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I. Microlocal Analysis

•Generalization of Fourier analysis to include

nonconstant coefficient operators

•Analysis of singularities of functions/distributions

and how operators transform them

•Locations of singularities described in terms of phase space:

spatial position and frequency direction

Applications

•Approximate Green’s functions (parametrices) for elliptic PDE

•Approximate inverses and estimates for Radon transforms



PDE

Notation: On Rn, ∂ju = ∂u
∂xj
, Dju = 1

i∂ju.

Multi-index of degree m : α = (α1, . . . , αn)∈Zn
+, |α| = α1+· · ·+αn = m

Differential monomials:

∂α = ∂α1
1 . . . ∂αn

n =
∂|α|

∂α1
1 . . . ∂αn

n

Dα = Dα1
1 . . . Dαn

n = i−|α|∂α

Constant coefficient partial differential operators

P (ξ) =
∑
|α|≤m

aαξ
α ∈ C[ξ1, . . . , ξn] −→

P (D) =
∑
|α|≤m

aαD
α



Def. P (ξ) is the full symbol of P (D)

Exs. 1. P (D) = Laplacian

∆ =

n∑
j=1

∂2
j = −

∑
D2
j −→ P (ξ) = −|ξ|2

2. On Rn+1
x,t , the heat operator

P (D) =
∂

∂t
−∆ −→ P (ξ, τ ) = |ξ|2 + iτ

3. d’Alembertian, � = ∂2

∂t2
−∆ = → P (ξ, τ ) = |ξ|2 − τ 2

4. Cauchy-Riemann operator on R2 ∼ C

∂ = ∂x + i∂y → P (ξ, η) = i(ξ + iη)



Basic Questions About PDE

1. Given a function/distribution f , does the equation P (D)u = f

have a solution? Is it unique? What side conditions ensure

uniqueness?

2. Is there an explicit representation for u?

3. How are qualitative properties of u related to those of f?

4. Do the singularities of f determine the singularities of u?

—————————————–

1. Malgrange-Ehrenpreis Theorem. Any P (D) 6= 0 is locally

solvable: for any distribution f of compact support, there exists

u ∈ D′(Rn) s.t. P (D)u = f .



2. Taking f = δ = Dirac delta ‘function’ at 0 ∈ Rn =⇒
P (D) admits a fundamental solution (Green’s function):

K ∈ D′(Rn) s.t. P (D)K = δ.

•Convolution:

g ∗ h(x) =

∫
Rn
g(x− y)h(y)dy.

Properties: (i) (h ∗ g) ∗ f = h ∗ (g ∗ f ), (ii) δ ∗ f = f

(iii) Dα(g ∗ f ) = (Dαf ) ∗ g = f ∗ (Dαg)

• If K is a fundamental solution for P (D),

P (D)(K ∗ f ) = (P (D)K) ∗ f = δ ∗ f = f



A solution to P (D)u = f is

u(x) := K ∗ f (x) =

∫
Rn
K(x− y)f (y)dy

Ex. P (D) = ∆. Newtonian potential on Rn,

N(x) = cn|x|2−n, n ≥ 3; = (2π)−1 log |x|, n = 2

Ex. P (D) = ∂
∂t −∆. Heat kernel on Rn+1,

W (x, t) = (4πt)−n/2e−|x|
2/4t, t > 0; = 0, t ≤ 0



3. Regularity (smoothness) of solutions.

Q. When we solve P (D)u = f , can we predict where u is smooth

from where f is smooth?

Or: determine where f is singular from where u is singular?

Def. P (D) is (C∞)-hypoelliptic if, for any open set O ⊂ Rn and

u ∈ D′(Rn),

P (D)u ∈ C∞(O) =⇒ u ∈ C∞(O)

K a fundamental solution for =⇒ PK = δ ∈ C∞(Rn \ 0). Thus,

P (D) hypoelliptic =⇒ K ∈ C∞(Rn \ 0)

Thm. The converse is also true.

Laplacian, heat operator are hypoelliptic; d’Alembertian is not.



