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Time and frequency representations of signals

Figure 1: Sample signals.
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Houston, we have a problem!

Figure 2: Sample signals.
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Ooops...I did it again!

Figure 3: Sample signals.

E. Sejdić (iMED@Pitt) TFA 4 / 59



Why do we need TFA?

The time or the frequency domain descriptions of a signal alone
cannot provide comprehensive information for feature extraction and
classification.

The time domain lacks the frequency description of the signals.

The Fourier transform of the signal cannot depict how the spectral
content of the signal changes with time.

The time variable is introduced in the Fourier based analysis in order
to provide a proper description of the spectral content changes as a
function of time
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STFT of signals from Figure 2

Figure 4: TFR of sample signals.
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STFT of signals from Figure 3

Figure 5: TFR of sample signals.
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TFA

The basic goal of the TFA is to determine the energy concentration
along the frequency axis at a given time instant, i.e., to search for
joint time-frequency representation of the signal.

In an ideal case, the time-frequency transform would provide direct
information about the frequency components occurring at any given
time by combining the local information of an “instantaneous
frequency spectrum”with the global information of the temporal
behaviour of the signal.

In reality, the Heisenberg uncertainty principle prohibits the existence
of windows/kernels with arbitrarily small duration and arbitrarily small
bandwidth.

Resolution tradeoff: improving the time resolution (by using a short
window) results in a loss of frequency resolution, and vice versa.
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Example

The main goal of the TFA of a signal is to determine the energy
distribution along the frequency axis at each time instant.

3 sample signals: x1(t) - a signal with four short transients; x2(t) - a
linear chirp; and x3(t) - a signal with sinusoidally modulated
frequency.

The TF domain representations of the signals are obtained by four
different TFRs: STFT, S-transform, S-method, and Wigner
distribution (WD).
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Example

Figure 6: Ideal TFRs of sample signals.
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Example

Figure 7: TFRs of sample signals.
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Signal decomposition based TFRs

A signal is represented by TF functions derived from translating,
modulating and scaling a basis function having a definite time and
frequency localization.

Mathematically

TFx(t, ω) =

∫ +∞

−∞
x(τ)φ∗t,ω(τ)dτ = 〈x , φt,ω〉 (1)

where φt,ω represents the basis functions (also called the TF atoms)
and ∗ represents the complex conjugate.

The basis functions are assumed to be square integrable,
φt,ω ∈ L2(R), i.e., they have finite energy

STFT, wavelets, and matching pursuit algorithms are typical
examples in this category.
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Typical transforms

short-time Fourier transform

φt,ω(τ) = h(τ − t) exp(−jωτ) (2)

where h(·) is a window function;

wavelet transform:

φt,ω(τ) =
√
sh(s(τ − t)) (3)

where h(·) is a wavelet function and s is the scale;

multiresolution Fourier transform (MFT):

φt,ω(τ) =
√
sh(s(τ − t)) exp(−jωτ) (4)

where h(·) is a window function and s is the scale similar to one used
in the wavelet analysis;
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Typical transforms

S-transform:

φt,ω(τ) = h(τ − t, σ(ω)) exp(−jωτ) (5)

where h(·) is a Gaussian window function and σ(ω) is the standard
deviation of the Gaussian window;

short-time harmonic transform (STHRT):

φt,ω(τ) = h(t − τ)ϕ
(1)
u (τ)exp(−jωϕu(τ)) (6)

where ϕu(τ), known as the unit phase function, is the phase function

of the fundamental divided by its nominal IF and ϕ
(1)
u (τ) is the

first-order derivative of ϕu(τ);

short-time Hartley transform (STHT):

φt,ω(τ) = h(t − τ)cas(ωτ) (7)

where cas(·) = cos(·) + sin(·).
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Comparison of STFT and S-transform

Figure 8: Comparison of STFT and S-transform.
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Example

A hyperbolic FM signal, x(t) = exp(j20π ln(11|t|+ 1)), is used to
examine the effects of a variable window width over a constant
window. The signal is analyzed with STFT and the S-transform.

Figure 9: TFR of sample signals.
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Example

The harmonic signal,
x(t) = exp(j2π(10t+5t2))+exp(j2π(20t+5t2))+exp(j2π(30t+5t2)),
is used to examine the STHRT and the STFT.

Figure 10: TFR of sample signals.
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Properties

Method Advantages Disadvantages

STFT Very simple for imple-
mentation.

Constant window
width limits time-
frequency resolution.

