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Abstract

The Gabor transform of a signal creates a time-frequency representation of physical

data which can be directly manipulated through multiplication by symbols, analogous to

the action of pseudodifferential operators and their representation through symbols in the

time-frequency domain.

This two-lecture minicourse describes the basics of Gabor transforms and Gabor

multipliers, windowing considerations, representation of linear operators including

differential operators, and the use of Gabor multipliers in nonstationary filtering,

deconvolution, and numerical wave propagation. Some particular imaging applications are

described.
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Notes on Online Posting of this Talk

The original talk included several animations, movies, and sound clips. These were

too long to include in the online edition, so have been removed. The reader will just have

to click past the animations. Apologies.
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Imaging
The focus of this workshop is on medical imaging. For example, here is a TSAR model

used for microwave imaging in breast tumour detection.

(a)

(b)

Figure 16: Permittivity (a) and conductivity (b) distribution in cross-section of a simulated breast model after
adjustment for floatation in oil.

A Prototype System for Measuring Microwave Frequency Reflecti... http://www.hindawi.com/journals/ijbi/2012/851234/fig16/

1 of 1 12-08-13 8:26 AM

Figure 1: Model for Tissue Sensing Adaptive Radar Imaging (TSAR)

– courtesy Dr. Elise Fear, University of Calgary
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The unusual shape of the model comes from the set of the TSAR imager:

Figure 2: Equipment setup for Tissue Sensing Adaptive Radar Imaging (TSAR)

– from M. Stuchly, University of Victoria
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Figure 3: A typical TSAR Image – courtesy Dr. Elise Fear, University of Calgary
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Our expertise is in seismic imaging, as in the following sample. The imaging goal is

the same. However, the scale is different.

Figure 4: A cross section of the earth subsurface, 10 km by 5 km.
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Our imaging techniques focus on numerically modelling the propagation of a wave

(acoustic, seismic, microwave) through a medium of variable physical characteristics

(density, elasticity, permeability, permittivity).

We use time-frequency methods, deconvolution, numerical wave propagators, and

eventually inverse theory to produce the images.
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Gabor transform

The Gabor transform is a short-time variant of the usual Fourier transform

(Ff)(ω) =

Z ∞
−∞

f(s)e
−2πisω

ds

obtained by localizing with a Gaussian window of fixed width, centred at time t,

(Gf)(t, ω) =

Z ∞
−∞

f(s)e
−(s−t)2

e
−2πisω

ds.

This is similar to the Stockwell transform, which uses variable width windows

(Sf)(t, ω) = |ω|
Z ∞
−∞

f(s)e
−(s−t)2ω2

e
−2πisω

ds,

and is simply a phase-adjusted version of the usual continuous wavelet transform

(Wf)(t, a) =

„
1

|a|

«1/2 Z ∞
−∞

f(s)φ(
s− t
a

) ds,
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where a = 1/ω is scale, and φ is the complex Morlet wavelet

φ(s) = e
−s2
e
−2πis

.

Any one of the last three transforms gives a time-frequency representation of the signal f

as a function of two variables (t, ω).

In our work, we find the Gabor transform to be the most useful representation in

digital implementations.
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Figure 5: Gabor transforms of a 1kHz tone, a 2kHz tone, and a linear chirp.
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Figure 6: Contrast the info in FFT of a 1kHz tone, a 2kHz tone, and a linear chirp.
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Conceptually, the Gabor transform is obtained by windowing the signal at various

times, and plotting the FFT of each corresponding windowed result.
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Figure 7: 1) Some signal. 2) Three windows. 3) Windowed signal. 4) FFTs.
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Put these all together to obtain the full Gabor transform.
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Figure 8: Building the full time-frequency representation.
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Example: Vibroseis signal

Figure 9: Rich detail in the time-frequency representation.
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Example: the physical source

Figure 10: A Vibroseis truck, shaking the earth.
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Gabor multipliers

Given a time-frequency representation of a signal

(Gf)(t, ω),

it can be modified by multiplication with some function a(t, ω), to obtain

a(t, ω)(Gf)(t, ω) = (MaGf)(t, ω),

where Ma is the multiplication operator. A new signal is obtained by pulling back to the

time domain, using the adjoint of G,

f̃(t) = (G∗MaGf)(t).

