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•  Overview"
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•  Simulating tumor xenograft experiments "


•  Clinical applications"


•  Where are we headed?



Ovarian Cancer!

Figures/Data: www.metrohealth.org
Jemal A et al. (2008) CA Cancer J Clin 58:71-96



Treating Ovarian Cancer!

•  Standard treatment – combination of Pt-based drugs (e.g. 
Carboplatin) + anti-mitotic drugs (e.g. Paclitaxel)

•  Pt-drugs induce DNA damage, leading to cell cycle arrest and 
subsequent death

•  However, recurrent disease often associated with resistance



Mechanisms of Resistance!

Figure: Siddik ZH (2003)
Oncogene 22:7265-7279



Targeting the Bcl-family!

•  Novel treatments in development include targeting Bcl-family proteins"
that regulate cell death (apoptosis)

Pro-apoptotic
Bax, Bak, Bid, Bad

Anti-apoptotic
Bcl-2/xL, Mcl-1
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Targeting the Bcl-family!

•  Novel treatments in development include targeting Bcl-family proteins"
that regulate cell death (apoptosis)

Cell Death

Pro-apoptotic

Bax, Bak, Bid, Bad

Anti-apoptotic

Bcl-2/xL, Mcl-1
Small Molecule
Inhibitors (ABT-737)



Model Schematic!
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A(t) + B(t) � P (t),

X(t) + B(t) � Q(t)

Model Variables!

M(t,a)

Carboplatin C(t) 
induced cell 
cycle arrest

N(t)

Proliferation

Recovery

ABT-737 Bcl-xL ABT-737-Bcl-xL 
Complex

Intracellular Reaction

Bax - X(t) 
mediated death

Bax- X(t) 
mediated death

Bax Bcl-xL Bax-Bcl-xL 
Complex

•  t is time

•  a is time cells have spent in the arrested compartment



Mathematical Model!

Arrested
Cells

•  Here, α(t) and f(t) are non-negative periodic functions, with period – say τ – 
corresponding to the period of therapy administration for the in vivo case.
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Recovery from
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Molecular basis of synergy 
between carboplatin and 

ABT-737!

Witham J, Valenti MR, Richardson A et al. (2007)
Clinical Cancer Research 13(23):7191-7198



Modeling Objectives!

•  Elucidate molecular basis of drug (carboplatin + ABT-737) action

•  Predict optimal dosing and scheduling and treatment response

•  Maximize synergy between the 2 drugs



In Vitro Fits!
Control Data ABT-737 only

Carboplatin Only Combination Therapy

H V Jain and M Meyer-Hermann (2011)
Cancer Research 71(3):705-715



Optimal Scheduling!

H V Jain and M Meyer-Hermann (2011)
Cancer Research 71(3):705-715



Optimal Dosing!
Combination Indices calculated at an 

unaffected fraction of 0.5 

C.I. =
DoseDrug 1

ICdrug 1
50

+
DoseDrug 2

ICdrug 2
50

H V Jain and M Meyer-Hermann (2011)
Cancer Research 71(3):705-715



Summary of In Vitro Modeling!

•  Our approach novel because an age-structured model used for the 
first time to describe the effect of Pt-based chemotherapy

•  Potential application in early stage drug discovery/development

–  The model validates and explains the hypothesis that carboplatin sensitizes cancer 
cells to anti-Bcl-2/xL therapy

–  Validated model used to predict optimal dosing and scheduling



In Vivo Tumor Xenograft 
Experiments!



A(t) + B(t) � P (t),

X(t) + B(t) � Q(t)

Model Variables!

M(t,a)
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Carboplatin Pharmacokinetics!

Bolus Infusion

Systemic
Circulation 

CP(t)

Peripheral
Tissue
CT(t)

Periodic 
Dosing via i.v.

KC

Clearance

K12

K21



ABT-737 Pharmacokinetics!

Systemic 
Circulation

AP(t)

Intracellular
AT(t)

μA

λA

Clearance

Peritoneal 
Cavity
Aperit(t)

Periodic Dosing 
via i.p.

KTP

KPT



ABT-737 Pharmacokinetics!

Bax

Bcl-xL



Full Model!

•  5 Algebraic equations, 2 ODEs, 1 DDE and 1 PDE

•  2 key parameters of interest

Rate of arrested cell death  = (ρ0 + ρ1ρ1ρ1 X(t)) C(t− a)H(a − achar)

Carboplatin Infusion time  = TiTiTi



Model Validation!

ABT-737 
only

Control

ABT-737+Carboplatin

Carboplatin 
only

Data: Witham et al. (2007)
Clinical Cancer Research 13: 7191-7198



Optimal Dosing!

Combination Indices calculated at an 
unaffected fraction of 1/3 



Optimal Scheduling!



Optimal Scheduling!



Optimal Scheduling!



Summary of In Vivo Modeling!

•  Our model can help identify those parameters that have a crucial 
bearing on the predicted outcome of such novel therapeutic strategies

•  It can be used to investigate non-obvious treatment strategies 

•  Potential to reduce ‘bench"
to bedside’ time, as it can"
predict optimal dose "
combinations and relative "
schedules

•  Save lab animals



A Clinical Application: 
Modeling the Emergence of 

Carboplatin Resistance!



2 Pathways to Resistance!

•  Active Pathway: Mutations arise due to DNA-mismatch repair

Sensitive
Cells

Resistant
Cells

dN

dt
= f(N,M,R)N − α(t)N + (1− p)(1− p)(1− p)M(t, a = ar)

dR

dt
= f(N,M,R)R + pppM(t, a = ar)



In Vivo Predictions - Active !

Carb = 0 mg/kg Carb = 30 Carb = 90

Carb = 150 Carb = 300 Carb = 600

Carb = 620 Carb = 23 
ABT = 100

Carb = 23 
ABT = 100
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In Vivo Predictions - Active !

Carb = 0 mg/kg Carb = 30 Carb = 90

Carb = 150 Carb = 300 Carb = 600

Carb = 620 Carb = 23 
(infusion) 
ABT = 100

Carb = 23 (bolus) 
ABT = 100



2 Pathways to Resistance!

•  Passive Pathway: Mutations arise spontaneously during proliferation

Sensitive
Cells

Resistant
Cells

dN

dt
= f(N,M,R)N − α(t)N + M(t, a = ar) − ppp f(N,M,R)N + ppp f(N,M,R)R

dR

dt
= f(N,M,R)R + ppp f(N,M,R)N − ppp f(N,M,R)R



0 150 300
0

6

12

 

 

0 150 300
0

6

12

0 150 300
0

6

12

0 150 300
0

6

12

C
el

l n
um

be
r, 

in
 m

illi
on

s

0 150 300
0

6

12

0 150 300
0

6

12

0 150 300
0

6

12

0 150 300
0

6

12

Time, in days
0 150 300

0

6

12

 Sensitive
 Resistant
 Total

A B C

FED

G H I

In Vivo Predictions - Passive !

Carb = 0 mg/kg Carb = 30 Carb = 90

Carb = 150 Carb = 300 Carb = 600
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Summary of Clinical Application!

•  Highlights the need for combination therapy, to avoid resistance 
emergence

•  Can be used to guide clinical oncologist in making treatment 
decisions, especially when calibrated versus ex vivo assays

•  Can aid in drug discovery as it can distinguish between a number of 
types of mutation leading to carboplatin resistance



Future Directions!

•  A stochastic framework, to allow for the incorporation of a large 
number of cell phenotypes

•  Distributed delays to model the recovery of arrested cells

•  Include paclitaxel, and investigate combination therapy with all 3 drugs



Thank you!!
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