Wavelet analysis Variable resolution. Does not maintain
the absolute phase
of the signal compo-
nents. A scale to
frequency conversion
is dependent on a
mother wavelet.
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Properties

Method Advantages Disadvantages

MFT Variable resolution.
Absolute phase of
each component is
maintained.

Complex require-
ments for the window
function. Choice of
scale might require
oversampling.

S-transform Variable resolution.
Absolute phase of
each component is
maintained.

Single window func-
tion.

STHRT Good energy concen-
tration obtained for
the harmonic signals.

ϕu(τ) has to be
known or precisely
estimated.

STHT Easy for hardware im-
plementation.

Same disadvantages
as STFT.
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Avoiding shortcomings

A generalized S-transform is introduced to allow greater control over
the window function. This generalization also allows nonsymmetric
windows to be used, which were also introduced in the literature.

The solution to the problem of the constant window width associated
with the STHT is proposed in the form of a Hartley S-transform. The
Hartley S-transform introduces a variable window width framework for
the Hartley analysis.
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TFD

The properties of the representation are reflected by simple
constraints on the kernel that produces the TFR with prescribed,
desirable properties.

Mathematically,

TFDx(t, ω) =
1

4π2

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
x

(
u +

1

2
τ

)
x∗
(
u − 1

2
τ

)
φ(θ, τ)e−jθt−jτω+jθududτdθ (8)

where φ(θ, τ) is a two-dimensional kernel function, determining the
specific representation in this category, and hence, the properties of
the representation.

Wigner distribution, Choi-Williams distribution, and spectrogram are
some of the methods commonly used for obtaining the TFDs.
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TFD

Cross terms and inner interferences lead to the ambiguous
representation of a signal in the TF domain.

Figure 11: TFR of sample signals.

When cross terms and inner interferences are minimized, these
transforms can produce very high resolution representations.
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TFD

The cross terms can be reduced or eliminated by introducing a kernel
function φ(θ, τ).

Let’s rewrite Cohen’s class of the TFRs in terms of the ambiguity
function, A(θ, τ), which is defined as:

A(θ, τ) =

∫ +∞

−∞
x

(
u +

1

2
τ

)
x∗
(
u − 1

2
τ

)
e jθudu (9)

and the Cohen’s class can then be rewritten as

TFDx(t, ω) =
1

4π2

∫ +∞

−∞

∫ +∞

−∞
A(θ, τ)φ(θ, τ)e−jθt−jτωdτdθ. (10)
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TFD

Figure 12: Relationship between AF and WD.
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TFD

Figure 13: Relationship between AF and WD.
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Kernel functions

Born-Jordan distribution:

φ(θ, τ) =
sin (θτ/2)

θτ/2
. (11)

Choi-Williams distribution:

φ(θ, τ) = exp

(
−θ

2τ2

σ2

)
(12)

where σ is a scaling factor.

Zhang-Sato distribution:

φ(θ, τ) = exp

(
−θ

2τ2

σ2

)
cos (2πβτ) (13)

where σ and β are parameters. For β = 0 a Choi-Williams
distribution is obtained, since σ is defined in the same manner as for
the Choi-Williams distribution.
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Kernel functions

Radial Butterworth distribution:

φ(θ, τ) =
1

1 +
(
θ2+τ2

ro

)M (14)

with constraints ro 6= 0 and M ∈ Z+.

Bessel distribution:

φ(θ, τ) =
J1(2παθτ)

παθτ
(15)

where J1 is the first kind Bessel function of order one and α > 0 is a
scaling factor.

Generalized exponential distribution:

φ(θ, τ) = exp

(
−
(
θ

θ1

)2N ( τ
τ1

)2M
)

(16)

where N, M are positive integers, and θ1, τ1 are chosen such that
φ(θ1, τ1) = exp (−1).
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Kernel functions

S-method:

φ(θ, τ) = P

(
−θ

2

)
∗θ
∫ ∞
−∞

w
(
u +

τ

2

)
w∗
(
u − τ

2

)
exp(−jθu)du

(17)
where ∗θ represents a convolution in θ, P (θ) is a smoothing function
and w(t) is a window function used for the STFT.

Hyperbolic distribution:

φ(θ, τ) =
1

cosh(βθτ)
(18)

where β is a parameter to control the exponential terms of the
hyperbolic function.

E. Sejdić (iMED@Pitt) TFA 28 / 59



Kernel functions

It is important to mention that all the kernels presented above, except
the kernel for the Born-Jordan distribution, contain one or more
adjustable parameters.

