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Advantageous and deleterious mutations

: increase a cell’s rate of division (or
decrease death/senescence) in the hyperplasia. E.qg.
recurrent mutations in cancer causing genes.

* Passenger Mutations: non-recurrent mutations in
cancer, not associated with cancer-causing genes.

-May be neutral or deleterious

All happy families are all alike; each unhappy family is
unhappy In its own way.
Leo Tolstoy



If drivers cause cancer, why study passengers?

*Passengers slow down evolution of cancer
*Passengers constrain evolution of cancer
*Passengers affect interpretation of sequencing data
*Passengers could be targets for cancer therapies

*Passengers could become drivers



Passengers vs.

protein coding putative driver

tumor type mutations mutations
breast cancers 209.8 5.1
colon cancers 136.4 4
astrocytomas 254.3 9.9
malignant melanoma 281.2 7

averages 10°



Outline

1. Passenger mutations may be deleterious to
cancer, yet still accumulate in tumors.

2. Deleterious passengers prevent and slow
cancer under specific conditions and these
conditions may be exploited by therapies.



Our evolutionary model of cancer
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Parameters

Literature
Parameter Symbol Range
estimate

mutation rate per nucleotide 108 1010-10°
number of driver loci Td 700 -
number of passenger loci T, 5,000,000 -
selective advantage of driver Sy 0.1 0.001-1
selective disadvantage of passenger S, 0.001 0.0001-0.1
Initial carrying capacity of lesion K 1000 100-10,000

Cole et. al. (2010); Beerwinkel et. al. (2007);
Geller-Samerotte et. al. (2010); Loeb, Bielas,
and Beckman (2008); Jackson and Loeb
(1998); Beerwinkel et. al. (2007);Beckman
and Loeb (2005). /



A balance between drivers and
passengers
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Outline

1. Passenger mutations can be deleterious to
cancer, yet still accumulate in tumors.

2. Deleterious passengers prevent and slow
cancer under specific conditions and these
conditions may be exploited by therapies.



Outline

1. Passenger mutations can be deleterious to
cancer, yet still accumulate in tumors.

2. Deleterious passengers can prevent or slow
cancer under specific conditions and these
conditions may be exploited by therapies.



Limitations of our computational
model
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population

Why do passengers accumulate?
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Idealized heterogeneity of progression
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Observed heterogeneity of progression
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Observed heterogeneity of progression
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Why two fates?

2000

dN 1500}
= vg(N) — vp(N) 5

dt ::;10007
population growth due to drivers I . 7
0 = g - g - Nog = pgsaN2 ot
population decline due to passengers o o0 wa0 000 T8000 10000

2
dt h1S

unstable fixed point d2q
dN 5 N
T N(pasqN—ppsp) = pipspN (ﬁ - 1) R
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Stochastic drivers and deterministic
passengers

} T ~1/f |

A
Y

2000}

N(t)

passenger accumulation

| | | | |
10060 2200 2200 2600 2800 3000 3200 3400
time (generations)

dN = —v(N) + AN)dng 0y 2% 041

19



Estimating the probability of cancer
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Simulated results
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Comparing to our first theory
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Perhaps passengers fixate slower?

Fixation probability in the Moran model
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1, explains part of the deviation from simulations

PCG’I’LCG’T’

1.0
IO.9
0.8

- 0.7
- 0.6
- 0.5
- 0.4
0.3
0.2
0.1
0.0

24



is even more complicated

In reality, t
dNp b N
dt ((1 +sp)F i) T re(Np—1 = Npi)
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In reality, i, is even more complicated

p

neutral wave ratchet independent

Tsimring, Levine, Kessler (1996) Haigh (1978)
Rouzine, Brunet, and Wilke Gordo and Charlesworth (2000)

(2003, 2008)
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These regimes capture the non-monotonic behavior of
passenger accumulation
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Dynamics for large u
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Agreement is good across the phase space
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If drivers cause cancer, why study passengers?

*Passengers slow down evolution of cancer «
-Reduce fitness of population
-Prevent fixation of drivers

*Passengers constrain evolution of cancer /
-Two phases of cancer

*Passengers affect interpretation of sequencing data
-Carry non-neutral phenotypes
-Do not fix according to neutral theory?

