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Introduction

1. Image Diffusion: Basic Problem and Applications

2. Basic History:
◮ Witkin
◮ Perona-Malik

3. Geometric Approaches
◮ Beltrami Diffusion
◮ Hypoelliptic Diffusion
◮ Sobolev Diffusion

4. Conclusion: Microlocal Diffusions ?
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Image Diffusion: Basic Problem

Basic Problem:
◮ Define a suitable function space H and a suitable one-parameter semigroup

(Tt )t≥0 on H such that for any u0 ∈ H, the family (Ttu0)t≥0 corresponds to a
one-parameter family of deformations of u0 in a “desired way”, such as:
(a) yields “smoother” (i.e. less noisy) versions of u0 as t → ∞, while preserving the

“important” structure in u0 (e.g. object boundaries, ...), or
(b) “sharpens” u0 more and more as t → ∞, or
(c) “missing parts” of u0 are “filled in”, or ...

Or (often equivalently),

◮ Define a suitable function space H and a suitable operator A on H such that the
one-parameter family (u(t))t≥0 solution to the evolution equation

du

dt
= Au, t > 0,

u(0) = u0,

(with u0 ∈ H) deforms u0 in a “desired way” as above.
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Image Diffusion: Basic Applications

Figure: Image denoising

Abdol-Reza Mansouri Queen’s University Department of Mathematics and StatisticsGeometric Approaches in Image Diffusion



Image Diffusion: Basic Applications

Figure: Image sharpening
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Image Diffusion: Basic Applications

Figure: Image reconstruction (inpainting) (images courtesy of Ugo Boscain)
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Isotropic Diffusion

Basic Diffusion PDE: The Heat Equation (Witkin’83)

◮ Given an image u0 : Ω → R, consider the partial differential equation

∂u

∂t
= c∆u, t > 0,

u(·, 0) = u0,

u(·, t) = 0 on ∂Ω, ∀t ≥ 0,

where ∆ = ∂2

∂x2
+ ∂2

∂y2
is the Laplacian operator, and c > 0 is the diffusion

constant.

◮ Basic regularity result: ∀t > 0, ∀u0 ∈ L2(Ω), u(·, t) is C∞.
◮ Basic consequence of the regularity result:

◮ u(·, t) is “infinitely smoother” than u(·, s) for t > s.

As a result:

◮ Image denoising is performed, but ...

◮ Substantial image structure is lost in the process! Key reason: Isotropicity.
◮ ∆ rotationally invariant ⇒

◮ Diffusion is performed equally in all directions,
◮ Diffusion is performed independently of any underlying image structure.
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Anisotropic Diffusion

The Perona-Malik Equation (’89)
Basic idea:

(a) Re-express the heat equation as

∂u

∂t
= ∇ · (c∇u), t > 0,

(b) Replace the constant diffusion coefficient c with a variable diffusion coefficient
s 7→ c(s), yielding:

∂u

∂t
= ∇ · (c(‖∇u‖)∇u), t > 0,

with c : R+ → R
+ monotonically decreasing, c(s) → 0 as s → ∞, and c(s) → 1

as s → 0 (e.g. c(s) = 1
1+s2/K2 or c(s) = e−s2/K2

).

(c) The diffusion obtained is anisotropic: More diffusion along image gradient
directions than across image gradient directions.

(d) Key (theoretical) problem: Highly ill-posed!
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Anisotropic Diffusion

Example: The 1-D Perona-Malik Equation (with c(s) = 1
1+s2

):

ut = ∂x (
1

1 + u2x
ux ) =

1− u2x
(1 + u2x )

2
uxx .

Hence: We have heat flow for |ux | < 1 and reverse heat flow for |ux | > 1.
◮ But: Provably stable numerical schemes do exist! (“Perona-Malik paradox”)

Theoretical Fix: Mollification!

∂u

∂t
= ∇ · (c(‖∇uσ‖)∇u), t > 0,

where uσ is the convolution of u with a Gaussian of variance σ2.