This implies that for a given kernel the parameter(s) can be chosen
such that the resulting kernel produces a representation similar to a
representation obtained by some other kernel with the same number
of parameters.

Having the opportunity to “fine tune” the kernel generally represents
an advantage, since the kernel can be optimized to achieve maximal
reduction of the cross term effects.
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Example
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Figure 14: Sample kernels.
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Rotated TFRs

The rotation of the TF plane has been introduced to improve energy
concentration for signals whose components are not aligned with
either the time or the frequency axis.

Figure 15: Rotated TFRs.
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Pattern classification
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Figure 16: Rotated TFRs.
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Rotated TFRs

The TFA based on the rotation of the TF plane can be achieved in several
ways:

Fractional Fourier transform (FRFT):

Fα(u) =



√
1−j cotα

2π e j(u
2/2) cotα

∫ +∞
−∞ x(t)e j(t

2/2) cotα−jut cscαdt

if α is not multiple of π
x(t)

if α is a multiple of 2π
x(−t)

if α + π is a multiple of 2π
(19)

The standard Fourier transform is a special case of the FRFT with a
rotation angle α = π/2.

E. Sejdić (iMED@Pitt) TFA 33 / 59



Rotated TFRs

Local polynomial Fourier transform (LPFT):

LPFTx(t, ω) =

∫ +∞

−∞
x(t + τ)w(τ)

exp
(
−jω1τ − jω2τ

2/2− ...− jωMτ
M/M

)
dτ (20)

where ω = (ω1, ω2, ..., ωM). The LPFT enables one to estimate both
the time-varying frequency and its derivatives. The technique is based
on fitting a local polynomial approximation of the frequency which
implements a high-order nonparametric regression.
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Rotated TFRs

Radon-Wigner distribution (RWD):

RWD(r , ϑ) = R [WVx(t, ω)]

=

∫
WVx(t, ωo + mt)dt

∣∣∣∣
m=−1/ tan(ϑ);ωo=r/ sin(ϑ)

(21)

where R [f (x , y)] =
∫
f (r cosϑ− s sinϑ; r sinϑ+ s cosϑ)ds and r

and s represent x and y axes rotated counterclockwise by an angle ϑ.

Even though the RWD is considered a tool for the rotation of the TF
plane at a certain angle, the RWD was developed primarily for
detection and classification of multicomponent linear FM signals in
noise.
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Relations between rotated TFRs

It is shown that the Radon-Wigner distribution is the squared
modulus of the fractional Fourier transform:

RW [x(t)] = |FRFT [x(t)]|2 . (22)

To establish the relationship between the FRFT and the LPFT, the
FRFT can be written as:

Fα(u) =

√
1− j cotα

2π
e j(u

2/2) cotα

∫ +∞

−∞
xw (τ)e j(τ

2/2) cotα−juτ cscαdτ

(23)
where xw (τ) = x(t + τ)w(τ). For M = 2, ω1 = u cscα, and
ω2 = cotα in (20), equation (23) can be expressed in terms of the
LPFT as:

Fα(u) =

√
1− j cotα

2π
e j(u

2/2) cotαLPFTx(t, ω1, ω2). (24)
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Properties of rotated TFRs

Approach Advantages Disadvantages

FRFT Allows representation of a
signal on the orthonormal
basis formed by chirps.

cot(α) can take enormous
values and oversampling
may be needed to satisfy
the sampling theorem.

LPFT Provides generalization of
the FRFT to any order of
the polynomial IF.

A drawback of the LPFT is
the increase in dimension-
ality, i.e., an increase of the
calculation complexity.

RWD Excellent for establishing
the direction of the linear
FM modulated signal in the
ambiguity plane.

Not suitable for long data
records, and the segmen-
tation of such records is
needed. Analyzed in depth
only for the WD.
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Signal dependent TFRs

The feature extractors described in the previous sections deal with
several concepts regarding the improvement of energy concentration:
reducing the effects of spectral leakage; diminishing the effects of
cross terms; and aligning the axis of analysis with the principal axis of
the signal components.

Can a single feature extractor be optimal for all signals?

Unfortunately not, since a major drawback of all fixed mappings is
that, for each mapping, the resulting TFR is satisfactory only for a
limited class of signals.

Thus, the enhanced concentration in the TF domain is desirable for a
variety of classes of signals.
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Signal dependent TFRs

Concentrated components generally overlap or interfere with other
nearby components as little as possible, and yield a “sharp”
representation.

The maximal concentration also implies that components are confined
as closely as possible to their proper support in the TF domain.