Def. P (D) is elliptic if its principal symbol,

σprin(P )(ξ) =
∑
|α|=m

aαξ
α,

satisfies |σprin(P )(ξ)| ≥ c|ξ|m, c > 0.

• σprin(∆) = −|ξ|2 elliptic

• σprin( ∂∂t −∆) = |ξ|2, which is = 0 on τ-axis, so not elliptic.

Thm. P (D) elliptic =⇒ hypoelliptic.

The converse is not true, e.g., heat operator.

4. Thus: for an elliptic PDE, P (D)u = f , the singularities of f

determine the singularities of u, and vice versa.



Support and Singular Support. For u ∈ D′(Rn),

supp(u) = the complement of largest O on which u = 0.

sing supp(u) = the complement of largest O on which u ∈ C∞.

Ex. H(x)= Heaviside function:supp(H) = [0,∞), sing supp(H) = {0}

N(x)= Newtonian potential: supp(N)=Rn, sing supp(N) = {0}

δ = Dirac delta: supp(δ) = sing supp(δ) = {0}

—————————————–

Differential operators are local: supp (P (D)u) ⊆ supp(u),

and also pseudolocal: sing supp (P (D)u) ⊆ sing supp(u)

Def. P (D) is hypoelliptic iff the reverse containment holds, i.e.,

sing supp (P (D)u) = sing supp(u)

Ex. Poisson equation. ∆u = f =⇒ u is smooth outside sing supp(f ).



Operators with C∞ coefficients: P (x,D) =
∑
|α|≤m aα(x)Dα, aα ∈ C∞

Such a P (x,D) is local and pseudolocal.

Def. The full symbol of P (x,D) is

p(x, ξ) =
∑
|α|≤m

aα(x)ξα ∈ C∞(T ∗Rn)

and the principal symbol of P (x,D) is

σ(P )(x, ξ) =
∑
|α|=m

aα(x)ξα ∈ C∞(T ∗Rn).

Cotangent space: T ∗Rn =
{

(x, ξ) : x ∈ Rn, ξ ∈ (TxRn)∗
}
' Rn × Rn

Ex. Conductivity equation: ∇ · (γ(x)∇u) = γ(x)∇ · ∇u +∇γ · ∇u
=⇒ σ(P )(x, ξ) = −γ(x)|ξ|2.

Def. P (x,D) is uniformlyelliptic on O if ∃C0 > 0 s.t.
∣∣σ(P )

∣∣ ≥ C0|ξ|m

Calculus of pseudodifferential operators =⇒
analogues of #1,2,3 and 4 (modulo C∞ errors)



Constant coefficient P (D) −→ analyze via Fourier transform

C∞ coefficient P (D) −→ use pseudodifferential operators

f (x) −→ f̂ (ξ) =

∫
Rn
e−ix·ξf (x) dx

• f ∈ L1 =⇒ f̂ ∈ C0(Rn): f̂ continuous and → 0 as |ξ| −→ ∞

• If f ∈ L1 ∩ L2, then f̂ ∈ L2,

||f̂ ||2L2 :=

∫
|f̂ (ξ)|2 dξ = (2π)n

∫
||f ||2L2 and

̂ extends to a unitary isometry L2(Rn
x)→ L2(Rn

ξ ) (Parseval-Plancherel)

• D̂jf (ξ) = ξjf̂ (ξ) =⇒ D̂αf (ξ) = ξαf̂ (ξ) =⇒ P̂ (D)f (ξ) = P (ξ) · f̂ (ξ)

• (̂f ∗ g(ξ) = f̂ (ξ) · ĝ(ξ)



Fourier inversion formula

f (x) = (2π)−n
∫

Rn
eix·ξ f̂ (ξ) dξ = (2π)−n(̂f̂ )(−x) =⇒

P (D)u(x) = (2π)−n
∫
eix·ξ P (ξ) f̂ (ξ) dξ

= (2π)−n
∫ ∫

ei(x−y)·ξ P (ξ) f (y) dy dξ

Smoothness of f (x)↔ decay of f̂ (ξ) and vice versa

•Dαf ∈ L1 =⇒ D̂αf (ξ) = ξαf̂ (ξ) ∈ C0(Rn) =⇒ |ξα · f̂ (ξ)| ≤ Bα

If true for all |α| ≤M , then |f̂ (ξ)| ≤ B(1 + |ξ|)−M (∗)