Theorem (Catté et al. ’92)

Let σ > 0. For any u0 ∈ L2(Ω), there is a unique weak solution
u ∈ C0([0,T ];L2(Ω)) ∩ L2([0,T ];H1(Ω)) to

∂u

∂t
= ∇ · (c(‖∇uσ‖)∇u) on ]0,T ]× Ω,

∂νu = 0 on ]0,T ]× ∂Ω,

u(0) = u0;

Moreover, this unique solution is in C∞(]0,T ]× Ω̄), hence is a strong solution.
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Isotropic Diffusion: Denoising Results

Figure: Isotropic diffusion
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Perona-Malik Anisotropic Diffusion: Denoising Results

Figure: Perona-Malik Anisotropic diffusion
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Image Diffusion: Geometric Approaches

Basic Idea:

◮ Formulate image diffusion as a geometric problem.
◮ For example:

◮ Consider the graph of the image function as a Riemannian manifold (Beltrami
diffusion), or

◮ Lift the image function to the projective cotangent bundle of R2 (Hypoelliptic
diffusion), or

◮ Consider the space of images as a Riemannian manifold (Sobolev diffusion), or
◮ ...

Abdol-Reza Mansouri Queen’s University Department of Mathematics and StatisticsGeometric Approaches in Image Diffusion



Beltrami Diffusion (Kimmel et al.)

◮ Consider the image function I : Ω → R
K (assumed smooth) as an embedding

X : Ω → R
N = RK+2, (u1, u2) 7→ (x(u1, u2), y(u1, u2), I (u1, u2));

◮ For the map (u1, u2) 7→ (u1, u2, I (u1, u2)), the image of X becomes the graph ΓI
of the image function I ;

◮ Let h = hijdy
idy j be a Riemannian metric on RN ;

◮ Let g = X⋆h be the pullback metric on Ω under the embedding X : Ω → RN ;

◮ (Ω, g) is a Riemannian manifold;

◮ Example: With h =
∑

i dx
idx i +

∑

k β
2dI kdI k , we obtain

(gij ) =

(

∑

i (x
i
1)

2 + β2
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j (I
j
1)

2
∑
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i
1x

i
2 + β2
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j I
j
1I

j
2

∑
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i
1x

i
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Beltrami Diffusion (Kimmel et al.)

◮ Basic idea: Minimizing the area functional

S =

∫ √
gdu1du2

with respect to the image function I leads to the Beltrami flow

∂I

∂t
= ∆g I ,

where

∆g =
1
√
g
∂µ(

√
ggµν∂ν)

is the Laplace-Beltrami operator of the Riemannian manifold (Ω, g).

◮ Minimizing

S(X , g , h) =

∫

dσ
√
ggµν∂µX

i∂νX
jhij (X )

selectively with respect to X and g yields known flows (e.g. heat flow, mean
curvature flow, etc.).

◮ Making the induced metric non-definite yields inverse diffusion across the edges.
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Beltrami Diffusion (Kimmel et al.)

Figure: Beltrami diffusion (http://www.cs.technion.ac.il/∼ron/)

Figure: Inverse Beltrami (http://www.cs.technion.ac.il/∼ron/)
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Hypoelliptic Diffusion (Boscain et al.)

Basic problem: Reconstructing level sets of images (image courtesy of Ugo Boscain)

?
?

?

Basic idea: For one level curve, favor short and straight completions by Minimizing the
functional

γ 7→ J(γ) =

∫ 1

0
‖γ̇(t)‖

√

1 + K 2
γ(t)dt

over a suitable space of curves.

