Geometric Approaches in Image Diffusion

Abdol-Reza Mansouri Queen's University Department of Mathematics and Statistics

Fields Institute Workshop on Microlocal Methods in Medical Imaging August 13-17, 2012

Joint work with **Jeff Calder** (University of Michigan, Ann Arbor) and **Anthony Yezzi** (Georgia Institute of Technology)

Introduction

- 1. Image Diffusion: Basic Problem and Applications
- 2. Basic History:
 - Witkin
 - Perona-Malik
- 3. Geometric Approaches
 - ► Beltrami Diffusion
 - Hypoelliptic Diffusion
 - ► Sobolev Diffusion
- 4. Conclusion: Microlocal Diffusions?

Image Diffusion: Basic Problem

Basic Problem:

- ▶ Define a suitable function space H and a suitable one-parameter semigroup $(T_t)_{t\geq 0}$ on H such that for any $u_0\in H$, the family $(T_tu_0)_{t\geq 0}$ corresponds to a one-parameter family of deformations of u_0 in a "desired way", such as:
 - (a) yields "smoother" (i.e. less noisy) versions of u_0 as $t \to \infty$, while preserving the "important" structure in u_0 (e.g. object boundaries, ...), or
 - (b) "sharpens" u_0 more and more as $t \to \infty$, or
 - (c) "missing parts" of u_0 are "filled in", or ...

Or (often equivalently),

▶ Define a suitable function space H and a suitable operator A on H such that the one-parameter family $(u(t))_{t>0}$ solution to the evolution equation

$$\frac{du}{dt} = Au, \quad t > 0$$

$$u(0) = u_0,$$

(with $u_0 \in H$) deforms u_0 in a "desired way" as above.

Image Diffusion: Basic Applications

Figure: Image denoising

Image Diffusion: Basic Applications

Figure: Image sharpening

Image Diffusion: Basic Applications

Figure: Image reconstruction (inpainting) (images courtesy of Ugo Boscain)

Isotropic Diffusion

Basic Diffusion PDE: The Heat Equation (Witkin'83)

▶ Given an image $u_0: \Omega \to \mathbb{R}$, consider the partial differential equation

$$\begin{array}{lcl} \frac{\partial u}{\partial t} & = & c\Delta u, & t>0, \\ u(\cdot,0) & = & u_0, \\ u(\cdot,t) & = & 0 \ \mathrm{on} \ \partial \Omega, \ \forall t\geq 0, \end{array}$$

where $\Delta=\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}$ is the Laplacian operator, and c>0 is the diffusion constant.

- ▶ Basic regularity result: $\forall t > 0$, $\forall u_0 \in L^2(\Omega)$, $u(\cdot, t)$ is C^{∞} .
- Basic consequence of the regularity result:
 - $u(\cdot, t)$ is "infinitely smoother" than $u(\cdot, s)$ for t > s.

As a result:

- ▶ Image denoising is performed, but ...
- ▶ Substantial image structure is lost in the process! Key reason: **Isotropicity**.
- $ightharpoonup \Delta$ rotationally invariant \Rightarrow
 - Diffusion is performed equally in all directions,
 - Diffusion is performed independently of any underlying image structure.

Anisotropic Diffusion

The Perona-Malik Equation ('89)

Basic idea:

(a) Re-express the heat equation as

$$\frac{\partial u}{\partial t} = \nabla \cdot (c\nabla u), \quad t > 0,$$

(b) Replace the constant diffusion coefficient c with a variable diffusion coefficient s → c(s), yielding:

$$\frac{\partial u}{\partial t} = \nabla \cdot (c(\|\nabla u\|)\nabla u), \quad t > 0,$$

with $c: \mathbb{R}^+ \to \mathbb{R}^+$ monotonically decreasing, $c(s) \to 0$ as $s \to \infty$, and $c(s) \to 1$ as $s \to 0$ (e.g. $c(s) = \frac{1}{1+s^2/K^2}$ or $c(s) = e^{-s^2/K^2}$).

- (c) The diffusion obtained is anisotropic: More diffusion along image gradient directions than across image gradient directions.
- (d) Key (theoretical) problem: Highly ill-posed!

