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Control Systems Modelled by PDE’s

Beam

Acoustic Noise in Duct

Plate
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Optimal H∞-performance for acoustic noise in a duct
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Linear-quadratic control of beam vibrations- one actuator
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Variation of H∞-optimal cost in simply supported beam - one actuator
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Variation of H∞-optimal cost in simply supported beam- one actuator
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Optimal Actuator Location

Freedom on where to place the actuators

Performance depends on actuator location.

Different performance objectives in controller design

Actuators should be located to optimize performance.
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Control System Formulation

z(x , t) is temperature at point x , time t

heat flux u(t) is controlled

b(x) describes distribution of applied energy

PDE

∂z

∂t
=
∂2z

∂x2
+ b(x)u(t), 0 < x < 1,

z(0, t) = 0, z(1, t) = 0.
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State-space Formulation

PDE

∂z

∂t
=
∂2z

∂x2
+ b(x)u(t), 0 < x < 1,

z(0, t) = 0, z(1, t) = 0.

dz

dt
= Az(t) + Bu(t)

state-space H = L2(0, 1)

A = ∂2

∂x2 with domain
D(A) = {z(x) ∈ H2(0, 1) with z(0) = z(1) = 0}.
B = b(x)
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Strongly Continuous Semigroups

ż(t) = Az(t), z(0) = z0

Definition: Strongly continuous semigroup S(t) on Hilbert space H
S(0) = I ,

S(t)S(s) = S(t + s),

limt↓0 S(t)z = z , for all z ∈ H.

A generates a strongly continuous semigroup S(t) on H: For
all z ∈ D(A),

Az = lim
t↓0

S(t)z − z

t

If u ≡ 0,
z(t) = S(t)z0.
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Approaches to Controller Design

Direct

Use PDE directly to design controller.

Controller may be infinite-dimensional

Infinite-dimensional controller approximated for
implementation

Indirect

PDE is approximated by system of ODE’s (finite-dimensional
system).

Finite-dimensional approximation is used to design controller.

Controller needs to work on original PDE.
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Linear-Quadratic Optimal Control

Find controller u to achieve

inf
u∈L2(0,∞;U)

∫ ∞
0
〈Cz(t),Cz(t)〉+ 〈u(t), u(t)〉dt︸ ︷︷ ︸

J(u,z0)

subject to
ż(t) = Az(t) + Bu(t), z(0) = z0

C is design variable
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Linear Quadratic (LQ) Control

inf
u∈L2(0,∞;U)

∫ ∞
0
〈Cz(t),Cz(t)〉+ 〈u(t), u(t)〉dt︸ ︷︷ ︸

J(u,z0)

Definition: (A,B) is stabilizable

There exists K so that semigroup generated by A− BK is
exponentially stable.

Definition: (A,C ) is detectable

There exists F so that semigroup generated by A− FC is
exponentially stable.
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Linear Quadratic (LQ) Control

inf
u∈L2(0,∞;U)

∫ ∞
0
〈Cz(t),Cz(t)〉+ 〈u(t), u(t)〉dt︸ ︷︷ ︸

J(u,z0)

Theorem

If (A,B) is stabilizable and (A,C ) is detectable then there exists a
unique Π ≥ 0 such that for all z ∈ D(A),

(ΠA + A∗Π + C ∗C − ΠBB∗Π)z = 0,

Optimal cost infu∈L2(0,∞;U) J(u, z0) = 〈z0,Πz0〉
Optimal control u(t) = −Kz(t) where K = B∗Π

A− BK generates an exponentially stable semigroup .
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Calculation of Linear Quadratic Regulator

Operator ARE

A∗Π + ΠA− ΠBB∗Π + C∗C = 0

Need to approximate solution

Approximate A, B, C by An, Bn, Cn

Let Sn(t) indicate the semigroup generated by An.

