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Introduction

1. Image Diffusion: Basic Problem and Applications
Basic History:
> Witkin
> Perona-Malik
3. Geometric Approaches

> Beltrami Diffusion
» Hypoelliptic Diffusion
» Sobolev Diffusion

4. Conclusion: Microlocal Diffusions 7
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Image Diffusion: Basic Problem

Basic Problem:

> Define a suitable function space H and a suitable one-parameter semigroup
(Tt)t>0 on H such that for any up € H, the family (T:up):>o corresponds to a
one-parameter family of deformations of ug in a “desired way”, such as:
(a) yields “smoother” (i.e. less noisy) versions of ug as t — oo, while preserving the
“important” structure in up (e.g. object boundaries, ...), or
(b) “sharpens” ug more and more as t — oo, or
(c) “missing parts” of ug are “filled in”, or ...

-

Or (often equivalently),

» Define a suitable function space H and a suitable operator A on H such that the
one-parameter family (u(t)):>o solution to the evolution equation

du

Y Au >0,
dt "
u(0) = wo,

(with up € H) deforms up in a “desired way” as above.
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Image Diffusion: Basic Applications

Figure: Image denoising
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Image Diffusion: Basic Applications

Figure: Image sharpening
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Image Diffusion: Basic Applications

Figure: Image reconstruction (inpainting) (images courtesy of Ugo Boscain)
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Isotropic Diffusion

Basic Diffusion PDE: The Heat Equation (Witkin'83)

» Given an image up : Q — R, consider the partial differential equation

Ju
M~ Au t>0,
Ey cAu
U(-,O) = up,
u(-,t) = 0ondf, Vt>0,

where A = 69—52 + 66_:2 is the Laplacian operator, and ¢ > 0 is the diffusion
constant.
» Basic regularity result: Vt > 0, Yug € L2(Q), u(-,t) is C=.
» Basic consequence of the regularity result:
> u(-, t) is “infinitely smoother” than u(:,s) for t > s.
As a result:
> Image denoising is performed, but ...
> Substantial image structure is lost in the process! Key reason: Isotropicity.
> A rotationally invariant =

> Diffusion is performed equally in all directions,
> Diffusion is performed independently of any underlying image structure.
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Anisotropic Diffusion

The Perona-Malik Equation ('89)
Basic idea:

(a) Re-express the heat equation as

% = V-(cVu), t>0,

(b) Replace the constant diffusion coefficient ¢ with a variable diffusion coefficient
s — c(s), yielding:
0
= = V-(cllVu)Vu), t>0,
ot
with ¢ : Rt — R* monotonically decreasing, c(s) — 0 as s — oo, and ¢(s) — 1

ass =0 (e.g. c(s) = W or c(s) = e752/K2).

(c) The diffusion obtained is anisotropic: More diffusion along image gradient
directions than across image gradient directions.

(d) Key (theoretical) problem: Highly ill-posed!
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Anisotropic Diffusion

Example: The 1-D Perona-Malik Equation (with c(s) = 1_*_%)

1 1— u?
1+ u2 tx) = (1 + u2)? thoc:
Hence: We have heat flow for |ux| < 1 and reverse heat flow for |ux| > 1.
» But: Provably stable numerical schemes do exist! (“Perona-Malik paradox”)
Theoretical Fix: Mollification!
ou
at
where w1, is the convolution of u with a Gaussian of variance o2.

Theorem (Catté et al. '92)

Let o > 0. For any ug € L?(Q), there is a unique weak solution
u € CO([0, T]; L2(Q)) N L2([0, T]; HX(Q)) to

ug = 8X(

= V- (c([Vus[)Vu), t>0,

0

a—‘t’ = V- (c(|[Vuo|)Vu) on 10, T] x ©,
Oyu = 0on]0, T]x 09,
u(0) = up;

Moreover, this unique solution is in C>°(]0, T] x §), hence is a strong solution.
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Isotropic Diffusion: Denoising Results

Figure: Isotropic diffusion
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Perona-Malik Anisotropic Diffusion: Denoising Results

Figure: Perona-Malik Anisotropic diffusion
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Image Diffusion: Geometric Approaches

Basic ldea:

» Formulate image diffusion as a geometric problem.
> For example:

> Consider the graph of the image function as a Riemannian manifold (Beltrami
diffusion), or

> Lift the image function to the projective cotangent bundle of R? (Hypoelliptic
diffusion), or

> Consider the space of images as a Riemannian manifold (Sobolev diffusion), or
> .
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Beltrami Diffusion (Kimmel et al.)