Anisotropic Diffusion

Example: The 1-D Perona-Malik Equation (with $c(s) = \frac{1}{1+s^2}$):

$$u_t = \partial_x (\frac{1}{1 + u_x^2} u_x) = \frac{1 - u_x^2}{(1 + u_x^2)^2} u_{xx}.$$

Hence: We have heat flow for $|u_x| < 1$ and reverse heat flow for $|u_x| > 1$.

► But: Provably stable numerical schemes do exist! ("Perona-Malik paradox")
Theoretical Fix: Mollification!

$$\frac{\partial u}{\partial t} = \nabla \cdot (c(\|\nabla u_{\sigma}\|)\nabla u), \quad t > 0,$$

where u_{σ} is the convolution of u with a Gaussian of variance σ^2 .

Theorem (Catté et al. '92)

Let $\sigma>0$. For any $u_0\in L^2(\Omega)$, there is a unique weak solution $u\in C^0([0,T];L^2(\Omega))\cap L^2([0,T];H^1(\Omega))$ to

$$\begin{array}{lcl} \frac{\partial u}{\partial t} & = & \nabla \cdot (c(\|\nabla u_{\sigma}\|) \nabla u) \text{ on }]0, T] \times \Omega, \\ \partial_{\nu} u & = & 0 \text{ on }]0, T] \times \partial \Omega, \\ u(0) & = & u_{0}; \end{array}$$

Moreover, this unique solution is in $C^{\infty}(]0, T] \times \overline{\Omega}$), hence is a strong solution.

Isotropic Diffusion: Denoising Results

Figure: Isotropic diffusion

Perona-Malik Anisotropic Diffusion: Denoising Results

Figure: Perona-Malik Anisotropic diffusion

Image Diffusion: Geometric Approaches

Basic Idea:

- Formulate image diffusion as a geometric problem.
- ► For example:
 - Consider the graph of the image function as a Riemannian manifold (Beltrami diffusion), or
 - ▶ Lift the image function to the projective cotangent bundle of \mathbb{R}^2 (Hypoelliptic diffusion), or
 - Consider the space of images as a Riemannian manifold (Sobolev diffusion), or
 - ..

Beltrami Diffusion (Kimmel et al.)

- ► Consider the image function $I: \Omega \to \mathbb{R}^K$ (assumed smooth) as an **embedding** $X: \Omega \to \mathbb{R}^N = R^{K+2}$, $(u_1, u_2) \mapsto (x(u_1, u_2), y(u_1, u_2), I(u_1, u_2))$;
- ▶ For the map $(u_1, u_2) \mapsto (u_1, u_2, I(u_1, u_2))$, the image of X becomes the **graph** Γ_I of the image function I;
- ▶ Let $h = h_{ij} dy^i dy^j$ be a Riemannian metric on \mathbb{R}^N ;
- ▶ Let $g = X^*h$ be the pullback metric on Ω under the embedding $X : \Omega \to \mathbb{R}^N$;
- (Ω, g) is a Riemannian manifold;
- ► Example: With $h = \sum_i dx^i dx^i + \sum_k \beta^2 dI^k dI^k$, we obtain

$$(g_{ij}) = \begin{pmatrix} \sum_{i} (x_{1}^{i})^{2} + \beta^{2} \sum_{j} (I_{1}^{j})^{2} & \sum_{i} x_{1}^{i} x_{2}^{i} + \beta^{2} \sum_{j} I_{1}^{j} I_{2}^{j} \\ \sum_{i} x_{1}^{i} x_{2}^{i} + \beta^{2} \sum_{j} I_{1}^{j} I_{2}^{j} & \sum_{i} (x_{2}^{i})^{2} + \beta^{2} \sum_{j} (I_{2}^{j})^{2} \end{pmatrix}$$

Beltrami Diffusion (Kimmel et al.)

Basic idea: Minimizing the area functional

$$S=\int\sqrt{g}du_1du_2$$

with respect to the image function I leads to the Beltrami flow

$$\frac{\partial I}{\partial t} = \Delta_{g} I,$$

where

$$\Delta_{g}=rac{1}{\sqrt{g}}\partial_{\mu}(\sqrt{g}g^{\mu
u}\partial_{
u})$$

is the **Laplace-Beltrami operator** of the Riemannian manifold (Ω, g) .

Minimizing

$$S(X,g,h) = \int d\sigma \sqrt{g} g^{\mu\nu} \partial_{\mu} X^{i} \partial_{\nu} X^{j} h_{ij}(X)$$

selectively with respect to X and g yields known flows (e.g. heat flow, mean curvature flow, etc.).