•Conversely, if (*) holds for some M > n, then F.I.F. =⇒ f ∈ C0

If (*) holds for M > n + k, then for |α| ≤ k, Dαf = ξ̂αf̂ (−x) ∈ C0

=⇒ f ∈ Ck
0 (Rn)

•Thus, f̂ rapidly decreasing =⇒ f ∈ C∞.



Wavefront set WF (u)

Describe singularities of u ∈ D′(Rn) in terms of both

spatial location in x space,

frequency direction in ξ space.

WF (u) is a closed subset of T ∗Rn \ 0 = {(x, ξ) ∈ T ∗Rn : ξ 6= 0},
invariant under (x, ξ) −→ (x, tξ), 0 < t <∞ (conic).

Define WF (u) in terms of its complement:

Def. (x0, ξ0) /∈ WF (u) if ∃φ ∈ D(Rn) s.t. φ(x0) 6= 0 and φ̂u(ξ) is

rapidly decreasing on some conic neighborhood of ξ0.

Ex. φ · δ = φ(0)δ and δ̂(ξ) ≡ 1, WF (δ) = {(x, ξ) : x = 0, ξ 6= 0} = T ∗0 Rn

Similarly, WF (H) = T ∗0 R.

However, WF ((x + i0)−1) = {(x, ξ) ∈ T ∗R : x = 0, ξ > 0}.

Ex. Ω ⊂ Rn, ∂Ω smooth =⇒

WF (χΩ) = {(x, ξ) : x ∈ ∂Ω, ξ ⊥ Tx∂Ω} := N ∗∂Ω



In the examples above, the x’s that occur in WF (u) are exactly

those that comprise sing supp(u).

Prop. If π : T ∗Rn −→ Rn denotes the projection onto the spatial

variable, π(x, ξ) = x, then

π (WF (u)) = sing supp(u).

—————————————–

Using the calculus of pseudodifferential operators (ΨDOs),

for an elliptic P (x,D), we can:

•Construct an approximate fundamental solution (parametrix),

s.t. Q(x,D)P (x,D) = I + EL and P (x,D)Q(x,D) = I + ER, with

EL, ER infinitely smoothing.

• Show that P (x,D)u = f has a solution modulo C∞.

•Prove that P (x,D) is hypoelliptic: sing supp(P (x,D)u) = sing supp(u),

and in fact WF (P (x,D)u) = WF (u).

•Obtain estimates for ||u|| in terms of ||f || for various function

space norms.



ΨDOs can be represented either as integral operators:

A(x,D)f (x) =

∫
Rn
K(x, y) f (y) dy

K ∈ D′(Rn × Rn) ∩ C∞(Rn × Rn \ {x = y})
with estimates on K and its derivatives,

or as oscillatory integral operators:

Af (x) = (2π)−n
∫ ∫

ei(x−y)·ξ a(x, y, ξ) f (y) dξ dy,

with the amplitude a(x, y, ξ) belonging to a symbol class.

Both points of view are valuable, but we will focus on the latter.



II. Pseudodifferential Operators

•Convolution operators are Fourier multiplier operators:

K ∗ f (x) = c

∫
eix·ξ K̂ ∗ f (ξ) dξ = c

∫
eix·ξa(ξ) f̂ (ξ) dξ, a = K̂,

= c

∫ ∫
ei(x−y)·ξ a(ξ) f (y) dξ dy, c = (2π)−n.

Compositions of operators correspond to product of multipliers:

K1 ∗ (K2 ∗f )(x) = c

∫ ∫
ei(x−y)·ξ a1(ξ) ·a2(ξ) f (y)dξ dy, aj = K̂j, j = 1, 2

Idea of ΨDOs: Generalize a(ξ) to a(x, ξ) ∈ C∞(Rn
x×Rn

ξ ) or a(x, y, ξ).