Signal dependent TFRs are generally nonlinear and nonquadratic due
to the nature of the computation process.

They are based on:

concentration measures;
reassignment methods;
signal optimized kernels/windows.
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Concentration measures

The concentration measure approach examines the effects of certain
parameter variations on the energy concentration of the signal in the
TF domain.

The parameter value yielding the highest energy concentration is
chosen for the signal dependent TFR.

The development of the concentration measure can be divided into
two groups based either on the distribution norms or on the entropy
of the distributions.
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Concentration measures

Jones and Parks proposed a measure based on the STFT for signal
concentration that allows the fully automated determination of the
optimal basis parameters:

CM =

∫ +∞
−∞

∫ +∞
−∞ |STFT (t, ω)|4 dtdω(∫ +∞

−∞
∫ +∞
−∞ |STFT (t, ω)|2 dtdω

)2
. (25)

CM in (25) favours those components with higher concentration.

For multicomponent signals, a local measure is required to determine
the concentration of the dominant component at each location in the
TF domain.

Eqn. (25) can be turned into a local concentration measure by
multiplying the squared magnitude of the short-time Fourier
transform by a “localization weighting function.”
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Concentration measures

A solution to the problem in the Jones-Parks measure is proposed by
Stanković.

His CM does not discriminate low concentrated components with
respect to the highly concentrated ones within the same distribution,
and it is given by:

CM =

(
N∑

k=1

N∑
n=1

|TFRx(n, k)|1/p
)p

(26)

where TFRx(n, k) is a discrete version of any of the TFRs.
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Concentration measures

Williams et al considered how the information measures could be used
to provide information on TFDs.

The Shannon information measure is appropriate only for positive
TFRs.

The Rényi measure conforms closely to the visually based notion of
complexity when inspecting TFRs and can be used for other TFRs.

For Cohen’s class of the TFRs, the Shannon information measure is
given as

H(TFx(t, ω)) = −
∫ +∞

−∞

∫ +∞

−∞
TFx(t, ω) log2 TFx(t, ω)dtdω (27)

and the Rényi measure as

Rα(TFx(t, ω)) = − 1

1− α
log2

∫ +∞

−∞

∫ +∞

−∞
TFx(t, ω)dtdω (28)

where α > 0, and the Shannon entropy is recovered as the limit of
Rα, as α→ 1.
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Example

A signal consisting of a sinusoidally FM and linear FM components,
x(t) = exp(j20πt + j30πt2) + exp(j5π cos(4πt) + j150πt).
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Figure 17: TFRs based on concentration measures.

E. Sejdić (iMED@Pitt) TFA 44 / 59



Reassignment method

The reassignment method creates a modified version of a
representation by moving its values away from where they are
computed to produce a better localization of the signal components.
In order to perform such an operation, for each point in the TF plane,
one calculates the center of gravity for the signal energy such as:

t̂(t, ω) = t −
∫ ∫

uTFR(t − u, ω − Ω)dudΩ∫ ∫
TFR(t − u, ω − Ω)dudΩ

(29)

ω̂(t, ω) = ω −
∫ ∫

ΩTFR(t − u, ω − Ω)dudΩ∫ ∫
TFR(t − u, ω − Ω)dudΩ

. (30)

Given these centers of gravities, the reassigned TFR is obtained by

RTFR(t, ω) =

∫ ∫
TFR(τ, υ)δ(t− t̂(τ, υ))δ(ω− ω̂(τ, υ))dτdυ (31)

where δ(t) is a Dirac function.
The technique is highly sensitive to noise.
The reassignment method is also computationally expensive.
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Signal dependent kernels and windows

The first two approaches to signal dependent TFRs are based upon
the fact that an optimized representation is found for each new signal.

Another stream of research in this area is based on the development
of the signal dependent kernels/windows for a class of signals through
an optimization design procedure.

The initial research has been conducted for so-called radially Gaussian
distributions.

The problem of finding the optimized kernel boils down to finding the
optimal σ (ψ) for radially Gaussian functions for the given signal:

max
Φ

∫ 2π

0

∫ ∞
0
|A(r , ψ)Φ(r , ψ)|2 rdrdψ (32)

with a constraint that the energy of Φ(r , ψ) must be finite, where
r =
√
θ2 + τ2 and A(r , ψ) is the ambiguity function of the signal in

the polar coordinates.
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Properties of the approaches for obtaining signal
dependent TFRs

Approach Advantages Disadvantages

Concentration
measure

Usually easy to imple-
ment. Good energy
concentration can be
obtained.

