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Studying brain functions

Understand the brain’s control
mechanisms

Guide treatment of mental disorders
and other neurological diseases

Brain signals:
Electroencephalography (EEG) and
Magnetoencephalography (MEG)
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Brain rhythms

a)  Alpha wave (8-12 Hz,  relaxed/reflecting)

b)  Beta wave (12-30 Hz, active concentration)

c)  Gamma wave (30-100+ Hz, perception/consciousness)

Spectrum analysis becomes a popular approach in analyzing
brain signals.
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Challenges in brain research

Non-stationarity

A huge range of variations of the signal structure

Complication of interactions among different brain regions
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The Stockwell transform

A moving window Fourier transform whose window function is
scaled by 1

|f|
.
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A generalized Stockwell transform (GST)

We propose a generalized Stockwell transform with the window

function scaled by σ(f) = p
|f|q

. (Pinnegar and Mansinha, 2003:

σ(f) = p
|f|
; Sejdić, et al., 2008: σ(f) = 1

|f|q
)

Definition: The Generalized Stockwell Transform

Let ψ ∈ L2(R). The generalized Stockwell transform of x ∈ L2(R) is
defined as

GST (p,q)x (t, f) =
|f|q

p

∫∞

−∞

x(τ)ψ

(

|f|q(τ− t)

p

)

e−j2πτfdτ, f 6= 0,

and

GST (p,q)x (t, 0) =

∫∞

−∞

x(τ)dτ,

where p > 0 and q > 0.
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Main mathematical properties

A Frequency Domain Equivalence

GST
(p,q)
x (t, f) =

∫∞

−∞

X(α)Ψ

(

p(α− f)

|f|q

)

ej2π(α−f)tdα, f 6= 0.

Connection to the Fourier Spectrum

∫∞

−∞

GST
(p,q)
x (t, f)dt = X(f).

An Inversion Formula

x(t) = F−1

{∫∞

−∞

GST
(p,q)
x (t, f)dt

}

.
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Effects of the parameters p and q (σ(f) = p
|f|q

)

The width of the window function in the GST increases as the
value of p or q increases, and q has a stronger influence.
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A simulated signal
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An illustration (σ(f) = p
|f|q

)
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Question

Given a specific signal, how to automatically identify optimal
parameters such that the corresponding GST provides better
resolution to reveal the signal characteristics?
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Evaluate the GST performance by measuring the energy

concentration

A good performed time-frequency representation (TFR) is
expected to have the signal energy only concentrated at the
involved frequencies.

Energy concentration measures have been widely used to
evaluate the performance of the TFR.

The Stanković’s measure (2001) with an order k:

CMk(TFR) =

∫∞

−∞

∫∞

−∞

|TFRx(t, f)|
1
k dtdf,

where TFRx(t, f) is an energy distribution, i.e.,
∫ ∫∞

−∞
TFRx(t, f)dtdf =‖ x ‖22.
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The energy distribution based on the GST (p,1)

Theorem: Resolution of the Identity Formula of the GST (p,1)

Let ψ ∈ L2(R) be such that

C
p
ψ =

∫∞

0

|Ψ(f− p)|2

f
df −

∫0

−∞

|Ψ(p− f)|2

f
df <∞, (1)

then for any signal x ∈ L2(R),

1

Cpψ

∫ ∫∞

−∞

∣

∣

∣GST (p,1)x (t, f)
∣

∣

∣

2 dtdf

|f|
=‖ x ‖22 .

The representation 1
C
p
ψ

∣

∣

∣GST
(p,1)
x (t, f)

∣

∣

∣

2
offers an energy distribution

in the time-frequency domain with the measure dtdf
|f|

.

If q 6= 1, the GST with an arbitrary window function generally does

not satisfy the resolution of the identity formula.
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A practical example of the GST-based energy distribution

Theorem: A Modified Gaussian Window

For

Ψpg(f) =
1

Kp

(

(1+ e−8π2p2

)Wg(f) − e
−2π2p2

Wg(f+ p) − e
−2π2p2

Wg(f− p)
)

where Wg(f) = e−2π2f2 and Kp = (1− e−4π2p2
)2, we then have

C
p
ψ =

∫∞

0

|Ψ(f− p)|2

f
df −

∫0

−∞

|Ψ(p− f)|2

f
df <∞.