The operator Ga = G∗MaG is called the Gabor multiplier with symbol a.

As a simple example, take a(t, ω) = 1 in some region of interest, zero elsewhere.
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Figure 11: A beep+chirp signal, and a filtered version.
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More generally, take any function for a(t, ω) to build a linear operator, which can be

written as

(Gaf)(t) =

Z ∞
−∞

Z ∞
−∞

a(s, ω)(Gf)(s, ω)e
−(t−s)2

e
2πitω

dωds.

These Gabor multipliers are closely connected to pseudo differential operators Kσ defined

as

(Kσf)(t) =

Z ∞
−∞

σ(t, ω)(Ff)(ω)e
2πitω

dω.

There is a precise statement of the connection:

Theorem 1. [GLM] The two operators Ga, Kσ are equal as linear operators on Swartz-

class functions, if and only if

e
−(π2ω2+t2)/2

(Fa)(ω, t) = e
−πitω

(Fσ)(ω, t)

as tempered distributions.

Note the Gaussian on the left, in the theorem. This indicates not all Kσ can be
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represented by Gabor multipliers – only those with sufficiently fast decay in the Fourier

domain. The precise formula shows the Kohn-Niremberg symbol σ is a smoothed version

of the function a, with a phase correction.

The proof of the theorem involves a calculation of the integral kernel of both operators,

as a distribution. The details depend on the choice of Gaussian windows in the Gabor

transform; other choices of windows are possible.

In many applications, we often set a = σ and hope for the best! That is, for a = σ,

we trust that

Ga ≈ Kσ.

There is some numerical and theoretical justification for this simplification.
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Windows

The standard Gabor transform uses a Gaussian window, and is defined as

(Gf)(t, ω) =

Z ∞
−∞

f(s)e
−(s−t)2

e
−2πisω

ds.

The Gaussian can, in principle, be replaced by any reasonable function g(t), and a variant

of the Gabor transfer is defined as

(Ggf)(t, ω) =

Z ∞
−∞

f(s)g(s− t)e−2πisω
ds.

For this to work as a reasonable time-frequency representation, g should be concentrated

near t = 0, and be smooth with few oscillations.

A different window γ(t) could be used for the adjoint operator, and thus a general

Gabor multiplier with symbol a, window g and dual window γ is defined as

Ga = Ga,g,γ = G∗γMaGg.

Gabor methods - Lamoureux 21



In many applications, we can choose g to be a compactly supported smooth function,

and γ the constant function 1, or vice versa. With a technical assumption (compatibility),

we restate the theorem connecting Gabor multipliers and pseudo differential operators.

Theorem 2. [GLM] Given two compatible windows g, γ, the operators Ga,g,γ, Kσ are

equal as linear operators on Swartz-class functions, if and only if

(ĝ ∗ γ̂)⊗ (g ∗ γ̃)(Fa) = |〈g, γ〉|2e−2πiϕ
(Fσ)

as tempered distributions, where ϕ is a phase function determined by g, γ.

The specifics of the theorem are spelled out in the following table, for a few interesting

compatible window pairs.
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Gabor vs. Kohn-Nirenberg symbols for compatible window pairs (g, γ)

# g(t) γ(τ) Relation between Fa(η, y) and Fσ(η, y)

1. 1 γ ∈ Sn 1bγ(0)
bγ(η)Fa = Fσ

2. e2πiξ·t γ ∈ Sn 1bγ(−ξ)
bγ(η + ξ)e−2πiξ·yFa = Fσ

3. e−mt
2

e−µτ
2

e
− π2
m+µη

2
e
− mµ
m+µy

2
Fa = e

− 2πm
m+µiη·yFσ

4. et−e
αt

eτ−e
ατ 22/α

Γ(2/α)Γ
“

2
α −

2πi
α η

”
ey

(1+eαy)2/α
Fa = (1 + eαy)−

2πiη
α Fσ

5. ekt−e
αt

eκτ−e
ατ 1

Γ
“
k+κ
α

”Γ
“
k+κ
α − 2πi

α η
”0B@e

κα
k+κy + e

− kα
k+κy

2

1CA
−k+κ

α

Fa = (1 + eαy)−
2πiη
α Fσ

Item 1 is the flat window solution, γ an arbitrary Swartz class function.