▶ Making the induced metric non-definite yields inverse diffusion across the edges.

Beltrami Diffusion (Kimmel et al.)

Figure: Beltrami diffusion (http://www.cs.technion.ac.il/~ron/)

Figure: Inverse Beltrami (http://www.cs.technion.ac.il/~ron/)

Basic problem: Reconstructing level sets of images (image courtesy of Ugo Boscain)

Basic idea: For one level curve, favor short and straight completions by Minimizing the functional

$$\gamma \mapsto J(\gamma) = \int_0^1 \|\dot{\gamma}(t)\| \sqrt{1 + K_{\gamma}^2(t)} dt$$

over a suitable space of curves.

Theorem (Boscain et al. 2012)

For every $(x_0, y_0), (x_1, y_1) \in \mathbb{R}^2$ with $(x_0, y_0) \neq (x_1, y_1)$ and every $v_0, v_1 \in \mathbb{R}^2 \setminus \{0\}$, the functional J has a minimizer over the set

$$\mathcal{D} = \{ \gamma \in C^2([0,1]; \mathbb{R}^2) \mid t \mapsto ||\dot{\gamma}(t)|| \sqrt{1 + \mathcal{K}_{\gamma}^2(t)} \in L^1([0,1]; \mathbb{R}),$$

$$\gamma(0) = (x_0, y_0), \ \gamma(1) = (x_1, y_1), \ \dot{\gamma}(0) \sim v_0, \ \dot{\gamma}(1) \sim v_1 \}$$

Key point: This problem can be reformulated as an optimal control problem on a **sub-Riemannian manifold** by **lifting** γ to the projective cotangent bundle $PT^*\mathbb{R}^2$ of \mathbb{R}^2

Sub-Riemannian problem: Find $q = (x, y, \theta)$ that minimizes

$$I(q) = \int_0^1 (u_1^2(t) + u_2^2(t))^{1/2} dt$$

subject to

$$\begin{array}{rcl} \dot{q} & = & u_1 X_1(q) + u_2 X_2(q), \\ X_1(q) & = & (\cos(\theta), \sin(\theta), 0), \ X_2(q) = (0, 0, 1), \\ q(b) & = & (x_b, y_b, \theta_b), \ q(c) = (x_c, y_c, \theta_c), u_1, u_2 \in L^1([0, 1]). \end{array}$$

Considering the Stratonovitch stochastic differential equation

$$dq = dw_1 X_1(q) + dw_2 X_2(q)$$

leads to the Fokker-Planck diffusion equation

$$\frac{\partial \phi}{\partial t} = \Delta_H \phi$$

where $\Delta_H = X_1^2 + X_2^2$ (hypoelliptic Laplacian).

Basic steps:

- ▶ **Lifting**: Lift image function $I : \mathbb{R}^2 \to \mathbb{R}$ to $\overline{I} : PT^*\mathbb{R}^2 \to \mathbb{R}$;
- ▶ **Hypoelliptic diffusion**: For fixed T > 0, solve the solution at time T of the hypoelliptic heat equation

$$\frac{\partial \phi}{\partial t} = \Delta_H \phi, \quad \phi(0) = \overline{I}.$$

▶ **Projection**: Compute the reconstructed image by choosing the maximum fiber value: $I_T(x,y) = \max_{\theta \in P^1} \phi(x,y,\theta,T)$.

Note:

▶ SE(2) is a double cover of $PT^*\mathbb{R}^2$, hence the hypoelliptic heat kernel for Δ_H can be obtained from that on SE(2).

Figure: Hypoelliptic Diffusion (images courtesy of Ugo Boscain)

L^2 Diffusion: Basic Idea

- ▶ Let $E: H_0^k(\Omega) \to \mathbb{R}$ be a functional.
- Assume E is Gateaux differentiable at every $u \in H_0^k(\Omega)$, i.e. there exists a continuous linear mapping $dE|_u: H_0^k(\Omega) \to \mathbb{R}$ such that:

$$\lim_{t\to 0}\frac{E(u+tv)-E(u)}{t}=dE|_{u}(v), \ \forall v\in H_0^k(\Omega).$$