The GST with the modified Gaussian window function provides a

valid energy distribution.
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An illustration of the GST-based energy distribution

1 2 3 4 5 6 7 8 9
0.8

0.9

1

1.1

Value of p

E
n

e
rg

y

Comparison of the Total Signal Energy between the signal approach and the GST approach

 

 

Energy obtained from the signal
Energy obtained from GSTs

0 50 100 150 200 250 300 350 400 450 500
−1

−0.5

0

0.5

1

A
m

p
lit

u
d

e

Time (s)

A Simulated Chirp Signal

F
re

q
u

e
n

c
y
 (

H
z
)

Time (s)

The GST−based Energy Distribution (p = 3)

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

20 / 68



Procedure to determine the adaptive Stockwell transform

Step 1. For each p from a given set, calculate the Cpψ and the GST

GST
(p,1)
x (t, f) of the signal x.

Step 2. Compute the concentration measure

CM2(GST (p)) =
∫ ∫

∣

∣

∣
GST

(p,1)
x (t,f)

∣

∣

∣√
C
p
ψ|f|

dtdf.

Step 3. Determine the optimal value of p through minimizing the measure
CM2(GST (p)).

Step 4. The adaptive Stockwell transform associated with the signal x is

given by ASTx(t, f) = GST
(popt,1)
x (t, f).
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A simulation example
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A simulation example
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A MEG example
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GST-based measures

1 The GST-based power spectrum: reveals the time-varying
spectral characteristics of a single time series.

2 The GST-based coherence function: describes the dynamics of
linear interrelations between a pair of time series.

3 The GST-based phase-locking statistic: measures the phase
synchronization between a pair of time series.

26 / 68



The evolutionary spectrum (ES)

Developed by M.B. Priestley, which presents a theoretical
time-frequency domain measure of locally stationary time
series.

An approximation form

ESxx(t, f) = Fτ→f{Γxx(t, τ) ⊗t g(t, τ)},

where Γxx(t, τ) is the autocorrelation function given by

Γxx(t, τ) = E

{(

x∗(t−
1

2
τ)x(t+

1

2
τ)

)}

.

and g(t, τ) is a two-dimensional localization function.
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The power spectrum based on the Cohen’s class

distributions (CCDs)

The Cohen’s class distribution function was introduced by L.
Cohen (1966), which is able to represent all bilinear TFRs.

The CCD-based power spectrum:

TS
(Cohen)
xx (t, f) = E {CCDx(t, f)}

= Fτ→f {Γxx(t, τ)⊗t Φ(t, τ)} .

where Φ(t, τ) is the time-lag kernel function.

Φ(t, τ) performs as the localized window function, which
implies that any CCD-based power spectrum can be
interpreted as an estimated evolutionary spectrum.
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The time-varying power spectrum based on the GST

Definition: The GST-based Power Spectrum

TS
(GST)
xx (t, f) = E

{

GST
(p,q)
x (t, f) · GST (p,q)x (t, f)

}

.

The GST-based power spectrum presents a time-frequency
domain measure of time series power.

By choosing q = 1 and p = popt, this definition leads to the
AST-based power spectrum.
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The interpretation of the GST-based power spectrum

Theorem: The Extended Cohen’s Class of the GST

TS
(GST)
xx (t, f) = Fτ→f

{

Γxx(t, τ)⊗t Φ̃(p,q)(t, τ; f)
}

with the frequency-dependent time-lag kernel function

Φ̃(p,q)(t, τ; f) =
f2q

p2
ψ

(

|f|q(−t− 1
2τ)

p

)

ψ

(

|f|q(−t + 1
2τ)

p

)

.

The GST-based power spectrum presents an advanced
estimation of the evolutionary spectrum with a
frequency-dependent localization function.
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The coherence function

A frequency domain measure of the interrelation between a
pair of stationary time series.

The cross-correlation function:

Γxy(t, τ) = E

{(

y∗(t−
1

2
τ)x(t +

1

2
τ)

)}

.