Item 3 is the general Gaussian case of various widths

Item 4, 5 is an interesting one-sided window, also compatible.
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The one-sided window

1
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1

Figure 12: The double exponential exp(t− et) and its reverse.
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Application - Gabor deconvolution

Gabor deconvolution is a non stationary extension of Wiener deconvolution. The basic

model for a seismic wavelet w(t) getting reflected off layers of the earth, represented by

a time series r(t), and recorded as data on the surface d(t). The relation between the

three functions is given by the convolution

d(t) = (w ∗ r)(t) =

Z ∞
−∞

w(t− s)r(s) ds.

In the Fourier domain, the convolution becomes a multiplication, and we may write

Fd = (Fw)(Fr).

Both the reflectivity r and the wavelet w are unknown, but in practice there are ways

to estimate the wavelet w. Thus we can recover reflectivity from the recorded data by

computing the ratio

Fr =
Fd
Fw

.
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This is basic idea of Wiener convolution.

Figure 13: The 1D physical model for measuring reflectivity.
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Figure 14: The Fourier transform of data, wavelet, reflectivity.
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The key equation in Wiener decon

Fd = (Fw)(Fr)

is replaced by an analogous equality of Gabor transforms,

Gd = (Gw)Ma(Gr).

where the multiplier Ma has an exponentially decaying symbol

a(t, ω) = e
−πtω/Q × a phase factor

which accounts for Q-attenuation in the earth.

Again, only the data Gd is known. The wavelet factor Gw is estimated, using a

stationarity assumption

(Gw)(t, ω) = Fw)(ω),

while the multiplier factor a(t, ω) is estimated by assuming constant amplitude along

hyperbolas.

Gabor methods - Lamoureux 28



This, plus some phase information, is enough to recover the Gabor transform of the

reflectivity, as

Gr =
Gd

MaGw
.

Keep in mind, these are functions of two variables (t, ω).

The point of deconvolution is to remove the effects of the source wavelet and of the

attenuation in the earth, leaving a sharper image of the reflectivity, or layers within the

earth.
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Gabor decon - examples

Figure 15: The recorded data, corresponding reflectivity, and Gabor transform.
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Figure 16: Estimating Gabor transform of reflectivity, as a ratio of two Gabors
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Figure 17: The denominator is a smoothed version of the numerator.
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Figure 18: Results of Gabor decon on raw signal traces.
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Figure 19: Gabor decon (left) and Wiener decon (right) on a single shot.
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Figure 20: Wiener decon on stacked data, observe the horizontal features.
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Figure 21: Standard Wiener decon on stacked data, for comparison.
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Figure 22: The standard seismic experiment – source on surface, reflector underground.
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Figure 23: The reflections are recorded individually, form hyperbolas.
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Figure 24: The horizontal hyperbolas represent the reflectors.
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Example: the physical source

Figure 25: A dynamite source, shaking the earth.
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Example: the physical source

Figure 26: A dynamite source, shaking the earth.
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Gabor filtering in 2D - photos

The Gabor transform extends to higher dimensions, giving a transform of function in

Rn to R2n.

(Gf)(x, ξ) =

Z
Rn
f(y)e

−|x−y|2
e
−2πiy·ξ

dξ,

with x, y, ξ ∈ Rn.

A Gabor multiplier is constructed from a symbol a = a(x, ξ) using the adjoint

formula

Ga = G∗MaG.

In 2D, these give useful techniques for image procession, to create non-stationary (or

localized) filter methods.
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Figure 27: A 2D image, to process with a 2D Gabor multiplier.

Gabor methods - Lamoureux 43



Figure 28: Non-stationary filtering. Top-left is blurred, bottom right sharpened.
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Figure 29: The windows form a discrete set. This buggy image shows the effect of poorly

selected windows.
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Gabor methods for imaging - part 2
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Doing math in Alberta

Figure 30: Out on a seismic data shoot, near an oil well.
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Why the interest in Gabor multipliers?

We approximate solutions to linear PDEs with pseudodifferential operators:

(Kσf)(t) =

Z
R
σ(t, ω)(Ff)(ω)e

2πi·ω
dω.

Computationally, this is too slow.

Typically, we take N samples in the t-variable, t1, t2, . . . , tN , another N samples in

the ω-variable, so the integral (sum) requires O(N2) operation.

