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Outline!

•  Overview"



•  In vitro proof-of-concept model"



•  Simulating tumor xenograft experiments "



•  Clinical applications"



•  Where are we headed?




Ovarian Cancer!

Figures/Data: www.metrohealth.org

Jemal A et al. (2008) CA Cancer J Clin 58:71-96




Treating Ovarian Cancer!

•  Standard treatment – combination of Pt-based drugs (e.g. 
Carboplatin) + anti-mitotic drugs (e.g. Paclitaxel)


•  Pt-drugs induce DNA damage, leading to cell cycle arrest and 
subsequent death


•  However, recurrent disease often associated with resistance




Mechanisms of Resistance!

Figure: Siddik ZH (2003)

Oncogene 22:7265-7279




Targeting the Bcl-family!

•  Novel treatments in development include targeting Bcl-family proteins"
that regulate cell death (apoptosis)


Pro-apoptotic

Bax, Bak, Bid, Bad


Anti-apoptotic

Bcl-2/xL, Mcl-1
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Targeting the Bcl-family!
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Cell Death
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Model Schematic!
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A(t) + B(t) � P (t),

X(t) + B(t) � Q(t)

Model Variables!

M(t,a)


Carboplatin C(t) 
induced cell 
cycle arrest


N(t)


Proliferation


Recovery


ABT-737
 Bcl-xL
 ABT-737-Bcl-xL 
Complex


Intracellular Reaction


Bax - X(t) 
mediated death


Bax- X(t) 
mediated death


Bax
 Bcl-xL
 Bax-Bcl-xL 
Complex


•  t is time


•  a is time cells have spent in the arrested compartment




Mathematical Model!

Arrested

Cells


•  Here, α(t) and f(t) are non-negative periodic functions, with period – say τ – 
corresponding to the period of therapy administration for the in vivo case.
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Molecular basis of synergy 
between carboplatin and 

ABT-737!

Witham J, Valenti MR, Richardson A et al. (2007)

Clinical Cancer Research 13(23):7191-7198




Modeling Objectives!

•  Elucidate molecular basis of drug (carboplatin + ABT-737) action


•  Predict optimal dosing and scheduling and treatment response


•  Maximize synergy between the 2 drugs




In Vitro Fits!
Control Data
 ABT-737 only


Carboplatin Only
 Combination Therapy


H V Jain and M Meyer-Hermann (2011)

Cancer Research 71(3):705-715




Optimal Scheduling!

H V Jain and M Meyer-Hermann (2011)

Cancer Research 71(3):705-715




Optimal Dosing!
Combination Indices calculated at an 

unaffected fraction of 0.5 


C.I. =
DoseDrug 1

ICdrug 1
50

+
DoseDrug 2

ICdrug 2
50

H V Jain and M Meyer-Hermann (2011)

Cancer Research 71(3):705-715




Summary of In Vitro Modeling!

•  Our approach novel because an age-structured model used for the 
first time to describe the effect of Pt-based chemotherapy


•  Potential application in early stage drug discovery/development


–  The model validates and explains the hypothesis that carboplatin sensitizes cancer 
cells to anti-Bcl-2/xL therapy


–  Validated model used to predict optimal dosing and scheduling




In Vivo Tumor Xenograft 
Experiments!
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Carboplatin Pharmacokinetics!
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ABT-737 Pharmacokinetics!
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ABT-737 Pharmacokinetics!

Bax


Bcl-xL




Full Model!

•  5 Algebraic equations, 2 ODEs, 1 DDE and 1 PDE


•  2 key parameters of interest


Rate of arrested cell death  = 
(ρ0 + ρ1ρ1ρ1 X(t)) C(t− a)H(a − achar)

Carboplatin Infusion time  = 
TiTiTi



Model Validation!

ABT-737 
only


Control


ABT-737+Carboplatin


Carboplatin 
only


Data: Witham et al. (2007)

Clinical Cancer Research 13: 7191-7198




Optimal Dosing!

Combination Indices calculated at an 
unaffected fraction of 1/3 




Optimal Scheduling!



Optimal Scheduling!



Optimal Scheduling!



Summary of In Vivo Modeling!

•  Our model can help identify those parameters that have a crucial 
bearing on the predicted outcome of such novel therapeutic strategies


•  It can be used to investigate non-obvious treatment strategies 


•  Potential to reduce ‘bench"
to bedside’ time, as it can"
predict optimal dose "
combinations and relative "
schedules


•  Save lab animals




A Clinical Application: 
Modeling the Emergence of 

Carboplatin Resistance!



2 Pathways to Resistance!

•  Active Pathway: Mutations arise due to DNA-mismatch repair


Sensitive

Cells


Resistant

Cells


dN

dt
= f(N,M,R)N − α(t)N + (1− p)(1− p)(1− p)M(t, a = ar)

dR

dt
= f(N,M,R)R + pppM(t, a = ar)



In Vivo Predictions - Active !
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In Vivo Predictions - Active !

Carb = 0 mg/kg
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2 Pathways to Resistance!

•  Passive Pathway: Mutations arise spontaneously during proliferation


Sensitive

Cells


Resistant

Cells


dN

dt
= f(N,M,R)N − α(t)N + M(t, a = ar) − ppp f(N,M,R)N + ppp f(N,M,R)R

dR

dt
= f(N,M,R)R + ppp f(N,M,R)N − ppp f(N,M,R)R
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Summary of Clinical Application!

•  Highlights the need for combination therapy, to avoid resistance 
emergence


•  Can be used to guide clinical oncologist in making treatment 
decisions, especially when calibrated versus ex vivo assays


•  Can aid in drug discovery as it can distinguish between a number of 
types of mutation leading to carboplatin resistance




Future Directions!

•  A stochastic framework, to allow for the incorporation of a large 
number of cell phenotypes


•  Distributed delays to model the recovery of arrested cells


•  Include paclitaxel, and investigate combination therapy with all 3 drugs




Thank you!!
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