Theorem (Boscain et al. 2012)

For every (x0, y0), (x1, y1) ∈ R
2 with (x0, y0) 6= (x1, y1) and every v0, v1 ∈ R

2 \ {0},
the functional J has a minimizer over the set

D = {γ ∈ C2([0, 1];R2) | t 7→ ‖γ̇(t)‖
√

1 + K 2
γ(t) ∈ L1([0, 1];R),

γ(0) = (x0, y0), γ(1) = (x1, y1), γ̇(0) ∼ v0, γ̇(1) ∼ v1}

Key point: This problem can be reformulated as an optimal control problem on a
sub-Riemannian manifold by lifting γ to the projective cotangent bundle PT⋆R2 of R2
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Hypoelliptic Diffusion (Boscain et al.)

Sub-Riemannian problem: Find q = (x , y , θ) that minimizes

l(q) =

∫ 1

0
(u21(t) + u22(t))

1/2dt

subject to

q̇ = u1X1(q) + u2X2(q),

X1(q) = (cos(θ), sin(θ), 0), X2(q) = (0, 0, 1),

q(b) = (xb, yb, θb), q(c) = (xc , yc , θc ), u1, u2 ∈ L1([0, 1]).

Considering the Stratonovitch stochastic differential equation

dq = dw1X1(q) + dw2X2(q)

leads to the Fokker-Planck diffusion equation

∂φ

∂t
= ∆Hφ

where ∆H = X 2
1 + X 2

2 (hypoelliptic Laplacian).
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Hypoelliptic Diffusion (Boscain et al.)

Basic steps:

◮ Lifting: Lift image function I : R2 → R to Ī : PT⋆
R
2 → R;

◮ Hypoelliptic diffusion: For fixed T > 0, solve the solution at time T of the
hypoelliptic heat equation

∂φ

∂t
= ∆Hφ, φ(0) = Ī .

◮ Projection: Compute the reconstructed image by choosing the maximum fiber
value: IT (x , y) = maxθ∈P1 φ(x , y , θ,T ).

Note:

◮ SE(2) is a double cover of PT⋆R2, hence the hypoelliptic heat kernel for ∆H can
be obtained from that on SE(2).
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Hypoelliptic Diffusion (Boscain et al.)

Figure: Hypoelliptic Diffusion (images courtesy of Ugo Boscain)
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L
2 Diffusion: Basic Idea

◮ Let E : Hk
0 (Ω) → R be a functional.

◮ Assume E is Gateaux differentiable at every u ∈ Hk
0 (Ω), i.e. there exists a

continuous linear mapping dE |u : Hk
0 (Ω) → R such that:

lim
t→0

E(u + tv)− E(u)

t
= dE |u(v), ∀v ∈ Hk

0 (Ω).

◮ dE |u is the Gateaux differential of E at u (we shall assume u 7→ dE |u is
continuous on Hk

0 (Ω)).

◮ Let u ∈ Hk
0 (Ω) and assume there exists ∇E |u ∈ L2(Ω) such that

dE |u(v) = 〈∇E |u, v〉L2 , ∀v ∈ Hk
0 (Ω).

◮ ∇E |u is the L2−gradient of E at u.

◮ Consider the differential equation in Hk
0 given by

∂u

∂t
(t) = −∇E |u(t), t > 0.

◮ We have:

d(E ◦ u)

dt
(t) = −〈∇E |u(t),∇E |u(t)〉L2 ≤ 0, ∀t > 0.

◮ Hence the solution to the PDE evolves so as to minimize E (gradient descent).
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L
2 Diffusion: Heat Flow

◮ Consider the functional E : H1
0 (Ω) → R defined by:

u 7→ E(u) =
1

2

∫

Ω
‖∇u‖2.

◮ E is Gateaux differentiable on H1
0 (Ω) with Gateaux differential at u ∈ H1

0 (Ω)
given by

dE |u(v) =
∫

Ω
∇u∇v , ∀v ∈ H1

0 (Ω)

◮ For each u ∈ H2(Ω) ∩ H1
0 (Ω), the L2 gradient of E at u is defined and is given by

∇E |u = −∆u

◮ The gradient descent PDE for the functional E is then:

∂u

∂t
= −∇E |u = ∆u

(⇒ heat equation)

◮ We can therefore interpret the isotropic diffusion equation as a gradient descent
equation for the functional

u 7→ E(u) =
1

2

∫

Ω
‖∇u‖2.
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L
2 Diffusion: Perona-Malik

What about anisotropic diffusions ?