- ▶ $dE|_u$ is the Gateaux differential of E at u (we shall assume $u \mapsto dE|_u$ is continuous on $H_0^k(\Omega)$).
- Let $u \in H_0^k(\Omega)$ and assume there exists $\nabla E|_u \in L^2(\Omega)$ such that

$$dE|_{u}(v) = \langle \nabla E|_{u}, v \rangle_{L^{2}}, \quad \forall v \in H_{0}^{k}(\Omega).$$

- ▶ $\nabla E|_u$ is the L^2 -gradient of E at u.
- ▶ Consider the differential equation in H_0^k given by

$$\frac{\partial u}{\partial t}(t) = -\nabla E|_{u(t)}, \quad t > 0.$$

We have:

$$\frac{d(E \circ u)}{dt}(t) = -\langle \nabla E|_{u(t)}, \nabla E|_{u(t)} \rangle_{L^2} \leq 0, \quad \forall t > 0.$$

▶ Hence the solution to the PDE evolves so as to minimize E (gradient descent).

L^2 Diffusion: Heat Flow

▶ Consider the functional $E: H_0^1(\Omega) \to \mathbb{R}$ defined by:

$$u \mapsto E(u) = \frac{1}{2} \int_{\Omega} \|\nabla u\|^2.$$

▶ E is Gateaux differentiable on $H_0^1(\Omega)$ with Gateaux differential at $u \in H_0^1(\Omega)$ given by

$$dE|_{u}(v) = \int_{\Omega} \nabla u \nabla v, \ \ \forall v \in H^{1}_{0}(\Omega)$$

▶ For each $u \in H^2(\Omega) \cap H^1_0(\Omega)$, the L^2 gradient of E at u is defined and is given by

$$\nabla E|_{u} = -\Delta u$$

▶ The gradient descent PDE for the functional *E* is then:

$$\frac{\partial u}{\partial t} = -\nabla E|_{u} = \Delta u$$

(⇒ heat equation)

 We can therefore interpret the isotropic diffusion equation as a gradient descent equation for the functional

$$u\mapsto E(u)=rac{1}{2}\int_{\Omega}\|\nabla u\|^2.$$

L² Diffusion: Perona-Malik

What about anisotropic diffusions ?

▶ Let $g: \mathbb{R}^+ \to \mathbb{R}^+$ of class C^2 and consider the functional

$$u \mapsto E(u) = \frac{1}{2} \int_{\Omega} g(\|\nabla u\|^2).$$

▶ $\forall u \in H^2(\Omega) \cap H^1_0(\Omega)$, the L^2 gradient of E at u is given by:

$$\nabla E|_{u} = -\nabla \cdot (g'(\|\nabla u\|^{2})\nabla u)$$

▶ The gradient descent PDE for the functional *E* is then:

$$\frac{\partial u}{\partial t} = -\nabla E|_{u} = \nabla \cdot (g'(\|\nabla u\|^{2})\nabla u)$$

▶ Different choices of g yield different anisotropic diffusion PDEs. Example: $g(s) = \log(1+s)$ yields

$$\frac{\partial u}{\partial t} = \nabla \cdot \left(\frac{1}{1 + \|\nabla u\|^2} \nabla u\right)$$

We can therefore also interpret anisotropic diffusion as gradient descent on a suitable functional.

A Geometric Picture of L^2 Diffusion PDES (Isotropic and Anisotropic)

Basic Observation:

► The gradient descent PDE

$$\frac{\partial u}{\partial t} = -\nabla E|_{u}$$

can be recast in terms of Riemannian geometry.

With M a smooth manifold, let

- ▶ T_pM the tangent space to M at p,
- ▶ T_p^*M the cotangent space to M at p,
- ▶ g a Riemannian metric on M, $g_p: T_pM \times T_pM \to \mathbb{R}$, $(p \in M)$, yielding an isomorphism $T_pM \to T_p^*M$ through $v \mapsto g_p(v, \cdot)$.

Application to our setting:

- $ightharpoonup H_0^k(\Omega)$ is a Hilbert space and hence a (infinite-dimensional Hilbert) manifold,
- ▶ For each $u \in H_0^k(\Omega)$, the tangent space $T_u H_0^k(\Omega)$ is canonically identified with $H_0^k(\Omega)$ itself (since $H_0^k(\Omega)$ is a vector space),
- For each $u \in H_0^k(\Omega)$, the cotangent space $T_u^\star H_0^k(\Omega)$ is canonically identified with the dual space of $H_0^k(\Omega)$,
- ▶ The L^2 metric $g_0: (v, w) \mapsto g_0(v, w) = \langle v, w \rangle_{L^2}$ on each tangent space $T_u H_0^k(\Omega)$ gives $H_0^k(\Omega)$ the structure of a (infinite-dimensional) Riemannian manifold,
- ▶ g_0 defines a distance on $H_0^k(\Omega)$ (our space of images ...)

