Cellular cooperation as a pathway to cancer

Natalia L. Komarova komarova@uci.edu University of California Irvine

Plan

- Study cancer as a complex trait
- Study the evolution of complex traits
- Conventional view: Crossing the fitness valley by sequential evolution
- New concept: Cooperation in the context of the "division of labor" games

Plan

Cooperation speeds up evolution

Plan

- Cooperation speeds up evolution
- Cheating speeds up evolution even more!

Evolution of complex traits

Crossing the fitness valley

Bacterium with flagella

Wild type

(no flagella)

Fitness

Cancer as a complex trait

Axelrod et al, "Evolution of cooperation among tumor cells", PNAS 2006

Loss-of-function mutations

- Tumor suppressor genes
- APC (colon cancer), Rb (retinoblastoma), p53 (many cancers) – about 200 genes

 $u = 10^{-7}$ per cell division per gene copy

Crossing the fitness valley

Mutations A and B

Rates of sequential evolution

What is the probability that by time t a mutant of has been created?

Assume that $r \le 1$ and a >> 1

Three architectural types maintaining homeostatic control

- 1. Mass action
- 2. Spatial structure
- 3. Hierarchical structure

Three architectural types maintaining homeostatic control

- 1. Mass action
- 2. Spatial structure
- 3. Hierarchical structure

Which type of architecture corresponds to the fastest sequential evolution?

Scenario 1:

gets fixated first, and then a mutant ofis created;

Stochastic tunneling

Stochastic tunneling

Scenario 2:

A mutant of is created before reaches fixation

The coarse-grained description

Long-lived states:

x₀ ... "all green"

x₁ ... "all blue"

x₂ ... "at least one red"

$$\dot{x}_{0} = -R_{0 \to 1} x_{0} - R_{0 \to 2} x_{0}$$

$$\dot{x}_{1} = R_{0 \to 1} x_{0} - R_{1 \to 2} x_{1}$$

$$\dot{x}_{2} = R_{0 \to 1} x_{0} + R_{1 \to 2} x_{1}$$

Stochastic tunneling

Assume that $r \le 1$ and a >> 1

Spatial dynamics

Spatial dynamics

Stochastic tunneling

$$R_{0\to 2} = uN(9u_1)^{1/3} \frac{\Gamma(2/3)}{\Gamma(1/3)}; \text{ (mass act. } Nu\sqrt{u_1})$$

$$R_{0\to 2} = 3rNuu_1 \frac{(r-1)^2 + r^2}{(r-1)^2}; \text{ (mass act.} \frac{Nuu_1r}{1-r})$$

Stochastic tunneling

$$R_{0\to 2} = uN(9u_1)^{1/3} \frac{\Gamma(2/3)}{\Gamma(1/3)}; \text{ (mass act. } Nu\sqrt{u_1})$$

$$R_{0\to 2} = 3rNuu_1 \frac{(r-1)^2 + r^2}{(r-1)^2}; \text{ (mass act.} \frac{Nuu_1r}{1-r})$$

Stochastic tunneling in a hierarchical model

$$R_{0\to 2} = Nuu_1 \left| \log u_1 \right|$$

$$(cf. \quad R = Nu\sqrt{u_1})$$

Stochastic tunneling in a hierarchical model

$$R_{0\to 2} = Nuu_1 \left| \log u_1 \right|$$

$$(cf. \quad R = Nu\sqrt{u_1})$$

Rates of sequential evolution

Theory of fitness valley crossing is complex

- Only two mutations
- No space
- No hierarchical structure

Weissman et al, "The rate at which asexual populations cross fitness valleys", Theor. Popul. Biol. 2009

Cooperation in cancer cells

- Traditional view of carcinogenesis involves accumulation of sequential mutations
- It has been suggested however that all the mutations do not have to "meet" in the same cell
- Cells can engage in "division of labor" interactions

Sequential evolution

Evolution in the presence of cooperation

Evolution in the presence of cooperation

Evolution of cooperation among tumor cells

Fig. 2. Intratumor cooperation can occur among partially transformed mutant cells that have complementary needs, such as two different GFs. Some cells (♠) produce only GF A, and other cells (♠) produce only GF B, but together they produce both GFs. Crossfeeding is a form of cooperation that enables each cell type to survive and proliferate.