A good Gabor multiplier is about O(N logN).

In seismic, N = a billion is common (3D grid, 1000x1000x1000):

– N FLOPS takes about one second

– N logN FLOPS takes about 30 seconds

– N2 FLOPS takes 32 years.
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Discrete Gabor transforms

Recall the Gabor transform was defined as a windowed Fourier Transform

(Gf)(t, ω) =

Z ∞
−∞

f(s)w(s− t)e−2πisω
ds,

with a translates of a fixed window w = w(s− t), often a Gaussian.

It is not necessary to use only one window; a discrete collection of functions

w1, w2, w3, . . .

can be used obtain a discrete formulation of the Gabor transform, with

(Gf)(tk, ω) =

Z ∞
−∞

f(s)wk(s)e
−2πisω

ds,

where the times tk indicate the centres of the support of each window wk.
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As an example, here is a single window and the resulting localized signal.
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Figure 31: A single window, localizing the signal.
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Take a discrete set of windows, to get a series of localizations
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Figure 32: A set of 10 distinct windows.
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The windows could even be of different shapes, boxcars, or smooth splines
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Figure 33: Three boxcar windows, and three splines.
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A 2D example. One could use a regular pattern of shifted 2D gaussians:
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Figure 34: Regular tiling of plane by windows.
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Or, in 2D, use windows with supports in unusual shapes like this.
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Figure 35: Non-regular window supports.

Gabor methods - Lamoureux 54



This would be useful for a velocity field following layers in the solid ilike this:
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Figure 36: A complex velocity model, in layers.
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In a complex medium, we model with a few, irregular windows

Monday, May 24, 2010

Figure 37: Propagating a wave thru three windowed, irregular regions.
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The window breaks up the data into separate streams (e.g. two), each which is

processed separately, then recombines

Figure 38: Two windows for data, process, recombine
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With many windows, there are many separate streams. Each stream has its own

operator, Ak. The dual windows vk could be different than the wk.

Figure 39: Many windows for data, process, recombine
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The data flow is expressed in the form of block matrices acting on signal f ,

g =
ˆ
V ∗1 V ∗2 · · · V ∗n

˜ 2664
A1

A2
. . .

An

3775
2664
W1

W2
...

Wn

3775 f,
where the Wk = Mwk

is the windowing operation of multiplication by wk, Vk for window

vk.

In operator notation, we write

g = [V
∗
AW ]f.

In summation notation, we write

g =
X
k

V
∗
k AkWkf.

This leads to frame theory.
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Generalized Frame Theory

Definition 1. A set of operators {W1,W2, . . . ,Wn} forms a generalized frame if there

are constants a, b > 0 with

a · I ≤
X
k

W
∗
kWk ≤ b · I.

When the Wk operators are multiplication by window functions wk(x), this definition

means

a ≤
X
k

|wk(x)|2 ≤ b, for all x.

The Wk could give localization in space, in time, or in frequency.
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Recall that frame theory works with vectors – in the standard theory, the Vk,Wk are

rank on operators. Here we allow larger operators.

Note: the difference between a basis and a frame is redundancy:

Figure 40: A two-vector basis, and a three-vector frame in R2.

A frame is a set of vectors that spans a linear space. Typically more vectors than a

basis, but with control on the redundancy.

Some typical examples include wavelet, Gabor, curvelet, ridgelet frames.

Frame theory gives algorithms that treat redundancy efficiently.
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Standard constructions in Frame theory

Analysis operator W = [W1,W2, . . . ,Wn]
t

Synthesis operator W ∗

Frame operator S = W ∗W (positive, invertible)

Normalized frame fWk = WkS
−1/2

Partition of unity (POU) conditionX
k

fWk

∗fWk = I

Theorem 3. If the generalized frame {W1,W2, . . . ,Wn} form a POU, then the

operator norms on the windowed operator satisfies

||
X
k

W
∗
kAkWk|| ≤ max ||Ak||.
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With window operators W1,W2, . . . ,Wn and duals V1, V2, . . . , Vn, the partition of

unity condition becomes X
k

fVk∗fWk = I.

The corresponding bounds on the norm is not as strong:

Theorem 4. If the generalized frames {W1,W2, . . . ,Wn}, {V1, V2, . . . , Vn} form a

POU, then the operator norms on the windowed operator satisfies

||
X
k

V
∗
k AkWk|| ≤

√
nmax ||Ak||.