A Geometric Picture of Diffusion PDES (Isotropic and Anisotropic)

- ▶ Basic Observation: $g_0(\nabla E, \cdot) = dE$; hence, starting from a functional E on $H_0^k(\Omega)$, g_0 is what allows us to go from the Gateaux differential dE to the L^2 gradient ∇E , and hence to the gradient descent equation $\frac{\partial u}{\partial t} = -\nabla E|_u$.
- Gradient descent on E with respect to g_0 yields a path on the space of images $H_0^k(\Omega)$.
- **Basic Question**: Is g_0 an appropriate metric on the space of images ?
- ▶ Changing the metric g_0 to some other metric changes the gradient ∇E and hence yields a different path on the space of images $H^1_0(\Omega)$, i.e. a new class of diffusion equations.

H¹ Sobolev Diffusion: Dirichlet Functional

- For each $\lambda > 0$, define the metric $g_{\lambda} : H_0^1(\Omega) \times H_0^1(\Omega) \to \mathbb{R}$ by $(v, w) \mapsto g_{\lambda}(v, w) = (1 \lambda)\langle v, w \rangle_{L^2} + \lambda \langle v, w \rangle_{H^1}$,
- ► Consider the functional $E: H_0^1(\Omega) \to \mathbb{R}$, $u \mapsto E(u) = \frac{1}{2} \int_{\Omega} \|\nabla u\|^2$,
- ▶ The gradient of E at $u \in H_0^1(\Omega)$ with respect to g_λ is defined by

$$g_{\lambda}(\nabla_{g_{\lambda}}E|_{u},v)=dE|_{u}(v), \quad \forall v\in H_{0}^{1}(\Omega).$$

▶ With $\xi = 1$ (resp. $\xi = -1$), the equation

$$\frac{du}{dt} = -\xi \nabla_{g_{\lambda}} E|_{u(t)}, \ t > 0,$$

is a gradient descent (resp. ascent) equation on E.

 Recall: Gradient ascent on E is ill-posed under the L² metric (reverse heat equation).

H^k $(k \ge 1)$ Sobolev Diffusion: Dirichlet Functional

With the H^1 Sobolev metric, we have:

Theorem (Calder, M., Yezzi 2010)

Let $\lambda>0$, let $\Omega\subset\mathbb{R}^n$ open with smooth boundary, let $\xi\in\{+1,-1\}$, $k\in\mathbb{N}$, $0<\gamma<1$. Then, $\forall u_0\in H^1_0(\Omega)$ (resp. $L^2(\Omega)$, $C^{k,\gamma}(\bar\Omega)$), there exists a unique $u\in C^1([0,\infty[;H^1_0(\Omega))]$ (resp. $C^1([0,\infty[;L^2(\Omega))]$), $C^{k,\gamma}(\bar\Omega)$) satisfying

$$\frac{du}{dt} = -\xi \nabla_{g_{\lambda}} E|_{u(t)}, \ t > 0,$$

$$u(0) = u_0.$$

We can similarly define H^k Sobolev gradients, with k > 1; we obtain:

Theorem (Calder, M., Yezzi 2010)

Let $\lambda > 0$, let $\Omega \subset \mathbb{R}^n$ open with smooth boundary, let $\xi \in \{+1, -1\}$, let $1 \le m \le k$. Then, $\forall u_0 \in H_0^m(\Omega)$ (resp. $L^2(\Omega), C^{k,\gamma}(\bar{\Omega})$) there exists a unique $u \in C^1([0,\infty[;H_0^\infty(\Omega))$ (resp. $C^1([0,\infty[;L^2(\Omega)), C^1([0,\infty[;C^{k,\gamma}(\bar{\Omega})))$)) satisfying

$$\begin{array}{rcl} \frac{du}{dt} & = & -\xi \nabla_{k,\lambda} E|_{u(t)}, \ t > 0, \\ u(0) & = & u_0. \end{array}$$