Approximation Πn and hence Kn used to control original
system
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Example: Controller Design for Beam

PDE

∂2w

∂t2
+
∂4w

∂x4
= b(x)u(t), t ≥ 0, 0 < x < 1,

b(x) =

{
1/δ, |x − .5| < δ

2

0, |x − .5| ≥ δ
2

.

w(0, t) = 0, wxx(0, t) = 0, w(1, t) = 0,wxx(1, t) = 0.

Use eigenfunctions as basis for approximating subspace

Linear quadratic regulator, state weight C = I

Feedback controller is u(t) = −B∗Πz(t).
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Indirect Design of Linear Quadratic Regulator for Beam

Use first 3 modes to design controller

Initial condition is first eigenfunction.

Same controller, but 4 modes in approximation
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Indirect Design of Linear Quadratic Regulator for Beam

Use first 3 modes to design controller

Initial condition is first eigenfunction.

Same controller, but 4 modes in approximation
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Controllers for different model orders
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Convergence of Πn

Assume that for each z ∈ H u ∈ U , y ∈ Y,

(A1i) ‖Sn(t)Pnz − S(t)z‖ → 0 (uniformly on [0,T ])

(A1ii) ‖S∗n (t)Pnz − S∗(t)z‖ → 0 (same)

(A2i) ‖Bnu − Bu‖ → 0, ‖CnPnz − Cz‖ → 0,

(A2ii) ‖B∗nz − B∗z‖ → 0, ‖C ∗n y − C ∗y‖ → 0

(A3i) (An,Bn) is uniformly exponentially stabilizable:
∃Kn ∈ L(Hn,U) , ‖Kn‖ ≤ M,∥∥e(An−BnKn)tPn z

∥∥ ≤ M1 e−ω1t |z |
(A3ii) (An,Cn) is uniformly exponentially detectable:
∃Fn ∈ L(Y,Hn), ‖Fn‖ ≤ M,∥∥e(An−FnCn)tPn

∥∥ ≤ M2 e−ω2t
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Convergence of Πn

Theorem 1

If the standard assumptions for controller design hold, then for all
z ∈ H,

‖ΠnPnz − Πz‖ → 0

there exists constants M2 ≥ 1, α2 > 0, independent of n, such
that

‖e(An−BnKn)t‖ ≤ M2e−α2t .
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Performance Convergence

Performance arbitrarily close to optimal can be achieved:

For sufficiently large n, semigroups generated by A− BKn are
uniformly exponentially stable

Cost with feedback Kn converges to optimal:

J(−Knz(t), z0)→ 〈Πz0, z0〉.
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Optimal Actuator Location Problem

ż(t) = Az(t) + B(r)u(t), z(0) = z0

A generates a strongly continuous semigroup S(t) on Z
Consider m actuators with locations in some closed and
bounded set Ω ⊂ RN .

location r is a vector of length m, ri ∈ Ω ⊂ RN

r ∈ Ωm

input operator B(r) ∈ L(U ,Z).

Choose r to minimize performance criterion

Joint controller design/actuator location
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Performance Criteria

Different objectives lead to different controller designs

linear-quadratic (LQ) and H∞ most popular for systems with
multiple inputs and outputs

choose actuator location to optimize given design criterion

approximations to PDE used in controller design
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LQ-optimal actuator location

inf
u∈L2(0,∞;U)

∫ ∞
0
〈Cz(t),Cz(t)〉+ 〈u(t), u(t)〉dt︸ ︷︷ ︸

Jr (u,z0)

ż(t) = Az(t) + B(r)u(t), z(0) = z0

for each r , optimal cost is 〈Π(r)z0, z0〉 where Π(r) solves ARE.

Choose r to minimize response to the worst initial condition:

max
z0∈H
‖z0‖=1

min
u∈L2(0,∞;U)

Jr (u, zo) = max
z0∈H
‖z0‖=1

〈Π(r)z0, z0〉

= ‖Π(r)‖

Performance/Cost function for location r is µ(r) = ‖Π(r)‖

µ̂ = inf
r∈Ωm

‖Π(r)‖
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Well-posedness of LQ-optimal actuator location

Theorem 2

If

for any r0, limr→r0 ‖B(r)− B(r0)‖ = 0,

(A,B(r)) are all stabilizable, (A,C ) is detectable

B is a compact operator,

then
lim
r→r0

‖Π(r)− Π(r0)‖ = 0.