The coherence function:

Cxy(f) =
|Sxy(f)|

2

Sxx(f) · Syy(f)
, if Sxx(f) · Syy(f) 6= 0.

where Sxy(f) = Fτ→f {Γxy(τ)} .

31 / 68



The GST-based coherence function

Definition: The GST-based Coherence

For two time series x(t) and y(t), the time-varying coherence
based on the generalized Stockwell transform is defined as

TC
(GST)
xy (t, f) =

|TS
(GST)
xy (t, f)|2

TS
(GST)
xx (t, f) · TS(GST)yy (t, f)

,

if TS
(GST)
xx (t, f) · TS(GST)yy (t, f) 6= 0.

Note that 0 6 TC
(GST)
xy (t, f) 6 1.

The GST-based coherence provides a time-frequency domain
measure of the interrelation characteristic, which can be
interpreted as an advanced estimation of the evolutionary
coherence.
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Phase synchronization

The coherence function measures the linear interrelation
between two time series, i.e.,

y(t) =

∫∞

−∞

H(τ)x(t− τ)dτ,

which does not separate the effects of amplitude and phase in
the interaction.

The phase synchronization evaluates the nonlinear interactions
based on the synchronization of the instantaneous phase, i.e.,

E{φx(t) − φy(t)} = const.
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The phase-locking statistic (PLS)

Proposed by Lachaux, et al. (1999) as

PLSxy(t) =
∣

∣

∣
E{ei(φx(t)−φy(t))}

∣

∣

∣
,

where φx(t) and φy(t) are instantaneous phases of the analytic

signals.
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The instantaneous phase of the GST

Theorem: An Explicit Approximation Formula of the GST

Let the signal x(t) = a(t)ejφ(t), with ψ(t) = 1√
2π
e−

t2

2 , we have

GST (p,q)x (t, f) ≈ A(GST)(t, f)ejφ
(GST)(t,f),

where

φ(GST)(t, f) ≈ φ(t) − j2πtf.

The GST holds the absolutely referenced phase information.

An approximation formula of the ST with a general window function

can be found in (Guo, Molahajloo and Wong, 2010).
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The GST-based phase-locking statistic (PLS)

Definition: The GST-based Phase-locking Statistic

For two time series x(t) and y(t), the phase-locking statistic based
on the generalized Stockwell transform is defined as

PLS
(GST)
xy (t, f) =

∣

∣

∣

∣

∣

∣

E






GST
(p,q)
x (t, f) ·GST (p,q)y (t, f)

|GST
(p,q)
x (t, f)| · |GST (p,q)y (t, f)|






∣

∣

∣

∣

∣

∣

PLS(GST)xy (t, f) ≈
∣

∣

∣E
{

ei[φx(t)−φy(t)]
}∣
∣

∣ .

Phases φx(t) and φy(t) here are the phases of the filtered signals
around the considered frequency f.

The GST-based PLS provides the phase synchronization measure

across a wide range of frequencies.
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The Multi-source Interference Task (MSIT)

Designed to study normal human cognition and psychiatric
pathophysiology (Bush, et al., 2003).

A behavioral experiment involving tasks at multiple levels of
difficulty.

There are two types of task trials in the MSIT: control trials
and interference trials.
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The control trials of the MSIT

Trial 1 Trial n

2 31

0 2 0 
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The control trials of the MSIT
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The interference trials of the MSIT
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The interference trials of the MSIT

Trial 1 Trial n

1 2

3 2 2

3

44 / 68



The interference trials of the MSIT
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Acquisition and Preprocessing

The right-handed subjects (6 males, 4 females; mean age: 31)
performed the MSIT.

The brain activity was measured using a 275 channel
whole-head MEG.

Around 80 control and 80 interference trials were recorded
continuously for each subject.

Data were epoched at -3.5s to 0.5s with respect to the
response at time = 0s.

Trials with incorrect response were removed before subsequent
analysis.
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Functional activities of motor cortices

1 Study the influence of the task difficulty on functional
activities at the contralateral motor cortex (MIc) in the
gamma frequency band ([60 - 90 Hz]).