*Passengers could be targets for cancer therapies

*Passengers could become drivers



Does our model explain observed
accumulation patterns?
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If drivers cause cancer, why study passengers?

*Passengers slow down evolution of cancer «
-Reduce fitness of population

-Prevent fixation of drivers
*Passengers constrain evolution of cancer /
-Two phases of cancer
*Passengers affect interpretation of sequencing data ¢

-Carry non-neutral phenotypes
-May not fix according to neutral theory
*Passengers could be targets for cancer therapies

“We need to trick these cells into developing evolutionary strategies
which we can then exploit.” Robert Gatenby, Thursday.

*Passengers could become drivers



Mutation rate and passenger
deleteriousness can be exploited
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Mutation rate and passenger
deleteriousness can be exploited
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Increasing passenger’s deleterious
effects through proteotoxicity

Most point mutations reduce fitness through partial mis-
folding of expressed proteins (Geiler-Samerotte et al 2011
PNAS).

Chaperon proteins were found to be widely expressed in
cancer and indicative of poor prognosis (Santagata et al
2011 PNAS).

Knockdown of HSP1, the master chaperon regulator, can
prevent tumorgenesis in mice (Dai et al 2007 Cell).

Greater DNA damage (Silva et al 2000 Mutation Res) and
chromosomal instability (Birkbak et al. 2011 Cancer Res)
correlates with positive clinical outcomes.

Hyperthermia in combined treatment improves clinical
outcomes (Wust et al 2002 Lancet Oncology).



Kirill Korolev
Analytical models

My Labmates:

Geoff Fudenberg
Maksim Imakaev
Jason Leith

Anton Goloborodko

Thanks!

Leonid iy

My advisor
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Probability of developing cancer

P.(x) is the probability to develop cancer
from the initial lesion of size N'=x.

infinitesimal step analysis

P.(z) = f(z)dtP.]z + g(2)] + [1 — f(z)dt| Pz — v,(z)dl]



Probability of developing cancer

P.(x) is the probability to develop cancer
from the initial lesion of size N'=x.

infinitesimal step analysis

P.(x) :C[az + g(o)] +e[a: — v, (x)di]



Probability of developing cancer

P.(x) is the probability to develop cancer
from the initial lesion of size N'=x.

infinitesimal step analysis
P.(z) = f(z)dtP.]z + g(2)] + [1 — f(z)dt| Pz — v,(z)dl]

vy(z)Pl(x) = f(z){Pe[z + g(z)] — Pe(z)} z+ g(z) = Oz

c



Probability of developing cancer

P.(x) is the probability to develop cancer
from the initial lesion of size N'=x.

infinitesimal step analysis
P.(z) = f(z)dtP.]z + g(2)] + [1 — f(z)dt| Pz — v,(z)dl]

Up(JZ)P’(;U) = f(x){PC{QZ + g(x)] — PC(Q;‘)} T+ g(m) = Ox

An*(0)2* P! (z) + [ANIn*(0)z + 2\ In(f)x — 2v] Pl(z) =0

boundary conditions P.(0)=0 P.oo)=1



Probability of developing cancer
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Probability of developing cancer
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Probability of developing cancer
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Time to cancer
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Time to cancer

Te(x) =

e(Y)[1 — Pe(y)] N 2

1 — P.(x)

HpSp

2
Fds g

N* =

) /‘x’ dy P,
pasy Jo o Y

/I dy P2(y)
0

! 3 , s 1,
Fi(y) pasy Fe(z) y° Pi(y)
1
10—
.......................................................................................... ° simulation
0 o« |—theory |
10 pos I
S e o o S Wi St o
- IS AU U U U L 0 6 AN R . S
S UUUUTSTTUUUUTOE HUUUUTOUUE FOUTOUNN SOUUUN SUUOE OO0 FE 0 0 OUUSTORNUOUOORNNED SUTPPRNOOOOE SO e
VA
o -1
I 10 b
-2 : | |
10 s
10 10 10



Time to cancer
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Main results from the simple model

*There is a critical population size N".

*The probability of cancer can be very small due to the
accumulation of passengers.

*The width of the transition depends on the fitness
advantage of drivers.

*The time to cancer depends weakly on the initial size and
is determined by the rate of passenger accumulation.



Different cancers require different number of steps
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