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Study cancer as a complex trait
Study the evolution of complex traits

Conventional view:. Crossing the fitness valley by
seqguential evolution

New concept. Cooperation in the context of the
“division of labor” games
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 Cooperation speeds up evolution

 Cheating speeds up evolution even more!



Evolution of complex traits
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Crossing the fitness valley

Bacterium with flagella

Fitness



Cancer as a complex trait

o LLI—IHEI%

RS are

Axelrod et al, “Evolution of cooperation among tumor cells”,
PNAS 2006
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Loss-of-function mutations

« Tumor suppressor genes

* APC (colon cancer), Rb (retinoblastoma), p53
(many cancers) — about 200 genes

Wild type  TSP** TSP+ TSP--

(1) (r<1)

u =107 per cell division per gene copy



Crossing the fitness valley

Mutations A and B




Rates of sequential evolution
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What 1s the probability that by time t a mutant of
@ has been created?

Assume that <1 and a>>1



Three architectural types
maintaining homeostatic control

1. Mass action
2. Spatial structure
3. Hierarchical structure



Three architectural types
maintaining homeostatic control

1. Mass action
2. Spatial structure
3. Hierarchical structure

Which type of architecture corresponds to the
fastest sequential evolution?



1.Mass action

Moran process
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1.Mass action

Moran process
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Number of cells

>

A two-step process

Scenario 1:
O gets fixated first, and then a mutant of @

1S created;

time



Stochastic tunneling
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Number of cells

Stochastic tunneling

>

Scenario 2:
A mutant of @ 1s created before O

reaches fixation

time



The coarse-grained description
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Stochastic tunneling
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Disadvantageous intermediate mutant

Assume that ¥ <1 and a>>1




2.Spatial structure

Generalized (spatial) Moran process
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2.Spatial structure

Generalized (spatial) Moran process
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Spatial dynamics
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Spatial dynamics
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Spatial dynamics
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Spatial dynamics
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Spatial dynamics
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Stochastic tunneling
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Stochastic tunneling
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3.Hierarchical structure
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Generalized (hierarchical) Moran process
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Generalized (hierarchical) Moran process
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Number of cells

Number of cells

Two-step process and tunneling

First hit in the stem cell

time

Second hitin a
daughter cell

First hit in a daughter cell

time



Stochastic tunneling in a
hierarchical model
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Stochastic tunneling in a
hierarchical model
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Rates of sequential evolution

0.0003 -

0.0002+4+

0.0001 14

(highest rate)

Spatial model

e

Mass—action model

The tunneling rate

Hierarchical model

(lowest rate)




Theory of fitness valley crossing
IS complex

a

* Only two mutations

* No space :

 No hierarchical
structure
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Weissman et al, “The rate at which asexual

populations cross fitness valleys”, Theor. Popul.
Biol. 2009
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Cooperation in cancer cells

 Traditional view of carcinogenesis involves
accumulation of sequential mutations

* It has been suggested however that all the
mutations do not have to “meet” in the
same cell

» Cells can engage in “division of labor”
iInteractions



Sequential evolution

T ebs
b

RS are

Axelrod et al, “Evolution of cooperation among tumor cells”,
PNAS 2006




Evolution in the presence of
cooperation
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Axelrod et al, “Evolution of cooperation among tumor cells”,
PNAS 2006




Evolution in the presence of
cooperation

Axelrod et al, “Evolution of cooperation among tumor cells”,
PNAS 2006



Evolution of cooperation among
tumor cells

-~
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Fig. 2. Intratumor cooperation can occur among partially transformed
mutant cells that have complementary needs, such as two different GFs. Some
cells (@) produce only GF A, and other cells (™) produce only GF B, but
together they produce both GFs. Crossfeeding is a form of cooperation that

enables each cell type to survive and proliferate.

Axelrod et al, “Evolution of cooperation among tumor cells”,
PNAS 2006



Evolution of cooperation among

tumor cells

» Angiogenesis (VEGF for recruiting blood
vessesl; all cells benefit)

« Sharing of certain growth signals (VEGF,
PDGF, TGF-beta)

* Tissue invasion and metastasis (factors
that allow survival under loss of contact
inhibition, degrading extracellular matrix,
etc)

Axelrod et al, “Evolution of cooperation among tumor cells”,
PNAS 2006



Cooperation in metastasis

Step 3b
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] Step 4
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Birard et al, “A “class action” against the microenvironment:

do cancer cells cooperate 1n metastasis?” Cancer Metastasis
Rev. (2008)



Evolution of cooperation among
tumor cells

* Modifications to the stroma can have an effect on neoplastic
cells...