◮ Let g : R+ → R+ of class C2 and consider the functional

u 7→ E(u) =
1

2

∫

Ω
g(‖∇u‖2).

◮ ∀u ∈ H2(Ω) ∩ H1
0 (Ω), the L2 gradient of E at u is given by:

∇E |u = −∇ · (g ′(‖∇u‖2)∇u)

◮ The gradient descent PDE for the functional E is then:

∂u

∂t
= −∇E |u = ∇ · (g ′(‖∇u‖2)∇u)

◮ Different choices of g yield different anisotropic diffusion PDEs. Example:
g(s) = log(1 + s) yields

∂u

∂t
= ∇ · ( 1

1 + ‖∇u‖2
∇u)

◮ We can therefore also interpret anisotropic diffusion as gradient descent on a
suitable functional.
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A Geometric Picture of L2 Diffusion PDES (Isotropic and Anisotropic)

Basic Observation:

◮ The gradient descent PDE

∂u

∂t
= −∇E |u

can be recast in terms of Riemannian geometry.

With M a smooth manifold, let

◮ TpM the tangent space to M at p,

◮ T⋆
p M the cotangent space to M at p,

◮ g a Riemannian metric on M, gp : TpM × TpM → R, (p ∈ M), yielding an
isomorphism TpM → T⋆

p M through v 7→ gp(v , ·).
Application to our setting:

◮ Hk
0 (Ω) is a Hilbert space and hence a (infinite-dimensional Hilbert) manifold,

◮ For each u ∈ Hk
0 (Ω), the tangent space TuHk

0 (Ω) is canonically identified with

Hk
0 (Ω) itself (since Hk

0 (Ω) is a vector space),

◮ For each u ∈ Hk
0 (Ω), the cotangent space T⋆

u H
k
0 (Ω) is canonically identified with

the dual space of Hk
0 (Ω),

◮ The L2 metric g0 : (v ,w) 7→ g0(v ,w) = 〈v ,w〉L2 on each tangent space TuHk
0 (Ω)

gives Hk
0 (Ω) the structure of a (infinite-dimensional) Riemannian manifold,

◮ g0 defines a distance on Hk
0 (Ω) (our space of images ...)
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A Geometric Picture of Diffusion PDES (Isotropic and Anisotropic)

◮ Basic Observation: g0(∇E , ·) = dE ; hence, starting from a functional E on
Hk

0 (Ω), g0 is what allows us to go from the Gateaux differential dE to the L2

gradient ∇E , and hence to the gradient descent equation ∂u
∂t

= −∇E |u.
◮ Gradient descent on E with respect to g0 yields a path on the space of images

Hk
0 (Ω).

◮ Basic Question: Is g0 an appropriate metric on the space of images ?

◮ Changing the metric g0 to some other metric changes the gradient ∇E and
hence yields a different path on the space of images H1

0 (Ω), i.e. a new class of
diffusion equations.
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H
1 Sobolev Diffusion: Dirichlet Functional

◮ For each λ > 0, define the metric gλ : H1
0 (Ω) × H1

0 (Ω) → R by
(v ,w) 7→ gλ(v ,w) = (1 − λ)〈v ,w〉L2 + λ〈v ,w〉H1 ,

◮ Consider the functional E : H1
0 (Ω) → R, u 7→ E(u) = 1

2

∫

Ω ‖∇u‖2,
◮ The gradient of E at u ∈ H1

0 (Ω) with respect to gλ is defined by

gλ(∇gλE |u, v) = dE |u(v), ∀v ∈ H1
0 (Ω).

◮ With ξ = 1 (resp. ξ = −1), the equation

du

dt
= −ξ∇gλE |u(t), t > 0,

is a gradient descent (resp. ascent) equation on E .