> Consider the image function / : Q@ — RX (assumed smooth) as an embedding
X :Q = RN = RK+2 (1, ) = (x(u1, ), y(un, w), I(u1, u2));

» For the map (u1, u2) — (u1, up, I(u1, u2)), the image of X becomes the graph I,
of the image function /;

> Let h= h;jdyidyj be a Riemannian metric on RV;

» Let g = X*h be the pullback metric on Q under the embedding X : Q@ — RV;
> (£, g) is a Riemannian manifold;

» Example: With h =3, dx'dx’ + 3=, B2dI*dI*, we obtain

(g;i) = EI(X{')% + B2 ZJ(I{)? Eixi:xé +p2 > /{‘Ié'
DN S+ 2 S0 + 252
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Beltrami Diffusion (Kimmel et al.)

> Basic idea: Minimizing the area functional

S = /\/Edulduz

with respect to the image function / leads to the Beltrami flow
ol
— = Agl,
ot~ ¢

where

Ay = % . (VEE" D)

is the Laplace-Beltrami operator of the Riemannian manifold (, g).
» Minimizing
S(X, g, h) = / do/ge" 9, X0, XIhy(X)

selectively with respect to X and g yields known flows (e.g. heat flow, mean
curvature flow, etc.).

» Making the induced metric non-definite yields inverse diffusion across the edges.
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Beltrami Diffusion (Kimmel




Hypoelliptic Diffusion (Boscain et al.)

Basic problem: Reconstructing level sets of images (image courtesy of Ugo Boscain)

A

d

Basic idea: For one level curve, favor short and straight completions by Minimizing the

functional
1
1m0 = [ ROy 1+ K0
over a suitable space of curves.
Theorem (Boscain et al. 2012)

For every (xo,y0), (x1,y1) € R? with (xo,y0) # (x1,y1) and every vo, v1 € R? \ {0},
the functional J has a minimizer over the set

D= {y € C*([0,1;R?) | t = | 7(t)[l\/1 + K2(¢) € L}([0, 1] R),
’Y(O) = (X07y0)7 ’7(1) = (X17y1)7 '7(0) ~ Vo, ’Y(l) ~ Vl}

Key point: This problem can be reformulated as an optimal control problem on a
sub-Riemannian manifold by lifting ~ to the projective cotangent bundle-PT*R? of R?
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Hypoelliptic Diffusion (Boscain et al.)

Sub-Riemannian problem: Find g = (x, y,0) that minimizes

1
@) = [ (W) + ()2t
0
subject to

G = wXi(q) + u2Xa(q),
(cos(8),sin(0),0), X2(q) = (0,0,1),
(b, Y6, ), a(€) = (xc, e, 0c), ur, up € L}([0, 1]).

q X
= =
T Q
2
(|

Considering the Stratonovitch stochastic differential equation
dg = dwi X1(q) + dw2X2(q)
leads to the Fokker-Planck diffusion equation

o0
f = AHe

where Ay = X12 + X22 (hypoelliptic Laplacian).
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Hypoelliptic Diffusion (Boscain et al.)

Basic steps:
> Lifting: Lift image function / : R2 - R to I/ : PT*R? = R;

» Hypoelliptic diffusion: For fixed T > 0, solve the solution at time T of the
hypoelliptic heat equation

0¢ 2

> Projection: Compute the reconstructed image by choosing the maximum fiber
value: IT(x,y) = maxgept ¢(x,y,0,T).
Note:

» SE(2) is a double cover of PT*R?, hence the hypoelliptic heat kernel for Ay can
be obtained from that on SE(2).
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Hypoelliptic Diffusion (Boscain et al.)
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Figure: Hypoelliptic Diffusion (images courtesy of Ugo Boscain)
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L2 Diffusion: Basic Idea

> Let E : HX(Q) — R be a functional.

> Assume E is Gateaux differentiable at every u € H(’;(Q), i.e. there exists a
continuous linear mapping dE|, : Hf(€2) — R such that:

lim E(u+ tv) — E(u)

t—0 t

= dE|u(v), Vv e HEQ).

» dE|, is the Gateaux differential of E at u (we shall assume u — dE|, is
continuous on H{(L)).

> Let u € HX(Q) and assume there exists VE|, € L?(Q) such that
dE|u(v) = (VE|u,v)2, Vv € HY(Q).

» VE|, is the L?>—gradient of E at u.
» Consider the differential equation in H(’; given by

ou
5 (1) = ~VEl@, t>0.

» We have:
d(Eou
%(t) = —(VE|y(e), VElue)i2 <0, ¥t >0.

> Hence the solution to the PDE evolves so as to minimize E (gradient descent).

Abdol-Reza Mansouri Queen’s University Department of Mathematics anc  Geometric Approaches in Image Diffusion



L2 Diffusion: Heat Flow

» Consider the functional E : H}(Q2) — R defined by:

u— E(u) = / ||Vu||2

» E is Gateaux differentiable on H(Q) with Gateaux differential at u € H}()
given by

dE|u( /Vqu Vv € H(Q)

> For each u € H2(Q) N H(Q), the L? gradient of E at u is defined and is given by
VE|, = —-Au
» The gradient descent PDE for the functional E is then:

ou
o = —VE|,=Au
(= heat equation)

» We can therefore interpret the isotropic diffusion equation as a gradient descent
equation for the functional

s E(u) = / [Vul?.
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L2 Diffusion: Perona-Malik

What about anisotropic diffusions ?