•Allows for operators with variable coefficients

•Need to allow error terms, smoothing in various senses



Af (x) = c

∫ ∫
ei(x−y)·ξ a(x, y, ξ) f (y) dξ dy

Phase function: φ(x, y, ξ) = (x− y) · ξ, ∇φ = (ξ,−ξ, x− y) 6= (0, 0, 0)

Amplitude: a(x, y, ξ) belongs to a symbol class.

Def. (i) For m ∈ R, the symbol class Sm = Sm1,0 = those a ∈ C∞ s.t.

|∂γx∂βy ∂αξ a(x, y, ξ)| ≤ Cαβγ(1 + |ξ|)m−|α|, ∀α, β, γ ∈ Zn
+

(ii) Smcl = classical symbols of order m = those a ∈ Sm s.t.

a ∼
∞∑
j=0

am−j with am−j(x, y, ξ) homogeneous of degree m−j in ξ for |ξ| ≥ C

where ∼ means

a−
N∑
j=0

am−j ∈ Sm−N−1, ∀N ∈ Z+.



•P (x,D) =
∑
|α|≤m aα(x)ξα PDO order m ∈ Z+ =⇒ both

p(x, ξ) =
∑
|α|≤m aα(x)ξα and σ(P )(x, ξ) =

∑
|α|=m aα(x)ξα ∈ Smcl

If P (x,D) is elliptic, then |σ(P )(x, ξ)| ≥ c|ξ|m 6= 0 for ξ 6= 0, and

|p(x, ξ)| ≥ c|ξ|m for |ξ| large.

Let χ ∈ C∞(Rn), χ ≡ 0 near 0, χ ≡ 1 near ∞. Then

χ(ξ)[σ(P )(x, ξ)]−1 and χ(ξ)[p(x, ξ)]−1 ∈ S−mcl

• Still true if extend the notion of ellipticity to amplitudes in Sm:

a ∈ Sm is elliptic if |a(x, y, ξ)| ≥ C|ξ|m for |ξ| large.

• If a∈Sm and F ∈C∞(C) and all ∂αF are bounded, then F (a) ∈ Sm.

• a ∈ Sm takes values in C\ (−∞, 0] and r ∈ R\0 =⇒ χ ·a1/r ∈ Sm/r.

• Sm × Sm′ ↪→ Sm+m′.



Error classes. m′ < m =⇒ Sm
′ ( Sm.

Def. (i) S∞ =
⋃
m∈R S

m and S∞cl =
⋃
m∈R S

m
cl

(ii) S−∞ =
⋂
m∈R S

m = space of rapidly decreasing amplitudes.

• S−∞ corresponds to infinitely smoothing ΨDOs, A : E ′ −→ C∞.

• Sm−1 ↔ operators one order lower down in the calculus.

•What “one order lower down” means varies from calculus to

calculus.

—————————————–

Simple vs. compound amplitudes

a(x, y, ξ) is simple if only depends on x, ξ; otherwise, is compound.



Pseudodifferential operators (ΨDOs). For a ∈ Sm or Smcl , let

Af (x) = c

∫ ∫
ei(x−y)·ξ a(x, y, ξ) f (y) dξ dy

•A : D(Rn) −→ D′(Rn) with Schwartz kernel

KA(x, y) = c

∫
ei(x−y)·ξ a(x, y, ξ) dξ

•Absolutely convergent if m < −n, not otherwise.

• Interpret oscillatory integrals as distributions and manipulate

them consistently via Hörmander’s theory.

•Ψm = all ΨDOs with amplitudes from Sm, similar for Ψm
cl ⊂ Ψm

• Identity operator I, with KI(x, y) = δ(x − y), is represented by

a ≡ 1 ∈ S0 =⇒ I ∈ Ψ0
cl.

• a ∈ S−∞ =⇒ KA ∈ C∞(Rn × Rn) =⇒ A : E ′(Rn) −→ C∞(Rn).

Say that A is infinitely smoothing.