◮ Recall: Gradient ascent on E is ill-posed under the L2 metric (reverse heat
equation).
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H
k (k ≥ 1) Sobolev Diffusion: Dirichlet Functional

With the H1 Sobolev metric, we have:

Theorem (Calder, M., Yezzi 2010)

Let λ > 0, let Ω ⊂ Rn open with smooth boundary, let ξ ∈ {+1,−1}, k ∈ N,
0 < γ < 1. Then, ∀u0 ∈ H1

0 (Ω) (resp. L2(Ω), C k,γ(Ω̄)), there exists a unique

u ∈ C1([0,∞[;H1
0 (Ω)) (resp. C1([0,∞[;L2(Ω)), C k,γ(Ω̄)) satisfying

du

dt
= −ξ∇gλE |u(t), t > 0,

u(0) = u0.

We can similarly define Hk Sobolev gradients, with k > 1; we obtain:

Theorem (Calder, M., Yezzi 2010)

Let λ > 0, let Ω ⊂ R
n open with smooth boundary, let ξ ∈ {+1,−1}, let 1 ≤ m ≤ k.

Then, ∀u0 ∈ Hm
0 (Ω) (resp. L2(Ω),C k,γ(Ω̄)) there exists a unique

u ∈ C1([0,∞[;H∞
0 (Ω)) (resp. C1([0,∞[;L2(Ω)), C1([0,∞[;C k,γ(Ω̄))) satisfying

du

dt
= −ξ∇k,λE |u(t), t > 0,

u(0) = u0.
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Maximum Principles

Theorem (Calder, M., Yezzi 2010)

Let E denote the Dirichlet functional on H1
0 (Ω), let 0 < γ < 1, let

u0 ∈ C0,γ(Ω̄) ∩ H1
0 (Ω), and let u ∈ C1([0,∞[;C0,γ(Ω̄)) ∩ C1([0,∞[;H1

0 (Ω)) be the
unique solution to the H1-gradient descent equation on E:

du

dt
= −∇gλE |u(t), t > 0,

u(0) = u0;

then, ∀(x , t) ∈ Ω× [0,∞[:

min
y∈Ω

u0(y) ≤ u(x , t) ≤ max
y∈Ω

u0(y).

◮ Maximum principles can also be derived for other function spaces (but with H1

metric);

◮ Maximum principle does not hold for Hk metric with k > 1;

◮ Existence of a maximum principle ⇒ no “extra edges” created by the semigroup
(Hummel ’89).
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Sobolev Diffusion: Sharpening PDEs

◮ Under the Sobolev metric, the functional

E : u 7→ E(u; u0) =
1

4

(∫

Ω
‖∇u0‖2

)

(

∫

Ω ‖∇u‖2
∫

Ω ‖∇u0‖2
− α

)2

,

leads to the gradient descent equation

du

dt
=

(

∫

Ω
‖∇u‖2

∫

Ω ‖∇u0‖2
− α

)

∆(I −∆)−1u, t > 0,

where α ∈ R (α < 1 ⇒ blurring, α > 1 ⇒ sharpening).

◮ For the functional

E : u 7→ E(u; u0) = −1

2

∫

Ω
‖∇u‖2 + µ

2
‖u − u0‖2H1

the gradient descent equation under the Sobolev metric is

du

dt
= −∆(I − λ∆)−1u + µ(u0 − u), t > 0.
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Sobolev Diffusion: Generalization of Perona-Malik/You-Kaveh

◮ Let G be a compatible inner product on Hk
0 (Ω),

◮ Let the linear operator L : H−k(Ω) → Hk
0 (Ω) be defined by

G(Lu, v) = 〈u, v〉H−k ,Hk
0
, ∀u ∈ H−k(Ω), v ∈ Hk

0 (Ω)

Theorem (Calder, M. 2011)

Let k ∈ N, g : [0,∞[→ R bounded and C1 such that |sg ′(s)| ≤ C ∀s ≥ 0 (for some
C > 0). Then, ∀u0 ∈ Hk(Ω), there exists a unique u ∈ C1([0,T ];Hk(Ω)) such that:

du

dt
= L

{

−∆k/2(g(|∆k/2u|2)∆k/2u), k even

∆(k−1)/2div(g(‖∇∆(k−1)/2u‖2)∇∆(k−1)/2u) k odd

u(0) = u0.