Evolution of cooperation among tumor cells

- Angiogenesis (VEGF for recruiting blood vessesl; all cells benefit)
- Sharing of certain growth signals (VEGF, PDGF, TGF-beta)
- Tissue invasion and metastasis (factors that allow survival under loss of contact inhibition, degrading extracellular matrix, etc)

Cooperation in metastasis

Birard et al, "A "class action" against the microenvironment: do cancer cells cooperate in metastasis?" Cancer Metastasis Rev. (2008)

Evolution of cooperation among tumor cells

- Modifications to the stroma can have an effect on neoplastic cells...
- Cocultures of mesenchymal stem cells and the breast cancer cell line MCF7/Ras...
- Breast cancer cells that have metastasized to the bone produce paracrine factors such as tumor necrosis factor -alpha (TNF-α) and insulin-like growth factor II (IGF-II)...
- Prostate cancer, cervical cancer, etc

Sprouffske & Maley, "Cooperation and cancer", Thomas-Tikhonenko (ed.), *Cancer Genome and Tumor Micro-Environment* (2010)

Collective behavior of cancerous cells

Deisboek & Couzin, "Collective behavior in cancer cell populations" Bioessays (2009)

Synthetic cooperation in engineered yeast populations

Shou et al, "Synthetic cooperation in engineered yeast populations", PNAS 2007

The concept

- Division of labor
- Public goods

Sequential evolution

Fitness R

R-

R+

Division of labor

Fitness R

w/o coop: R⁻-f

with coop: R⁺-f

R⁺-2f

Division of labor

Division of labor

Fitness R

w/o coop: R⁻-f

with coop: R⁺-f

R⁺-2f

The number of cooperating sites

 m = the number of genes required to be mutated to ensure enhanced fitness

The number of cooperating sites

 m = the number of genes required to be mutated to ensure enhanced fitness

Cooperators and cheaters

Cooperation and cheating

Wild type

Cooperation and cheating

Emergence of *m*-hit mutants

The local dynamics

The likelihood and timing of this process depend on the number of cooperators in the system

In the presence of cheating

Analytical description

- i=number of cooperating sites
- j=number of cheating sites

$$\dot{y}_{i,j} = [r_{i,j}y_{i,j}(1 - (m-i-j)u - iu_1 - (m-i-j)w - jw_1 - iv - jv_1)
+ r_{i-1,j}y_{i-1,j}iu + r_{i+1,j}y_{i+1,j}(m-i-j)u_1 + r_{i,j+1}y_{i,j+1}(m-i-j)w_1
+ r_{i,j-1}y_{i,j-1}jw + r_{i-1,j+1}y_{i-1,j+1}iv_1 + r_{i+1,j-1}y_{i+1,j-1}jv]W]
- dy_{i,j}, 0 \le i + j \le m.$$
(9)

$$r_{0,0} = R$$
, $R < r_{i,j} = R^+ - if \le R^+$, $ij > 0$.

The steady state

The steady state

Are there examples of cheating in cancer cells?

- Prostate cancer (Harsh Jain)
- The normal prostate and early-stage prostate cancers depend on androgens for growth and survival, and androgen ablation therapy causes them to regress.
- Cancers that are not cured by surgery eventually become androgen independent, rendering anti-androgen therapy ineffective.

Are there examples of cheating in cancer cells?

To get around the hormonal therapy, cancer cells can:

- 1. Develop mutations that facilitate local biosynthesis of androgens
- Develop mutations that reduce the activation threshold for the androgen receptor

Are there examples of cheating in cancer cells?

Cooperators

To get around the hormonal therapy, cancer cells can:

- 1. Develop mutations that facilitate local biosynthesis of androgens
- 2. Develop mutations that reduce the activation threshold for the androgen receptor

Cheaters

Sequential evolution

 Sequential evolution accumulates mutations one by one, and is a slow process, especially in the presence of fitness valleys

Cooperation

- Cooperation leads to a much faster generation of a complex phenotype as an emergent (distributed) property
- However, m-hit mutants do not come to dominate the population

Cheaters accelerate evolution

- In the presence of cheating, m-hit mutants are generated fast and come to dominate the population
- They are generated quickly because of a large abundance of cheaters (no stochastic tunneling!)
- They dominate because they do not depend on the cooperators for survival

Work done in collaboration with:

- Dominik Wodarz (UCI)
- Erin Urwin (UCI)