* Cocultures of mesenchymal stem cells and the breast
cancer cell line MCF7/Ras...

 Breast cancer cells that have metastasized to the bone

produce paracrine factors such as tumor necrosis factor
-alpha (TNF-a) and insulin-like growth factor Il (/IGF-/I)...

 Prostate cancer, cervical cancer, etc

Sprouffske & Maley, “Cooperation and cancer”, Thomas-

Tikhonenko (ed.), Cancer Genome and Tumor Micro-
Environment (2010)



Collective behavior of
cancerous cells

Deisboek & Couzin, “Collective behavior 1n cancer cell
populations” Bioessays (2009)



Synthetic cooperation in
engineered yeast populations
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Shou et al, “Synthetic cooperation in engineered yeast
populations”, PNAS 2007



The concept

* Division of labor
* Public goods




Sequential evolution
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Division of labor

Cooperation
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Division of labor

ab

Phenotype AB as an
emergent property
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The number of cooperating sites

 m = the number of genes required to be
mutated to ensure enhanced fithess

m=5

Abcde Bode abcDe

b Cde abcdE




The number of cooperating sites

 m = the number of genes required to be
mutated to ensure enhanced fithess

m=5

ABcde aBCDe
AbcDE
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Emergence of a complex
phenotype
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Cooperators and cheaters

The Public Goods Game

cooperators free-riders
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Public Goods




Cooperation and cheating
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Cooperation and cheating
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Emergence of m-hit mutants
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In the presence of cheating
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In the presence of cheating
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In the presence of cheating
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In the presence of cheating
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In the presence of cheating
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The local dynamics
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The local dynamics
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The local dynamics
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The local dynamics
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The local dynamics
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The local dynamics

The likelithood and
timing of this process
depend on the number
of cooperators in the
system

fiination of the m-hit cheater
aBc™*

A ABc
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A*B*c
aB*c



In the presence of cheating
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Analytical description

* /=number of cooperating sites
* /=number of cheating sites

Yij = [rijvij(1—(m—i—jlu—iuy —(m—i—jlw— jw —iv — ju,)
+ Tic1Yic1,§0U + Tig Vi1 (M — 1 — J)us + T (m — 1 — jwy
+ Tijo1Yij—1JW + Tic1 j+1¥io1 41001 + Tig1 j—1Yit1,j—10|W]
— dy;;, 0<i+j<m. (9)

Too = R, R < rij = R+ — Zf S R+, Z] > (.



Partial

The steady state

Full cheaters

Cooperators

2§ (# of cheating sites)

1 (# of coop sites)



The steaqy state

Population
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Are there examples of cheating

In cancer cells?

* Prostate cancer (Harsh Jain)

* The normal prostate and early-stage
prostate cancers depend on androgens
for growth and survival, and androgen
ablation therapy causes them to regress.

» Cancers that are not cured by surgery
eventually become androgen
independent, rendering anti-androgen
therapy ineffective.



Are there examples of cheating
In cancer cells?

To get around the hormonal therapy,
cancer cells can:

. Develop mutations that facilitate local
biosynthesis of androgens

2. Develop mutations that reduce the
activation threshold for the androgen
receptor



Are there examples of cheating

in cancer cells?
Cooperators

To get around the hormonal therapy,
cancer cells can:

1.7 Develop mutations that facilitate local
biosynthesis of androgens

2. Develop mutations that reduce the

activation threshold for the androgen
eptor

Cheaters



Sequential evolution

* Sequential evolution accumulates
mutations one by one, and is a slow
process, especially in the presence of
fitness valleys



Cooperation

» Cooperation leads to a much faster
generation of a complex phenotype as an
emergent (distributed) property

« However, m-hit mutants do not come to
dominate the population



Cheaters accelerate evolution

* In the presence of cheating, m-hit mutants
are generated fast and come to dominate
the population

* They are generated quickly because of a
large abundance of cheaters (no
stochastic tunneling!)

* They dominate because they do not
depend on the cooperators for survival
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e Dominik Wodarz (UCI)
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