generally with rudimentary airfoils

Quantum Blade I – B49 (2008)


- Non-linear leading and trailing edge
- Proprietary flatback airfoils at root
- Load reduction by pressure centre moved closer to root
- Same loads as B49, 7-8 % more energy

Quantum Blade II – B55 (2010)

- Non-linear leading and trailing edge
- Shortened section of maximum chord, slender outboard part
- Load reduction enhanced by low weight and high flexibility
- Marginally higher loads than B49, 8-10% more energy

Aeroelastically Tailored Blade – B60 (2013)

- Curved planform
- Proprietary airfoils both at root (flatbacks) and outboard
- Load reduction by twist-bend coupling
- Same loads as B55, 8-10% more energy at low winds

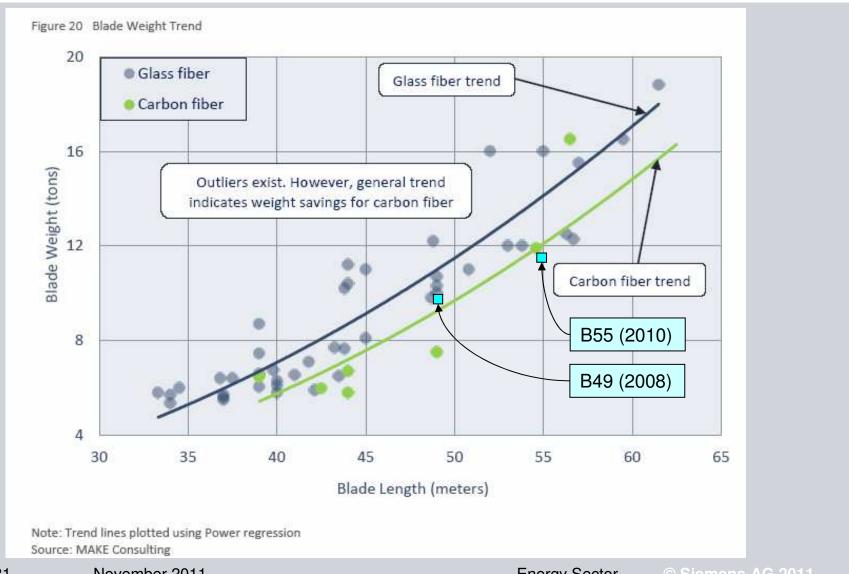
Blade manufacturing innovation

1. Generation 1999 - 2012

2. Generation 2012 - 2016

Stability

- S Hand lay-upS Fibres: Glass
- S Resin: Epoxy
- Woven mats
- § 32 h cycle time § Total 300 manhours


Volume

- S Partly automated lay-up
- S Fibres: Glass
- Resin: Vinylester
 Beam glass non-woven
 16 h cycle time
 Total 150 manhours

Automation

- Fully automated lay-up
 Fibres: Glass (carbon?)
 Resin: Polyurethane?
 All fibres non-woven
 8 h cycle time
 Total 75 manhours

SWP "Quantum Blades" setting standard for low weight – using low-cost glass fibers, not carbon

November 2011 **Energy Sector** Page 31

Blades summary – Larger Rotor Diameters have been developed and are being tested today

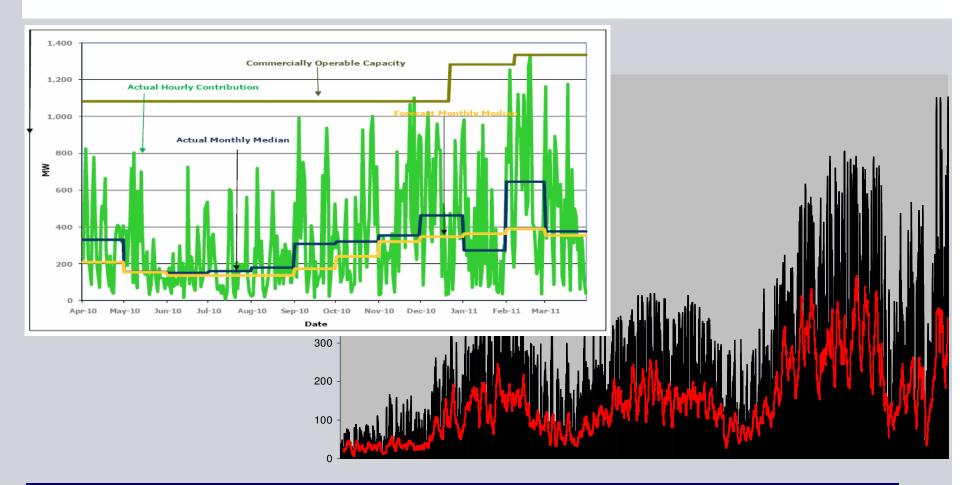
Merger of aerodynamics, loads and structural response into aero-elastically tailored blade

- Next generation blade configuration on the way
- B49 and B55 already with state-of-the-art performance and weight

Quantum-leap optimization of blade manufacturing initiated

- First generation manufacturing maintained since commencement of insourcing
- Second generation promises reduction of lead time and man hours per blade by 50%
- Third generation in pipeline, will take automation of blade manufacturing to next level