This is a concern in applications. For instance, one would like to combine localized

wave propagators and ensure stability. With a symmetric choice of window, if each Ak a

stable propagator, then sum is stable. In many applications, an non-symmetric choice of

windows is used. But we could lose stability.

– POU condition on the Wk is important to obtain a functional calculus
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– can use pre, post-windows {W1,W2 . . .} and {V1, V2 . . .} with

X
k

V
∗
kWk = I.

– however, the norm of the combined operator may grow with the number of windows

||
X
k

V
∗
k AkWk|| ≈

√
nmax ||Ak||

which can cause numerical instability.
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Example: An unstable wavefield propagator.

By picking windows and shifts just right, one can construct an unstable wave

propagator. Here, a stream of five peaks are each windowed, shifted with different local

propagators, so the results line up:

Figure 41: Breaking up a waveform into five, shift just right

Input waveform has energy
√

12 + 12 + 12 + 12 + 12 =
√

5

Output waveform has energy
√

52 = 5, increases!
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A wavefield propagator
Example: propagate a delta spike through a slow/fast medium, using generalized

frames.
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Figure 42: Numerical simulation of seismic propagation.
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A breakdown of the numerical simulate: slow (left), fast (middle), total (right).
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Figure 43: Numerical simulation, two parts summing to the whole.

Goal: try to get as good a result in complex models like Marmousi:
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Figure 44: FDTD Simulation of seismic wave propagation through the earth.
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Details of the propagation in Marmousi:

Figure 45: Snapshot: Seismic waves propagating through regions of different velocities.
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Discrete Gabor multipliers

Theorem 5. A discrete Gabor multiplier is a special case of the generalized frame

operators.

Discrete Gabor transform = a discrete time-frequency representation:

(Gf)(tk, ω) =

Z
R
f(s)wk(s− t)e−2πisω

ds.

Gabor multiplier = multiplication by function a = a(tk, ω) in discrete time-freq

domain:

f 7→ G∗MaGf

The theorem leads to the expression of this operator as a sum

G∗MaG =
X
k

W
∗
kCakWk,
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where the Cak are convolution operators coming from a(tk, ω).

These formulas give simple results for adjoints, and estimates of bounds.

Theorem 6. [Adjoints] With real symmetric windows (vk = wk), the adjoint of a

discrete Gabor multiplier is obtained by conjugating its symbol:

G
∗
a = Ga.

For non-symmetric windows, the analysis and synthesis windows reverse roles in the

adjoint of a multiplier:

Theorem 7. [Adjoints] With non-symmetric windows, vk 6= wk, the adjoint of a

discrete Gabor multiplier is obtained by conjugating its symbol, and reverse order of

windows:

G
∗
a,w,v = Ga,v,w.
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Theorem 8. [Boundedness] With symmetric windows, the discrete Gabor multiplier is

bounded in norm by its symbol

||Ga|| ≤ sup |a(tk, ω)|.

For non-symmetric window, the bound can grow:

Theorem 9. [Boundedness] With non-symmetric windows, vk, wk, the discrete Gabor

multiplier is bounded by a constant times its symbol

||Ga|| ≤ B1/2
sup |a(tk, ω)|,

where B = sup(
P
|vk|2) · sup(

P
|wk|2).
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The Partition of Unity Condition simply states that the square of the windows sum to

one.
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Figure 46: The windows must sum up to one.

One misleading adventure is that Gaussian, when closely spaced, almost sum to one.
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Our goal is to formalize a series of approximations, to justify the constructions that

appear in Gabor decon and wave field propagators:

Gf = a discrete time-frequency representation for f

G1 = I, the identity map for a functional calculus

G(Gaf) ≈ MaGf, action of the multiplier

Ga+b = Ga +Gb sum rule for a functional calculus

Ga·b ≈ Ga ·Gb product rule

Gexp(a) ≈ exp(Ga) exponential rule

||Gα||op ≤ ||α||∞ operator bounds

Gα ≈ Kα, pseudo-diff approximation

Five of these results are proven; three need work.
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Overview of results

Result 1: The convolution theorem

Theorem 10. The discrete Gabor multiplier Ga is a sum of localized convolutions

operators,

Ga =

MX
k=1

Mvk
CakMwk

.