Also, there exists r̂ such that

‖Π(r̂)‖ = inf
r∈Ωm

‖Π(r)‖ = µ̂.
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Well-posedness of LQ-optimal actuator location
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*

for any r0, limr→r0 ‖B(r)− B(r0)‖ = 0,

(A,B(r)) are all stabilizable, (A,C ) is detectable

B is a compact operator,

then
lim
r→r0

‖Π(r)− Π(r0)‖ = 0.

Also, there exists r̂ such that

‖Π(r̂)‖ = inf
r∈Ωm

‖Π(r)‖ = µ̂.
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Optimal actuator location for simply supported beam with viscous damping

PDE

∂2w

∂t2
+ cd

∂w

∂t
+
∂4w

∂x4
= b(x)u(t), t ≥ 0, 0 < x < 1,

w(0, t) = 0, wxx(0, t) = 0, w(1, t) = 0,wxx(1, t) = 0.

b(r) =

{
1/δ, |x − r | < δ

2

0, |x − r | ≥ δ
2

.

reduce state uniformly: C = I

eigenfunction approximations
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Optimal performance (‖Πn‖), C = I
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Optimal actuator location (‖Πn‖), C = I
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Convergence of LQ−Optimal Actuator Location

Theorem 3

In addition to (*) assume that

(An,Bn(r),Cn) satisfies standard assumptions on
approximations for controller design

C is a compact operator.

Then
µ̂ = lim

n→∞
µ̂n,

and there exists a subsequence {r̂m} of {r̂n} such that

µ̂ = lim
m→∞

‖Π(r̂m)‖.
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Optimal performance ‖Πn‖, state weight is C = [I 0]
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Optimal actuator location, state weight is C = [I 0]
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Algorithm for LQ-Optimal Actuator Location

discretize region into M possible actuator locations

replace physical locations by r̄ = (0, 1, 0..)

# 1’s = # actuators (m)

r̄ ∈ Φ = {r̄ ∈ RM , r̄j ∈ {0, 1},
∑M

j=1 r̄j = m}.
convex in RM [Geromel, 1989]

µ(r̄) ≥ µ(r̄ 0) + 〈d(r̄ 0), r̄ − r̄ 0〉

where d is a subgradient.
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LQ-optimal actuator location algorithm

µ(r̄) is replaced with θ and the optimization problem relaxed to

minr̄ ,θ θ
s.t. θ ≥ µ(r̄ 0) + 〈d(r̄ 0), r̄ − r̄ 0〉

Since this is a linear optimization problem the solution falls on
the boundary of the inequality constraint and

θ1 = min
r̄
µ(r̄ 0) + 〈d(r̄ 0), r̄ − r̄ 0〉.

If the solution of this problem, r̄ 1, has θ = µ(r̄ 1) then by
convexity, r̄ 1 is a minimizer

Otherwise, introduce another constraint

minr̄ θ
s.t. θ ≥ µ(r̄ i ) + 〈d(r̄ i ), r̄ − r̄ i 〉 i = 0, 1

and so on
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A Set k = 0 and choose tolerance ε > 0.

B Choose an initial location for actuators r̄ 0 ∈ Φ and
calculate µ(r̄ 0) and d(r̄ 0).

C

minθ,r̄ θ
s.t. θ ≥ µ(r̄ i ) + 〈d(r̄ i ), r̄ − r̄ i 〉 i = 1, . . . , k

using a branch and bound algorithm

D Calculate µ(r̄k+1). If µ(r̄k+1)− θk+1 ≤ ε, done. If
not; return to step C .



Introduction Infinite-dimensional Systems Optimal Actuator Problem LQ-control H∞-control

Comparision to Genetic Algorithm

Objective Value Elapsed time(sec.)

Current Method 71.98 4.78e2

GA 72.17 4.14e4

Optimal location of 10 actuators, pinned beam

Objective Value Elapsed time(sec.)