> Let g: RT — R+ of class C2 and consider the functional
1 2
ur E(u) =3 | g(lIVull®).
Q
> Yu € H2(Q) N H}(R), the L? gradient of E at u is given by:
VE[, ==V - (g'(|Vul*)Vu)

> The gradient descent PDE for the functional E is then:

ou
5 = ~VElL =V (' (IVul)Vu)

» Different choices of g yield different anisotropic diffusion PDEs. Example:
g(s) = log(1 + s) yields

Ju 1

M ov (v
ot SewEmERE)

> We can therefore also interpret anisotropic diffusion as gradient descent on a
suitable functional.
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A Geometric Picture of L2 Diffusion PDES (Isotropic and Anisotropic)

Basic Observation:
» The gradient descent PDE

— =—-VE|,
ot |

can be recast in terms of Riemannian geometry.
With M a smooth manifold, let
» T,M the tangent space to M at p,
> TS M the cotangent space to M at p,
> g a Riemannian metricon M, gp : ToM x T,M — R, (p € M), yielding an
isomorphism TpoM — TJM through v — gp(v, ).
Application to our setting:
> H¥(S) is a Hilbert space and hence a (infinite-dimensional Hilbert) manifold,
» For each u € H¥(Q), the tangent space T,H¥(RQ) is canonically identified with
HE(Q) itself (since H{(L2) is a vector space),
> For each u € H)(Q), the cotangent space T HX(Q) is canonically identified with
the dual space of H¥(Q),
» The L2 metric gg : (v, w) — go(v, w) = (v, w),2 on each tangent space T,H(Q)
gives HX(Q) the structure of a (infinite-dimensional) Riemannian manifold,

> go defines a distance on HX(Q) (our space of images ...)
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A Geometric Picture of Diffusion PDES (Isotropic and Anisotropic)

» Basic Observation: go(VE, ) = dE; hence, starting from a functional E on
H§(S2), go is what allows us to go from the Gateaux differential dE to the L2
gradient VE, and hence to the gradient descent equation % = —VE|..

> Gradient descent on E with respect to gp yields a path on the space of images
HE(9Q).

» Basic Question: Is gy an appropriate metric on the space of images ?

» Changing the metric gy to some other metric changes the gradient VE and

hence yields a different path on the space of images Hé(Q), i.e. a new class of
diffusion equations.

Abdol-Reza Mansouri Queen’s University Department of Mathematics anc  Geometric Approaches in Image Diffusion



H! Sobolev Diffusion: Dirichlet Functional

» For each A > 0, define the metric gy : H}(Q) x H3(Q) — R by
(v, w) = ga(v,w) = (1 = A) (v, w)2 + AX(v,w)p1,

» Consider the functional E : Hl(Q) =R, um E(u) =3 fQ IV ull?,

> The gradient of E at u € H}(£2) with respect to g, is defined by

&\(Vgy, Elu, v) = dE|u(v), Vv € H}(Q).
» With £ =1 (resp. £ = —1), the equation

du

dt EngE| (t)> t>0,

is a gradient descent (resp. ascent) equation on E.

> Recall: Gradient ascent on E is ill-posed under the L? metric (reverse heat
equation).
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H* (k > 1) Sobolev Diffusion: Dirichlet Functional

With the H! Sobolev metric, we have:

Theorem (Calder, M., Yezzi 2010)

Let A >0, let Q C R" open with smooth boundary, let £ € {+1,—1}, k €N,
0 < v < 1. Then, Yup € H}(Q) (resp. L2(2), CK7(Q)), there exists a unique
u € CY([0, oo[; H}(Q)) (resp. C1([0, oo[; L2(R)), Ck7(Q)) satisfying

du
E = _Evg)\ E‘u(t)ﬂ t>0,
u(0) = w.