Page 32 November 2011 Energy Sector © Siemens AG 201


Agenda

- Siemens Overview
- Global Energy Perspectives
- Canadian Energy Market
- 4 Innovations
- **Wind Forecasting**
- Thoughts for the Future

Page 33 November 2011 Energy Sector © Siemens AG 201

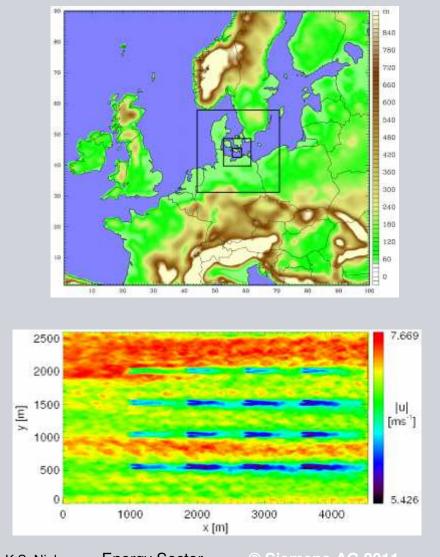
The Challenge with Integrating renewables

Forecasting tools, digital controls deploying smart algorithms, combined with flexible load following capability plus storage at

MW scale

Page 34 November 2011 Energy Sector © Siemens AG 201

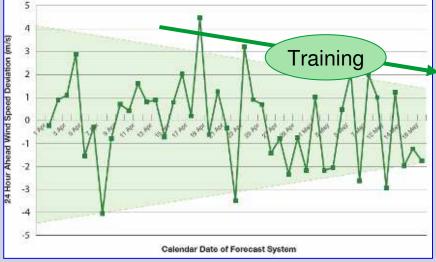
Collaboration with Lawrence Livermore National Labs analyzed potential groundbreaking approach


<u>Project Setup (2009-2011)</u>:

- S Building a team of professional meteorologists
- S Comprehensive wind energy prediction system
- Research based on offshore wind farm in Danmark

Deliverables:

- 1. Ensemble forecast platform
- 2. Cutting-edge data assimilation tool
- 3. Predictive turbine wake model (unique to Siemens)


Project concluded with advanced prediction algorithm, ready for validation across different wind farms

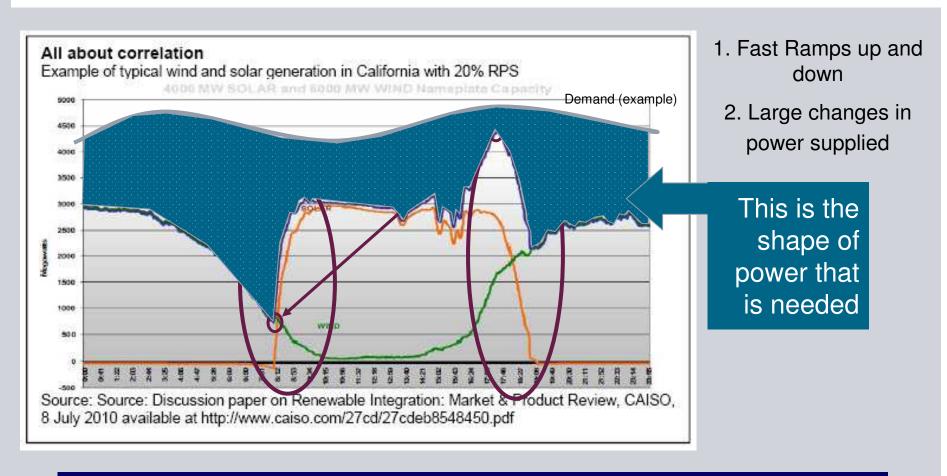
Promising research results currently tested on various wind farms to verify forecast accuracy

- S Technology validation in collaboration with commercial supplier of forecasting solution
- S Leveraging Siemens' access to turbinedata and knowledge about turbine dynamics to improve forecasting accuracy by intelligent prediction
- S Three wind farms connected to forecasting system (onshore simple, onshore complex, offshore):
 - S Training and fine-tuning of forecasting algorithms
 - S Optimization of user interface and communication interfaces with wind turbines

Tailoring of forecasting solutions to customer segments important to maximize value add