Current Method 1.584 4.920e2

Genetic algorithm 1.748 4.443e4

Optimal location of 10 actuators, cantilevered plate
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Optimal location for single actuator on a pinned beam
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Optimal location for 10 actuators on a cantilevered plate
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Genetic Algorithm- cantilevered plate
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H∞- Controller Design

ż(t) = Az(t) + B(r)u(t) + Dd(t), z(0) = 0

A generates a strongly continuous semigroup S(t) on Z
B(r) ∈ L(U ,Z), D ∈ L(V,Z)

full information: input to the controller is

y2(t) =

[
z(t)
d(t)

]
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Problem Formulation

Cost : y1(t) =

[
Cz(t)
u(t)

]
Find, for given γ > 0, a stabilizing controller so that∫ ∞

0
‖y1(t)‖2dt < γ2

∫ ∞
0
‖d(t)‖2dt

The system is stabilizable with attenuation γ(r) if there is a
stabilizing controller so that this inequality holds.

equivalent to the H∞-norm of the transfer function being less
than γ
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Solution to fixed attenuation problem

The full-information system is stabilizable with disturbance
attenuation γ(r) if and only if there exists a nonnegative,
self-adjoint operator Π on Z solving the algebraic Riccati equation
(ARE)

(
A∗Π+ΠA−Π

(
B(r)B(r)∗ − 1

γ2
DD∗

)
Π+C ∗C

)
z = 0, z ∈ D(A),

(1)
where A− B(r)B(r)∗Π + 1

γ2 DD∗Π generates an exponentially
stable semigroup on Z.

u(t) = −B(r)∗Π︸ ︷︷ ︸
K

z(t)

achieves γ(r)-attenuation.
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Solution to fixed attenuation problem

The full-information system is stabilizable with disturbance
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H∞-optimal actuator location

m actuators

Control operator B varies with r , r ∈ Ωm.

optimal attenuation with actuator location r is

µ(r) = inf γ(r)

over all γ(r) for which the system is stabilizable with
attenuation γ(r).

indicate optimal attenuation over all r by µ̂.
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Well-posedness of H∞-optimal actuator problem

Theorem 4

Consider a family of control systems with full information. If

*

for any r0, limr→r0 ‖B(r)− B(r0)‖ = 0,

(A,B(r)) are all stabilizable, (A,C ) is detectable

B and D are compact operators,

then
lim
r→r0

µ(r) = µ(r0). (2)

Furthermore, there exists an optimal actuator location r̂ so that

µ̂ = µ(r̂) = inf
r∈Ωm

µ(r).
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Proof (outline)

First show that if system at r0 is stabilizable with attenuation
γ(r0) then for every ε > 0, for small ‖r − r0‖, (A, [B(r) D],C )
stabilizable with attenuation γ(r0) + ε.

Also show can choose stabilizing feedback operators K (r) to
be continuous at r0.

Regard systems at r as approximations/perturbations to
system at r0.

Show lim
r→r0

µ(r) = µ(r0).

existence of an optimal actuator location then follows from
compactness of ΩM .
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Convergence of H∞-optimal actuator location using approximations

Theorem 5

In addition to (*) assume that

(An, [Bn(r) Dn],Cn) where Bn = PnB satisfies standard
assumptions on approximations for controller design.

Letting r̂ be an optimal actuator location for (A, [B(r) D],C ) with
optimal cost µ̂ and defining similarly r̂n, µ̂n, it follows that

µ̂ = lim
n→∞

µ̂n,

and there exists a subsequence {r̂m} of {r̂n} such that

µ̂ = lim
m→∞

µ(r̂m).
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Convergence of H∞-optimal actuator location using approximations

Theorem 5

In addition to (*) assume that

(An, [Bn(r) Dn],Cn) where Bn = PnB satisfies standard
assumptions on approximations for controller design.