We can similarly define H* Sobolev gradients, with kK > 1; we obtain:

Theorem (Calder, M., Yezzi 2010)

Let A >0, let Q C R” open with smooth boundary, let £ € {+1,—1}, let 1 < m < k.
Then, Yuo € H"(Q) (resp. L2(Q), C*7(Q)) there exists a unique
u € CY([0, oof; H§°(2)) (resp. C([0, oof; L2(2)), C*([0, ool; Ck(Q))) satisfying

du

& eV, \Elyn, t>0,
o EViAElu

u(0) = w.
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Maximum Principles

Theorem (Calder, M., Yezzi 2010)

Let E denote the Dirichlet functional on H}(Q), let 0 < v < 1, let
ug € COY(Q) N HY(Q), and let u € CL([0, cof; C¥7(Q)) N CL([0, oo[; HE(R)) be the
unique solution to the H-gradient descent equation on E:

du
E = —ngEL,(t), t>0,
u(0) = uo;

then, ¥(x,t) € Q x [0, ool:

min u < u(x, t) < maxu .
min o(y) < ulx, )7y€§2 o(y)

» Maximum principles can also be derived for other function spaces (but with H!
metric);

» Maximum principle does not hold for HX metric with k > 1;

» Existence of a maximum principle = no “extra edges”’ created by the semigroup
(Hummel '89).
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Sobolev Diffusion: Sharpening PDEs

» Under the Sobolev metric, the functional

L ) (Jalvul? )
E:u— E(u;u) = a (/S; IV wol| ) (fQ Vw2 a) ’

leads to the gradient descent equation

d Vul|?
au _ fn||7“||2_a AUl = A) Yy, t>0,
dt Jo lIVuoll

where o € R (o < 1 = blurring, o > 1 = sharpening).

» For the functional
. . 1 2 M 2
Eums E(uiuo) = — /Q I9ul? + & lu = w0l

the gradient descent equation under the Sobolev metric is

d
d—‘t’ = Al = AA)"u+ p(up — u), t>0.
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Sobolev Diffusion: Generalization of Perona-Malik/You-Kaveh

> Let G be a compatible inner product on H(’;(Q),
> Let the linear operator £ : H=K(Q) — H{(R) be defined by

G(Lu,v) = (U, V) s > YU € H=K(Q), v e HERQ)

Theorem (Calder, M. 2011)

Let k €N, g : [0,00[— R bounded and C! such that |sg’(s)| < C Vs > 0 (for some
C >0). Then, Yup € H*(Q), there exists a unique u € C1([0, T]; H*(Q)) such that:

du L[ —ANE(g(|AR2uP) AR 2u), k even
dt A 2div(g(|VAKD/ 24| 2) W AK=D/2y) Kk odd
u(0) = wp.

Furthermore, if ug € HX(Q) then u(t) € HE(Q) for all t €]0, T]

Note:
» k =1 = Perona-Malik.

> Sobolev regularizes Perona-Malik while remaining a descent equation on the
Perona-Malik functional (unlike Catté et al.’s regularization scheme).
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Sobolev Diffusion: Combined isotropic sharpening/anisotropic smoothing

> Let E: H} () — R be given by E(u) = [, ¢([|Vul|?), with
P(s) =s—B(L—e") (B>1),
> Let g:s—g(s)=1— Be‘s/K2;

The evolution equation
du
dt

u(0)

—(I = XAV (g(IVul?)Vu), t >0

to

can be rewritten as

du
dt
u(0)

—(I = AA) AU+ B(1 — AA) IV - (e UV KA ),

to

= smoothing of weak edges + sharpening of strong edges:

| |
\ \

(@) o(s) ) 9(s) = ¢'(5)
Figure 1: The qualitative properties of (a) the combined smoothing/sharpening
potential ¢(s) and (b) the diffusion coefficient, g(s) = ¢/(s
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Sobolev Diffusion: Experimental Results

Figure: Isotropic Sobolev sharpening
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Sobolev Diffusion: Experimental Results

Figure: Shock Filter
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Experimental Results

Figure: Combined Sobolev sharpening/smoothing
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Sobolev Diffusion: Experimental Results

Figure: Isotropic Sobolev sharpening
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Figure: Shock Filter
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Figure: Combined Sobolev sharpening/smoothing
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Experimental Results

Figure: Combined Sobolev sharpening/smoothing on noisy blurred image
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Sobolev Diffusion: Experimental Results

Figure: Combined Sobolev sharpening/smoothing on noisy blurred image
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Conclusion

Key Points:
> Changing the geometry on the space of images from L? to Sobolev leads to new
families of diffusion equations which overcome instabilities associated with [2
diffusions.
> Immediate extension: Non-constant Riemannian metrics on the space of images.
But Sobolev diffusion is still a diffusion in R? ...
Let us revisit the main objective of image diffusion:
> To remove certain types of image singularities ...
> while preserving other types of singularities.
But:
» The wavefront set of a singularity is a subset of T*R? ...
This suggests the following attempt at defining a microlocal diffusion:

Definition (Microlocal Diffusion)

A one-parameter semigroup (Tt);>o defined on D’(T*R?) such that, with u € D’(R?)
given by

u=us + up,
where ug € DL(R?) (“signal”) and uy € Dj(R?) (“noise”), we have

WF ((Te(I(u)))) — WF(us)

as t — oo in some approprlate topology + other conditions (/(u) denoting the lift of
2 2

o) and 7 the pro on D3
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Conclusion

THANK YOU
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