Maximum Principles

Theorem (Calder, M., Yezzi 2010)

Let E denote the Dirichlet functional on $H^1_0(\Omega)$, let $0 < \gamma < 1$, let $u_0 \in C^{0,\gamma}(\bar{\Omega}) \cap H^1_0(\Omega)$, and let $u \in C^1([0,\infty[;C^{0,\gamma}(\bar{\Omega})) \cap C^1([0,\infty[;H^1_0(\Omega))])$ be the unique solution to the H^1 -gradient descent equation on E:

$$\begin{array}{lcl} \frac{du}{dt} & = & -\nabla_{g_{\lambda}}E|_{u(t)}, \ t>0, \\ u(0) & = & u_0; \end{array}$$

then, $\forall (x, t) \in \Omega \times [0, \infty[$:

$$\min_{y\in\Omega}u_0(y)\leq u(x,t)\leq \max_{y\in\Omega}u_0(y).$$

- Maximum principles can also be derived for other function spaces (but with H¹ metric);
- ▶ Maximum principle does not hold for H^k metric with k > 1;
- Existence of a maximum principle ⇒ no "extra edges" created by the semigroup (Hummel '89).

Sobolev Diffusion: Sharpening PDEs

Under the Sobolev metric, the functional

$$E: u \mapsto E(u; u_0) = \frac{1}{4} \left(\int_{\Omega} \|\nabla u_0\|^2 \right) \left(\frac{\int_{\Omega} \|\nabla u\|^2}{\int_{\Omega} \|\nabla u_0\|^2} - \alpha \right)^2,$$

leads to the gradient descent equation

$$\frac{du}{dt} = \left(\frac{\int_{\Omega} \|\nabla u\|^2}{\int_{\Omega} \|\nabla u_0\|^2} - \alpha\right) \Delta (I - \Delta)^{-1} u, \ t > 0,$$

where $\alpha \in \mathbb{R}$ ($\alpha < 1 \Rightarrow$ blurring, $\alpha > 1 \Rightarrow$ sharpening).

For the functional

$$E: u \mapsto E(u; u_0) = -\frac{1}{2} \int_{\Omega} \|\nabla u\|^2 + \frac{\mu}{2} \|u - u_0\|_{H^1}^2$$

the gradient descent equation under the Sobolev metric is

$$\frac{du}{dt} = -\Delta(I - \lambda \Delta)^{-1}u + \mu(u_0 - u), \ t > 0.$$

Sobolev Diffusion: Generalization of Perona-Malik/You-Kaveh

- Let \mathcal{G} be a compatible inner product on $H_0^k(\Omega)$,
- ▶ Let the linear operator $\mathcal{L}: H^{-k}(\Omega) \to H^k_0(\Omega)$ be defined by

$$\mathcal{G}(\mathcal{L}u,v) = \langle u,v \rangle_{H^{-k},H_0^k}, \ \forall u \in H^{-k}(\Omega), v \in H_0^k(\Omega)$$

Theorem (Calder, M. 2011)

Let $k \in \mathbb{N}$, $g : [0, \infty[\to \mathbb{R}] \to \mathbb{R}$ bounded and C^1 such that $|sg'(s)| \le C \ \forall s \ge 0$ (for some C > 0). Then, $\forall u_0 \in H^k(\Omega)$, there exists a unique $u \in C^1([0, T]; H^k(\Omega))$ such that:

$$\begin{array}{lcl} \frac{du}{dt} & = & \mathcal{L} \left\{ \begin{array}{ll} -\Delta^{k/2}(g(|\Delta^{k/2}u|^2)\Delta^{k/2}u), & k \text{ even} \\ \Delta^{(k-1)/2}\mathrm{div}(g(\|\nabla\Delta^{(k-1)/2}u\|^2)\nabla\Delta^{(k-1)/2}u) & k \text{ odd} \end{array} \right. \\ u(0) & = & u_0. \end{array}$$

Furthermore, if $u_0 \in H_0^k(\Omega)$ then $u(t) \in H_0^k(\Omega)$ for all $t \in]0, T]$

Note:

- $k = 1 \Rightarrow \text{Perona-Malik}$
- ► Sobolev regularizes Perona-Malik while remaining a descent equation on the Perona-Malik functional (unlike Catté et al.'s regularization scheme).