Letting r̂ be an optimal actuator location for (A, [B(r) D],C ) with
optimal cost µ̂ and defining similarly r̂n, µ̂n, it follows that

µ̂ = lim
n→∞

µ̂n,

and there exists a subsequence {r̂m} of {r̂n} such that

µ̂ = lim
m→∞

µ(r̂m).

C doesn’t need to be compact.
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Calculation of optimal attenuation
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H∞-cost function with respect to actuator location for simply
supported beam with viscous damping
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Calculation of optimal attenuation

H∞ performance µ(r) is nonconvex

µ(r) likely not differentiable

construction of derivative of µ(r) ?

function µ(r) evaluation is time-consuming

use derivative-free optimization

directional direct search algorithm

parallel implementation
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Algorithm

Current iterate: rk , αk , µ(rk), set of positive bases D
1 Compute rk+1 such that µ(rk+1) < µ(rk)

1 Search step: Evaluate µ at a finite number of (random)
points If a better point r is found, set rk+1 := r ; iteration
successful and skip poll step

2 Poll step: Choose (randomly) Dk ∈ D. Order the poll set
Pk := {rk + αkd : d ∈ Dk}. Start evaluating µ at the poll
points. If a better poll point is found, set rk+1 := rk + αkdk ;
iteration successful. Otherwise, set rk+1 := rk and declare
iteration unsuccessful.

2 Step size update: If iteration is successful, then
αk+1 := αk . Otherwise, decrease the step size parameter, e.g.
αk+1 := αk/2.

3 Repeat the above steps till convergence.
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Surrogate Model

Function evaluations µ(r) are expensive

Use a surrogate model sm(·) to replace evaluations of µ(·).

sm(·) is less accurate but cheaper to evaluate than f .

Order the points by evaluating sm(·) and evaluate f (·) in this
order.

useful if several evaluations of surrogate model cheaper than
one evaluation of f .
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Surrogate Model

Each calculation of µ(·) requires multiple solutions of a
(possibly large-scale) Riccati equation

For an arbitrary attenuation γ, solve the Riccati equation for
Π to obtain a controller

u(t) = −B(r)∗Π︸ ︷︷ ︸
K

z(t)

and calculate the actual attenuation γ̃(r) in controlled
system

Calculation relatively cheap requiring check on imaginary
eigenvalues of an associated matrix.

Actual attenuation is close to the optimal attenuation:

µ(r) ≈ γ̃(r)

sm(r) = γ̃(r).
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Simply supported beam with Kelvin-Voigt damping
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Simply supported beam with Kelvin-Voigt damping
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Beam with 2 disturbances and 1 actuator
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Beam with 2 disturbances and 1 actuator
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Beam with 2 disturbances and 2 actuators
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Beam with 2 Point disturbances and 2 actuators
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Diffusion
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Diffusion

∂z

∂t
(x1, x2, t) = ∇ · (κ(x1, x2)∇z(x1, x2, t)) + b(x1, x2)u(t) + v(t),

z(x1, x2, ·) = 0 on ∂Ω,

y(t) =

∫ ∫
Ω

z(x1x2, t) dx ,

(3)

where

b(x1, x2) =

{
1
ε , (x1, x2) ∈ �(r1, r2),
0, otherwise,

,

with �(r1, r2, ε) is a square centered at (r1, r2) and side ε = 0.2.
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Diffusion
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Optimal Actuator location is (3.1, 3.35)



Introduction Infinite-dimensional Systems Optimal Actuator Problem LQ-control H∞-control

Algorithm Performance

Property Coarse Fine
Order 200 700

# iterations 15 4

Overall time 1h 10m 5h 50 m

# γ̂(·) evaluations 10 1

# sm(·) evaluations 208 64
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Summary

Developed algorithms for optimal actuator placement using
LQ and H∞-cost criteria.

Original problem needs to be properly formulated

For optimal actuator location, compactness is important for
well-posedness of problem and for convergence of
approximations.

Strong degradation of performance if actuators not placed
optimally



Introduction Infinite-dimensional Systems Optimal Actuator Problem LQ-control H∞-control

QUESTIONS?
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