The Mwk
,Mvk

are multiplication by the windows wk, vk.

The Cak is convolution by ak, where FT (ak)(ω) = a(xk, ω).

The windows wk, vk come from the forward and inverse transform. Partition of unity

condition,
MX
k=1

vk(t)wk(t) = 1 for all t.
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Result 2. Representing ODEs and PDEs:

For one-sided windows, the Gabor multiplier equals Fourier multiplier, used for

constant coefficient differential operators.

For split windows, there is a correction term. Eg: the second order derivative gives

∂tt = Gα +Md

where d =
P

kwkw
′′
k is a correction term.

For an n-th order differential operator, there will be a (n-2)-order differential operator

as a correction term.
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Result 3. The boundedness theorem

For split windows, positive, matched: vm = wm ≥ 0. Then

Theorem 11. The norm of the Gabor multiplier Gα satisfies

||Gα|| ≤ max
x,ξ
|α(x, ξ)|.

Eg: a combination of phase shifts will always be energy preserving. The sup norm

on the multiplier function α determines a bound on the norm of Gα, as with Fourier

multipliers.
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Result 4. Combining operators

We have an approximation for the composition of Gabor multipliers

GaGb ≈ Ga·b.

For boxcar windows, the error term is

∆ =
X
k

Mwk
[Cak,Mwk

]CbkMwk
.

A Fourier multiplier composes with a one-way windowed Gabor multiplier,

FaGb = Ga·b

and this equality is exact.
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Result 5. Approximating PDEs

The Gabor multiplier (with symmetric windows) cannot approximate a 2nd order PDE.

However, by adding a correction term of 0-th order, we get an exact representation of a

constant coefficient PDE.

For non-constant coefficient, the Gabor representation, with correction term, is

approximate to the order of the sup-norm distance between the variable coefficients

a(x), b(x), c(x) and their sampled versions a(xk), b(xk), c(xk).
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Result 6. Window accuracy

Windowed approximation to the velocity field is accurate to an error no bigger than

vmax − vmin
# windows

.

Sets the bound on how well the (corrected) Gabor multiplier approximates the PDE.

# of windows sets the speed of computation.
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Minimum phase calculations

We’ve been hiding some details in the Gabor decon, Gabor multiplier results.

Experimentally, one observes that many seismic signals are “minimum phase delay.”

Roughy speaking, this means energy is concentrated near the start of the signals.

Examples: A dynamite blast. A weight drop. A Vibroseis sweep, after attenuation.

Observation: As a signal travels through the earth, minimum phase in yields minimum

phase out.

Consequence: Any reasonable numerical model must have the property of preserving

minimum phase. This includes our Gabor multipliers.

It helps to start with a precise definition of minimum phase:
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Theorem 12. [Complex analysis] A sampled signal f = (f0, f1, f2, . . .) in l2 is

minimum phase if and only if its z-transform

F (z) =
X
k

fkz
k

is an outer function in the Hilbert-Hardy space H2(D).

That is, the analytic function F (z) is determined by its absolute value on the

boundary of the disk,

F (z) = λ · exp

 
1

2π

Z π

−π

eiθ + z

eiθ − z
log |F (e

iθ
)| dθ

!
,

up to a constant λ of modulus one.

Equivalently, the sample signal f = (f0, f1, f2, . . .) is determined by the amplitude

of its Fourier transform (up to a constant).
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Our ears can hear the difference: these three signals have the same amplitude

spectrum.
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Figure 47: Some noise, a singular sweep, a Dirac delta pulse.

Theorem 13. [Gibson-L-Margrave, 2011] Let A : H2(D) → H2(D) be a bounded

linear operator, preserving the set of outer functions. Then there exists some outer function

ψ, and analytic function φ : D→ D such that

(AF )(z) = ψ(z)F (φ(z)), z ∈ D
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for all functions F in H2(D).

That is, the only outer preserving operators have a very simple form – multiplication

by outer function ψ, and composition with analytic function φ.

The functions ψ, φ have a physical meaning. ψ represents a stationary filter (e.g.

coupling between dynamite and earth). φ represents a frequency dependent decay, which

is exponential in both time and frequency parameter.

exp(−tω/Q(ω)).

We get Q-attenutation for free!