It has to be calculated
for each signal.

Reassignment
methods

Excellent energy con-
centration can be ob-
tained.

Computationally ex-
pensive. Sensitive to
noise.

Signal optimized
kernels/windows

It does not need recal-
culation for every sig-
nal, but it is rather
based on class of sig-
nals.

Needs careful imple-
mentation when work-
ing with signals in
noisy environment.
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Pattern classification

TFR-based classification methods are preferred because TFRs have
discriminant capabilities for signals belonging to different signal
classes.

Figure 18: Sample patters in TF Domain.
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Pattern classification

Figure 19: Pattern classification in TF domain.

E. Sejdić (iMED@Pitt) TFA 49 / 59



IF estimation

The IF can be estimated as a first moment of the TFR:

ω(t) =

∫ +∞
−∞ ωTFx(t, ω)dω∫ +∞
−∞ TFx(t, ω)dω

(33)

or based on the position of the maximum value of the energy
concentration in the TF domain as

ω(t) = arg max
ω

[|TFx(t, ω)|] . (34)

The first moment provides an unbiased estimate of the IF of a signal.

The presence of additive noise leads to the serious degradation of the
first moment estimate.

It may have a high statistical variance even at high values of input
SNR.

The first moment estimate is not affected by the multiplicative noise.
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IF estimation

The maximum value estimate is greatly affected by the multiplicative
noise when the power spectral density of the noise has a maximum at
a frequency other than DC.

The maximum value estimate is hence used for the signals
contaminated with the additive noise.

It is based on the detection of a distribution maxima positions.

This estimate is also prone to some estimation errors and the sources
of estimation error are:

bias;
random deviation of the maxima within the auto-term caused by a
small noise;
large random deviations due to false maxima detection outside the
auto-term caused by a high noise.
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IF estimation

Consider the problem of the problem of the IF estimation from the
discrete-time observations

x(nT ) = m(nT ) + ε(nT ) (35)

with
m(t) = A exp(jφ(t)) (36)

where n is integer, T is a sampling interval and ε(nT ) complex-valued
white Gaussian noise with i.i.d. real and imaginary parts.

<(ε(nT )) and =(ε(nT )) ∼ N(0, σ2
ε /2) and the total variance of the

noise is equal to σ2
ε .

The IF is the first derivative of the phase (ω(t) = φ
′
(t))

the IF estimate is a solution of the optimization problem

ω̂h(t) = arg

[
max
ω∈Qω

TFx(ω, t)

]
(37)
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IF estimation

The estimation error, at a time-instant t, is defined as

∆ω̂(t) = ω(t)− ω̂h(t) (38)

∆ω̂(t) is a random variable and is characterized by its bias and
variance.

The stationary point of TFx(t, ω) is determined by the zero value of
the derivative TFx(t, ω), which is given as

∂TFx(t, ω)

∂ω
= 0 (39)
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IF estimation

The linearization of ∂TFx(t, ω)/∂ω = 0 with respect to the small

1) estimation error ∆ω̂h(t)
2) residual of the phase deviation ∆φ;
3) noise ε;

gives

∂TFx(t, ω)

∂ω
|0 +

∂2TFx(t, ω)

∂ω2
|0∆ω̂(t)

+
∂TFx(t, ω)

∂ω
|0δ∆φ

+
∂TFx(t, ω)

∂ω
|0δε = 0 (40)

where |0 mean that the corresponding derivatives are calculated at
the point ω = φ

′
(t), ∆φ = 0 and ε(nT ) = 0.
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IF estimation

The estimation bias is

E (∆ω̂h(t)) =
−∂TFx (t,ω)

∂ω |0 − ∂TFx (t,ω)
∂ω |0δ∆φ

− E
{
∂TFx (t,ω)

∂ω |0δε
}

∂2TFx (t,ω)
∂ω2

(41)
and the variance is of the following form

var (∆ω̂h(t)) =

E

{(
∂TFx (t,ω)

∂ω |0δε
)2
}
− E

{
∂TFx (t,ω)

∂ω |0δε
}

∂2TFx (t,ω)
∂ω2

(42)
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Selective Regional Correlation (SRC)
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Selective Regional Correlation (SRC)
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Method ρM ρNM ϕ EP

SRC STFT 0.5533 0.2413 0.3120 10.00%
CWT 0.6731 0.5248 0.1483 16.67%
S-transform 0.4905 0.1661 0.3244 6.670%

General Correlation 0.3477 0.3352 0.0126 56.67%
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Segmentation of heart sounds
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