Thm. ΨDOs are pseudolocal: sing supp(Af ) ⊆ sing supp(f ).

Pf. Follows from KA ∈ C∞(Rn × Rn \ {x = y}).

For any α ∈ Zn
+, Dα

ξ (ei(x−y)·ξ) = (x− y)α · ei(x−y)·ξ, so

(i(x− y))α ·KA(x, y) = c

∫
Dα
ξ (ei(x−y)·ξ) a(x, y, ξ) dξ

= c

∫
ei(x−y)·ξ (Dt

ξ)
α(a(x, y, ξ)) dξ

= c

∫
ei(x−y)·ξ b(x, y, ξ) dξ, b ∈ Sm−|α|.

Taking |α| > m + n, the last integral converges absolutely and is

thus a continuous function of the parameters, x, y.

Taking |α| > m+n+ q, the integral converges well enough so that

we can differentiate q times in x, y, so that

(x − y)α ·KA ∈ Cq(Rn × Rn). Since we can do this for arbitrary α,

and the common zero set of all the (x− y)α is {x = y}, we get

KA(x, y) ∈ Cq(Rn × Rn \ {x = y})
for every q, and KA is infinitely smooth there.



Compound symbols are unnecessary

Let a(x, y, ξ) ∈ Sm. Expand a about the diagonal {x = y}:

a(x, y, ξ) =
∑
|α|≤N

aα(x, ξ)(y − x)α +O(|y − x|N+1)

where aα(x, ξ) =
1

α!
∂αy a(x, y, ξ)|y=x ∈ Sm (simple)

=⇒ KA(x, y) =
∑
|α|≤N

c

∫
ei(x−y)·ξ (y − x)α aα(x, ξ) dξ + . . .

=
∑
|α|≤N

c

∫
(iDξ)

α(ei(x−y)·ξ )aα(x, ξ) dξ + . . .

=
∑
|α|≤N

c

∫
ei(x−y)·ξ (−1)|α| ∂αξ aα(x, ξ) dξ + . . . .

∂ρξaα ∈ Sm−|α|, |α| ≤ N, and · · · ∈ Sm−N−1 =⇒



Prop. An mth order ΨDO A can be represented, modulo an

infinitely smoothing operator, by a simple amplitude, called the

symbol of A,

σA(x, ξ) ∼
∑
α

i−|α|

α!
∂αξ ∂

α
y a(x, y, ξ)|y=x = a(x, x, ξ) + . . .

Def. If A is an mth order ΨDO defined by a(x, y, ξ), then the

principal symbol of A, denoted σprin(A)(x, ξ) is

(i) am(x, x, ξ) if a ∈ Smcl , a ∼
∑∞

j=0 am−j, and

(ii) the equivalence class [a(x, x, ξ)] ∈ Sm/Sm−1 if a ∈ Sm.

Note: If B is of order ≤ m− 1, then σprin(A + B) = σprin(A)

Symbol calculus: σprin is an isomorphism Ψm/Ψm−1 −→ Sm/Sm−1.



Application: Adjoints

•For any operator T with integral kernel KT (x, y), its L2 adjoint

T ∗ has kernel

KT ∗(x, y) = KT (y, x)

• If A is a ΨDO with amplitude a(x, y, ξ), then

KA∗(x, y) = KA(y, x) = c

∫
ei(x−y)·ξ a(y, x, ξ) dξ.

a(y, x, ξ) belongs to the same symbol class as a =⇒
A∗ is also a ΨDO, with symbol

σA∗(x, ξ) ∼ a(x, x, ξ) + . . . and σprin(A∗) = σprin(A)



Application: Composition

For properly supported ΨDOs A,B be of orders m,m′,

KAB(x, y) =

∫
KA(x, z)KB(z, y) dz

= c2

∫ ∫ ∫
ei[(x−z)·ξ+(z−y)·η] a(x, z, ξ) b(z, y, η) dξ dη dz.