Furthermore, if u0 ∈ Hk
0 (Ω) then u(t) ∈ Hk

0 (Ω) for all t ∈]0,T ]

Note:

◮ k = 1 ⇒ Perona-Malik.

◮ Sobolev regularizes Perona-Malik while remaining a descent equation on the
Perona-Malik functional (unlike Catté et al.’s regularization scheme).
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Sobolev Diffusion: Combined isotropic sharpening/anisotropic smoothing

◮ Let E : H1
0 (Ω) → R be given by E(u) =

∫

Ω
φ(‖∇u‖2), with

φ(s) = s − β(1− e−s) (β > 1),

◮ Let g : s 7→ g(s) = 1− βe−s/K2
;

The evolution equation

du

dt
= −(I − λ∆)−1∇ · (g(‖∇u‖2)∇u), t > 0

u(0) = u0

can be rewritten as

du

dt
= −(I − λ∆)−1∆u + β(I − λ∆)−1∇ · (e−(‖∇u‖2)/K2∇u),

u(0) = u0

⇒ smoothing of weak edges + sharpening of strong edges:

(a) φ(s) (b) g(s) = φ′(s)

Figure 1: The qualitative properties of (a) the combined smoothing/sharpening
potential φ(s) and (b) the diffusion coefficient, g(s) = φ′(s).
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Sobolev Diffusion: Experimental Results

Figure: Isotropic Sobolev sharpening
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Sobolev Diffusion: Experimental Results

Figure: Shock Filter
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Sobolev Diffusion: Experimental Results

Figure: Combined Sobolev sharpening/smoothing
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Sobolev Diffusion: Experimental Results

Figure: Isotropic Sobolev sharpening

Abdol-Reza Mansouri Queen’s University Department of Mathematics and StatisticsGeometric Approaches in Image Diffusion



Sobolev Diffusion: Experimental Results

Figure: Shock Filter
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Sobolev Diffusion: Experimental Results

Figure: Combined Sobolev sharpening/smoothing
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Sobolev Diffusion: Experimental Results

Figure: Combined Sobolev sharpening/smoothing on noisy blurred image
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Sobolev Diffusion: Experimental Results

Figure: Combined Sobolev sharpening/smoothing on noisy blurred image

Abdol-Reza Mansouri Queen’s University Department of Mathematics and StatisticsGeometric Approaches in Image Diffusion



Conclusion

Key Points:
◮ Changing the geometry on the space of images from L2 to Sobolev leads to new

families of diffusion equations which overcome instabilities associated with L2

diffusions.
◮ Immediate extension: Non-constant Riemannian metrics on the space of images.

But Sobolev diffusion is still a diffusion in R
2 ...

Let us revisit the main objective of image diffusion:
◮ To remove certain types of image singularities ...
◮ while preserving other types of singularities.

But:
◮ The wavefront set of a singularity is a subset of T⋆R2 ...

This suggests the following attempt at defining a microlocal diffusion:

Definition (Microlocal Diffusion)

A one-parameter semigroup (Tt )t≥0 defined on D′(T⋆R2) such that, with u ∈ D′(R2)
given by

u = uS + uN ,

where uS ∈ D′
S(R

2) (“signal”) and uN ∈ D′
N(R

2) (“noise”), we have

WF (π(Tt(l(u)))) → WF (uS )

as t → ∞, in some appropriate topology + other conditions (l(u) denoting the lift of
u to D′(T⋆R2) and π the projection back to D′(R2)).
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Conclusion

THANK YOU
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