- Several customer groups will benefit of improved forecasting

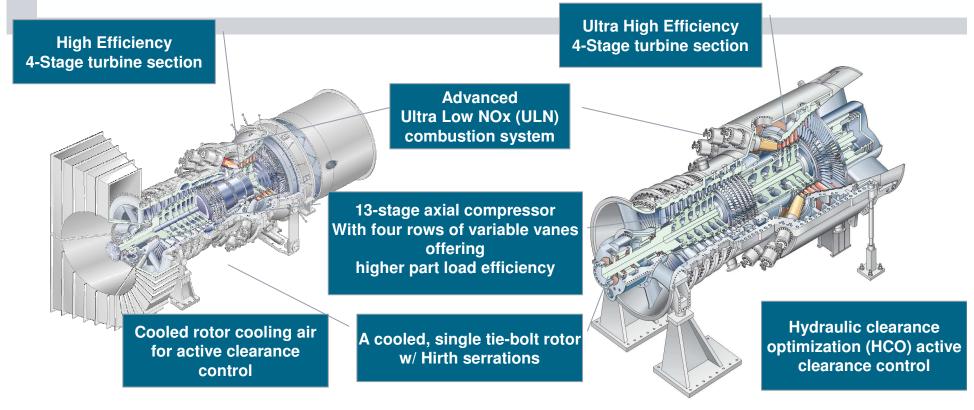
 - § Power utilities
 - S TSOs & ISOs
 - § Windfarm service providers
- S Features of Siemens' product suite will be tailored to needs of selected customer groups
- S Further development focuses on integration of critical events (lightning, icing, wind-ramps, offshore: wave height)


Agenda

- Siemens Overview
- Global Energy Perspectives
- Canadian Energy Market
- 4 Innovations
- Wind Forecasting
- Thoughts for the Future

Page 38 November 2011 Energy Sector © Siemens AG 201

The Challenge with Integrating renewables



For this example, this is the shape of power that must be available to fully enable your renewables

Page 39 November 2011 Energy Sector © Siemens AG 2011

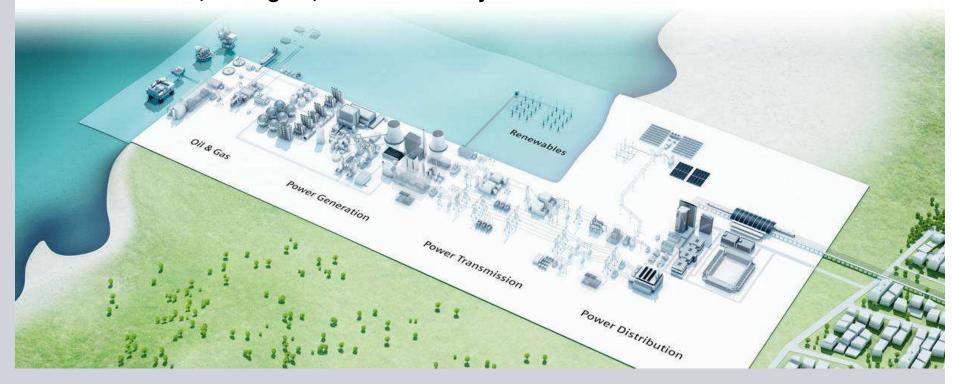
The Gas Turbine Evolution from the SGT6-5000F to the SGT6-8000H

SIEMENS

SGT6-5000F

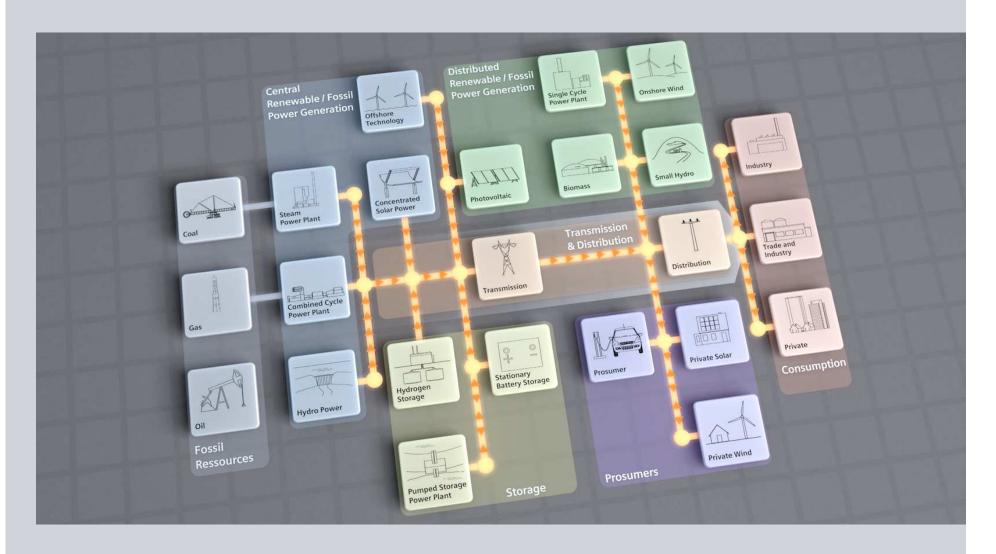
An field proven power house rated at 208+ MW, 38.5% Efficiency able to provide up to 150 MW in 10 minutes and load follow at up to 30 MW/min

SGT6-8000H


Adding ultra high efficiency to flexibility rated at 274 MW, 40% Efficiency able to provide 150 MW in < 10 min and load follow at up to 30 MW/min

Page 40 November 2011 Energy Sector © Siemens AG 201

Traditional System View


For decades, we have been successfully working on making energy systems more reliable, intelligent, and eco-friendly.

Page 41 November 2011 Energy Sector © Siemens AG 201

System Transformation – A new paradigm

Page 42 November 2011 Energy Sector © Siemens AG 201