This is connected to a deep result on linear maps of polynomials preserving certain

zero sets. Let given a set Ω in the complex plane, let P(Ω) denote the set of polynomials

which are non-zero on Ω. We have the following:

Theorem 14. [Gibson-L-Margrave, 2011] Suppose Ω1 is bounded, Ω2 has non-empty

interior. A linear map A on polynomials has property A(P(Ω1)) ⊂ P(Ω2)) ∪ {0} if

and only if either:

Gabor methods - Lamoureux 84



• there is a linear functional ν and polynomial ψ ∈ P(Ω2) with A(p) = ν(p)ψ, or

• there are polynomials ψ, φ such that ψ ∈ P(Ω2), φ(Ω2) ⊂ Ω1, with A(p) =

ψ · (p ◦ φ).

This is a constructive solution to the Pólya-Schur problem on polynomials, extending

some recent results by Borcea and Brädén. The proof depends on properties of a

constructed entire function generated by the operator A.

In sampled signal space, the minimum phase preserve operators are described precisely

as lower triangular matrices of a special form. Each column corresponds to the coefficients

in the Taylor series expansion of the function ψ(z)φn(z).

In particular, the first two columns are enough to determine the whole matrix for the

operator. Consequently, two measurements of delta impulses is enough to determine the

operator.

Problem: this is a very restrictive class of operators. It suggests the minimum phase

assumption is too strong – it may be appropriate to use a more local version of minimum

phase preservation. Or perhaps the identification with time-to-space is inappropriate.
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Summary

Time-frequency representations lead naturally to multipliers.

We focus on the Gabor multipliers, for reasons of speed, and useful experience. Other

time-frequency representations could lead to useful multipliers.

Gabor multipliers approximate pseudo differential operators. Numerically, we get

useful operators to model wave propagation.

Generalized frame theory is useful to analyze the discrete Gabor multipliers.

We can model physically important phenomenal including non stationary convolution,

deconvolution, wave propagation, and minimum phase preserving linear operators.

Gabor methods - Lamoureux 86



Acknowledgements

Special thanks to:

• collaborators Elise Fear, Peter Gibson, Gary Margrave, and our students

• the industry sponsors of CREWES and POTSI

• the research agencies MITACS, MPrime, NSERC, PIMS

Gabor methods - Lamoureux 87



References

Gibson, Lamoureux, 2012. Identification of minimum-phase-preserving linear operators

on the half-line, Inverse Problems.

Gibson, Lamoureux, Margrave, 2012. Representation of Linear Operators by Gabor

Multipliers, in “Excursions in Harmonic Analysis: The February Fourier Talks at the

Norbert Wiener Center,” Applied and Numerical Harmonic Analysis (Birkhauser).

Gibson, Lamoureux, Margrave, 2011. Outer preserving linear operators, Journal of

Functional Analysis.

Margrave, Lamoureux, Henley, 2011. Gabor deconvolution: Estimating reflectivity by

nonstationary deconvolution of seismic data, Geophyiscs.

Feichtinger, Helffer, Lamoureux, Lerner, Toft, 2008, Pseudo-Differential Operators,

Quantization and Signals, Springer Lecture Notes in Mathematics, Vol. 1949.

Margrave, Lamoureux, 2006. Gabor Deconvolution, The Recorder, special edition,

Can. Soc. of Expl. Geophys.

Gabor methods - Lamoureux 88



Lamoureux, Margrave, 2006. An Introduction to Numerical Methods of

Pseudodifferential Operators, Proceedings of the CIME Workshop on Pseudodifferential

Operators, Quantization and Signals.

Margrave, Geiger, Al-Saleh, Lamoureux, 2006. Improving explicit seismic depth

migration with a stabilizing Wiener filter and spatial resampling, Geophysics.

Lamoureux, 2005. Seismic image analysis using local spectra, Canadian Applied

Mathematics Quarterly.

Margrave, Gibson, Grossman, Henley, Iliescu, Lamoureux, 2004. The Gabor

transforms, pseudodifferential operators, and seismic deconvolution, Integrated Computer-

Aided Engineering.

Margrave, Dong, Gibson, Grossman, Henley, Lamoureux, 2003. Gabor deconvolution:

extending Wiener’s method to nonstationarity, The CSEG Recorder.

Gabor methods - Lamoureux 89