Now apply stationary phase: with x, y, ξ as parameters, consider

integral dz dη. Phase

Φ(z, η) = (x− z) · ξ + (z − y) · η
has a unique critical point (z0, η0) := (y, ξ):

∇zΦ = −ξ + η = 0, ∇ηΦ = z − y = 0↔ z = y, η = ξ.

Furthermore, det(∇2Φ) 6= 0 and Φ(z0, η0) = (x− y) · ξ =⇒

KAB(x, y) = c

∫
ei(x−y)·ξ (a ◦ b)(x, y, ξ) dξ, a ◦ b ∈ Sm+m′

σprin(AB) = σprin(A) · σprin(B)



Boundedness properties of ΨDOs.

Thm. (i) If A ∈ Ψ0 compactly supported, then A is a bounded op-

erator on L2(Rn); on the L2-based Sobolev spaces Hs(Rn), ∀s ∈ R;

on the Hölder-Zygmund spaces Ck,α
∗ , k ∈ Z+, 0 ≤ α ≤ 1;

and on Lp(Rn), 1 < p <∞.

(ii) If A ∈ Ψm, then

A : Hs −→ Hs−m, ∀s ∈ R

and

Ck,α
∗ −→ Ck−[m],α−(m−[m])

∗ .

(iii) Thus, if m < 0, A ∈ Ψm is a compact operator on L2 and

any Hs.



Application: Parametrices

Let A(x,D) ∈ Ψm or Ψm
cl be elliptic: |σprin(A)(x, ξ)| ≥ c|ξ|m, |ξ| −→ ∞.

For a cutoff χ as before, χ ≡ 1 near ∞.

b0(x, ξ) := χ(ξ) · [σprin(x, ξ)]−1 ∈ S−m.

By symbol calculus, b0 −→ B0 ∈ Ψ−m, and

σprin(B0A) = [χ] = 1 =⇒ B0A = I mod Ψ−1.

Let

b1 = −χ · [σprin(x, ξ)]−1 · σprin(B0A− I) ∈ S−m−1,

and B1 ∈ Ψ−m−1 the corresponding ΨDO. As an element of Ψ−1,

(B0 + B1)A− I has principal symbol 0, and hence it ∈ Ψ−2.

Continuing iteratively, construct a sequence B0, B1, B2, . . . , with

Bj ∈ Ψ−m−j and



(B0 + · · · + BN)A− I ∈ Ψ−N−1, ∀N

ΨDO calculus allows one to asymptotically sum: ∃B ∈ Ψ−m s.t.

B ∼
∑∞

j=0Bj, and BA− I ∼ 0. I.e., BA = I + an infinitely smooth-

ing operator. We say that B is a left parametrix for A.

Similarly, can construct a right parametrix, B′.

BAB′ = B(AB′) ∼ B · I mod Ψ−∞

and similarly ∼ B′ ·I mod Ψ−∞, so B and B′ differ by a smoothing

operator. Thus, either one is a two-sided parametrix, i.e., a

Green’s function modulo a smoothing error.

If A is only elliptic on some open cone Γ ⊂ T ∗Rn, can construct

microlocal parametrices.



Thus, if P (x,D) is an elliptic PDO or ΨDO, and we are interested

in the inhomogeneous equation Pu = f , let Q(x,D) ∈ Ψ−m be a

two-sided parametrix for P .

(i) Can solve Pu = f mod C∞. Letting u = Qf , get

Pu = PQf = f mod C∞, ∀f ∈ E ′(Rn).

(ii) P (x,D) is hypoelliptic:

sing supp(u) = sing supp(f )

(iii) Elliptic estimates. Pu = f =⇒ ∀s ∈ R,

||u||Hs+m ≤ Cs
(
||f ||Hs + ||u||Hs

)



Didn’t cover: Fourier integral operators (FIOs). More gen-

eral phase functions than ΨDOs, useful for analyzing generalized

Radon transforms, R.

In particular, under the Bolker condition, R∗R is a ΨDO, elliptic

on the microlocal illuminated region.

=⇒ Singularities of f are determined by singularities of Rf ,

estimates (stability), . . .
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ed. by L. Hörmander, Princeton Univ. Pr., 1979.
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