Sobolev Diffusion: Combined isotropic sharpening/anisotropic smoothing

- Let $E: H_0^1(\Omega) \to \mathbb{R}$ be given by $E(u) = \int_{\Omega} \phi(\|\nabla u\|^2)$, with $\phi(s) = s \beta(1 e^{-s})$ $(\beta > 1)$,
- $\blacktriangleright \text{ Let } g: s \mapsto g(s) = 1 \beta e^{-s/K^2};$

The evolution equation

$$\frac{du}{dt} = -(I - \lambda \Delta)^{-1} \nabla \cdot (g(\|\nabla u\|^2) \nabla u), \ t > 0$$

$$u(0) = u_0$$

can be rewritten as

$$\frac{du}{dt} = -(I - \lambda \Delta)^{-1} \Delta u + \beta (I - \lambda \Delta)^{-1} \nabla \cdot (e^{-(\|\nabla u\|^2)/K^2} \nabla u),$$

$$u(0) = u_0$$

⇒ smoothing of weak edges + sharpening of strong edges:

Figure 1: The qualitative properties of (a) the combined smoothing/sharpening potential $\phi(s)$ and (b) the diffusion coefficient, $g(s) = \phi'(s)$.

Figure: Isotropic Sobolev sharpening

Figure: Shock Filter

Figure: Combined Sobolev sharpening/smoothing

Figure: Isotropic Sobolev sharpening

Figure: Shock Filter

Figure: Combined Sobolev sharpening/smoothing

Figure: Combined Sobolev sharpening/smoothing on noisy blurred image

Figure: Combined Sobolev sharpening/smoothing on noisy blurred image

Conclusion

Key Points:

- Changing the geometry on the space of images from L² to Sobolev leads to new families of diffusion equations which overcome instabilities associated with L² diffusions.
- ▶ Immediate extension: Non-constant Riemannian metrics on the space of images. But Sobolev diffusion is still a diffusion in \mathbb{R}^2 ...

Let us revisit the main objective of image diffusion:

- ► To remove certain types of image singularities ...
- while preserving other types of singularities.

But:

▶ The wavefront set of a singularity is a subset of T^*R^2 ...

This suggests the following attempt at defining a microlocal diffusion:

Definition (Microlocal Diffusion)

Abdol-Reza Mansouri Queen's University Department of Mathematics and

A one-parameter semigroup $(T_t)_{t\geq 0}$ defined on $\mathcal{D}'(T^\star\mathbb{R}^2)$ such that, with $u\in \mathcal{D}'(\mathbb{R}^2)$ given by

$$u = u_S + u_N$$

where $u_S\in \mathcal D_S'(\mathbb R^2)$ ("signal") and $u_N\in \mathcal D_N'(\mathbb R^2)$ ("noise"), we have

$$WF(\pi(T_t(I(u)))) \rightarrow WF(u_S)$$

as $t \to \infty$, in some appropriate topology + other conditions (I(u) denoting the lift of u to $\mathcal{D}'(T^*\mathbb{R}^2)$ and π the projection back to $\mathcal{D}'(\mathbb{R}^2)$).

Geometric Approaches in Image Diffusion

Conclusion

THANK YOU

References

- J. Calder, A. Mansouri, "Anisotropic Image Sharpening via Well-Posed Sobolev Gradient Flows", SIAM Journal on Mathematical Analysis (2011), Vol. 43, No. 4, pp. 1536-1556.
- J. Calder, A. Mansouri, A. Yezzi, "New Possibilities in Image Diffusion and Sharpening via High-Order Sobolev Gradient Flows", *Journal of Mathematical Imaging and Vision* (2011), Vol. 40, No. 3, pp. 248-258.
- J. Calder, A. Mansouri, A. Yezzi, "Image Sharpening via Sobolev Gradient Flows", SIAM Journal on Imaging Sciences (2010), Vol. 3, No. 4, pp. 981-1014.
- U. Boscain, J. Duplaix, J.P. Gauthier, F. Rossi, "Image reconstruction via hypoelliptic diffusion on the bundle of directions of the plane," *Mathematical Image Processing*, 75-90, Springer 2011.
- A. Spira, R. Kimmel, N. Sochen, "A short-time Beltrami kernel for smoothing images and manifolds," *IEEE Transactions on Image Processing* (2007), Vol. 16, No. 6, pp. 1628-1636.