2 Study functional couplings between the contralateral motor
cortex and the ipsilateral motor cortex (MIi) in the alpha ([8 -
12 Hz]) and beta ([12 - 30 Hz]) frequency bands.

To improve the accuracy, we apply the proposed

adaptive measures to the studies. Note that the

resolution of these measures automatically adjusts to

the specific frequency bands of interests.
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Studying gamma-band activities at the MIc

A differential minimum-variance beamformer algorithm (SAM)
(60-90 Hz) was applied for source localization at the MIc.

The motor activity at the gamma-frequency band (event-related
synchronization (ERS)) was calculated based on the AST-based
power spectrum for any group of MEG trials.

The t-statistic was computed to assess the difference of
gamma-band MIc activities in time between two groups of trials.

The statistical significance was further examined using a

permutation test (N = 2000, α = 0.05) and corrected following the

single threshold test.
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The SAM result

Control Condition

Interference Condition
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The TF results of a single subject
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Group analysis: control trials VS interference trials
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Group analysis: fast trials VS slow trials (interference)
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Our findings

More gamma-band activities at the MIc were observed for
interference trials compared to control trials,

More gamma-band activities at the MIc were observed for slow
trials compared to fast trials under the interference condition.

Both the task condition and the RT information provide
measures for the task difficulty in the MSIT. Therefore, our
results suggest that more gamma-band MIc activities are
needed for dealing with more difficult tasks.
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Study functional couplings between the MIc and the MIi

A differential SAM (15 - 30 Hz) was applied for source localization
around the MIc and the ipsilateral motor cortex (MIi).

The motor activity at frequency bands of alpha and beta
(event-related desynchronization (ERD)) was calculated based on
the AST-based power spectrum for each group of MEG trials.

The AST-based coherence and PLS were computed to measure the
interactions between the MIc and the MIi in the time-frequency
domain.

The statistical significance was further examined using a bootstrap

test (N = 500,α = 0.05).
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The SAM result

Control Condition

Interference Condition
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The TF results of a single subject (interference)
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Grand averaged results: the functional coupling
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Our findings

Both of the AST-based coherence and PLS results shown
functional couplings between the MIc and the MIi, which were
predominant for interference trials rather than control trials.

Our results suggest that the functional connectivity between
the MIc and the MIi at low frequencies ([8 - 15 Hz]) mainly
appears when subjects perform interference trials under the
MSIT.
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Summary

Motivation: investigate functional activities of motor cortices using
the MSIT

Interference trial example

+ 322

Task: “Which one of these numbers is

not like the others?”

In this example, the 3 is different than

the 2s, so push button 3. Note that for

interference trials, the targets never

match the button location, and the

flanker stimuli are always potential

targets. Thus, response incongruent

stimuli are relatively difficult to perform.

1
2

31
2

3

Correct response

0.5 s 3 s 0.5 s

Total set of possible Response 

Interference stimuli: {313, 212, 331, 221, 

233, 332, 112, 211, 311, 131, 322, 232}.

Multi-Source Interference Task (MSIT)

+ 020

0.5 s 3 s 0.5 s

Total set of possible control stimuli: 

{100, 020, 003}.

Task: “Which one of these numbers is

not like the others?”

In this example, the 2 is different than

the 0s – so push button 2. Note that

for control trials, the targets always

match the button location, and flankers

(0s) are never used as targets. Thus,

response congruent stimuli are

relatively easy to perform.

1
2

31
2

3

Correct response

Control trial example
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A new time-frequency analysis tool

GST
(p,q)
ψ (t, f) −→ GST

(p,1)

mGaussian(t, f) −→ AST
(popt,1)

mGaussian(t, f)
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Summary

The AST-based power spectrum:

a time-varying power spectrum
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Future work

1 Find energy distribution forms of the generalized Stockwell
transforms with arbitrary values of q.

2 Extend the adaptive approach to multi-dimensional Stockwell
transforms.

3 Develop advanced time-frequency domain measures for
studying cross-frequency coupling and unidirectional
interactions between brain areas.
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Future work

Extract instantaneous frequencues of non-stationary signals

time
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 The Reassigned Stockwell Spectrogram
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