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Cancer as an Evolutionary Process

Variation amongst cells can arise through mutations and other
(epi)genetic alterations

Variation can confer heritable changes in cell fitness

This evolutionary process leads to tumor diversity (seen in
sequencing studies, e.g. Ding et al Nature 2012).

Diversity:

Correlates with disease aggressiveness
(e.g Barrett’s esophagus, Maley et al
2004)

Tied to emergence and existence of
drug-resistant populations, tumor
evolvability, etc.



Evolutionary model of tumorigenesis

Outline

Investigations of tumor diversity in a branching process model

Application to imatinib-resistance in Chronic Myeloid Leukemia

Application to erlotinib-resistance in NSCLC



Evolutionary model of tumorigenesis

Branching model of diversity in tumor growth

Model tumor cell population as a binary branching process. Initially,
cells (type 0) give birth at rate a0 and die at rate b0.

Define λ0 = a0 − b0 > 0, Z0(t) be the number of type-0 cells at time t
and suppose Z0(0) = 1.



Evolutionary model of tumorigenesis

Branching model of diversity in tumor growth

Type-0 cells mutate at rate u1, creating type-1 cells.

Zi (t) ≡ type-i cells that have exactly i mutations at time t . Type-i cells
mutate at rate ui+1, creating type-(i + 1) cells.

Mutations confer a random additive change ν to the birth rate.

ν has density g(·) on [0,b]. b is the largest possible advance

-> investigate diversity properties of Z1, results generalizable to Zk .
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Intra-tumor diversity generated by model
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In this simulation, λ0 = 0.1,a0 = 0.2, ν ∼ U([0,0.05]),u = 0.001.
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How fast does the Z1(t) population grow?

Theorem

Let p ≡ b/λ0. Then

t1+pe−(λ0+b)tZ1(t)⇒ V1.

where V1 has Laplace transform

exp
(
−u1c1(λ0,b)θλ0/(λ0+b)

)
and c1(λ0,b) depends on g(·) only at b.

The mean EZ1 ∼ u1g(b)
bt e(λ0+b)t , so Z1(t) << EZ1(t), i.e. the

population grows slower than its mean.

Limit V1 depends on g(·) through endpoint b only.
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Point process representation of V1

Theorem

V1 is the sum of the points X1 > X2 > . . . in Λ, where Λ is a Poisson process
on (0,∞) with mean measure µ(z,∞) = A1(λ0, b)u1z−λ0/(λ0+b), and
A1(λ0, b) is a constant.

Connection to stable laws. The sum of points in V1 is close to a random
walk with stable increments P(Yi > x) ∼ cx−α where 0 < α < 1.
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A diversity measure: Shannon Index

Let pi be the proportional abundance of clone i in a population.

(Shannon Index) Q ≡ −
N∑

i=1

pi log pi

Point process V1 =
∑∞

i=1 Xi , and X1 ≥ X2 ≥ X3.... Let pi ≡ Xi/V1.

(p1,p2, ...) ∼ PD(α,0) (Poisson-Dirichlet)

Pitman and Yor 1997, Perman et al 1992

E [Q] = E

[
−
∞∑
i=1

pi log pi

]
= − 1

Γ(α)Γ(1− α)

∫ 1

0
log (u)u−α(1− u)α−1du

=
∞∑

n=1

(n + α− 1)(n + α− 1) · · · (α)

n!n
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Simpson’s Index: a measure of diversity

Define Simpson’s Index (the probability two randomly chosen
individuals are from the same family) for the point process Λ by

R1 =

∑∞
i=1 X 2

i

V 2
1

Using the structure of the point process limit and results on
self-normalized sums (Fuchs et al 2001), we obtain a simple result:

Theorem (Mean Simpson’s Index)

ER1 = 1− α where α = λ0/λ1.
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Comparing diversity measures in Z1 population
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How dominant is the biggest clone?

Let θn ≡ X1/Sn be the contribution of the largest clone to the
sum of the first n largest clones.

θ−1
n ⇒W and E [W ] = 1

1−α and var(W ) = 2
(1−α)2(2−α)

Figure: Convergence of E [θ−1
n ] (dashed) to limit 1

1−α (solid)
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Summary

Growth rate of EZk is greater than growth rate of Zk .
Asymptotic intra-wave diversity is determined by
α = λ0/(λ0 + b), small values of α imply small
heterogeneity:

Low value of α implies that Simpsons is near 1, i.e., two
randomly sampled mutants from wave 1 are likely to be
descended from the same mutant, and Shannon Index is
near zero (low diversity)
If α is small, this implies that the largest clone makes up a
large fraction of the total population.



Resistance to targeted anti-cancer therapies

Part II:
Resistance to targeted anti-cancer therapies



Resistance to targeted anti-cancer therapies

Targeted therapies and resistance

Targeted therapies: block growth/spread of cancer by
interfering with specific molecules (aka molecular ‘targets’)
involved in tumor growth and progression.

However, despite clinical successes targeted therapies are
vulnerable to the evolution of resistance..

Can we use evolutionary modeling to 1) predict the emergence
and characteristics of resistant cell populations prior to
treatment? and 2) prevent or delay the emergence of resistance
by altering selective pressures (aka treatment schedules)?
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Chronic Myeloid Leukemia (CML)

Imatinib, an oral BCR-ABL tyrosine kinase inhibitor (TKI), can induce
remission in a large percentage of CML patients.
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Application to Chronic Myeloid Leukemia (CML)

Many point mutations confer resistance to imatinib. Dasatinib and
nilotinib overcome some imatinib-resistant mutations.

Limitations on testing sensitivity make it difficult to detect
low-frequency resistant populations existing at the start of treatment.

Would like to characterize pre-existing resistant populations (e.g.
extent, diversity) in order to determine effective first-line treatment
protocols.
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An Evolutionary Model of Resistance

Sensitive CML stem cell pop. at time t : Z0(t) = V0eλ0t . V0 is
exponential random variable with mean a0/λ0.

Resistant stem cells created with probability u each time a
sensitive cell divides. Death rate b0, birth rate a0 + X .

Values of X have equal probability and correspond to growth
rates of each of the 11 most common resistant types. (Given on
next slide)

Focus on Wave-1 of mutants (Z1) since parameters indicate small
likelihood of Z2 arising before detection.
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Growth Rates of Resistant Mutants in CML

In vivo growth rates adapted from in vitro measurements of sensitive
cells and 11 resistant types (B. Skaggs, C. Sawyers)

Cell Type Birth Rate Resistant to
T315I 0.0088 all
E255K 0.0085 imatinib
Y253F 0.0082 imatinib
p210 0.008 **

E255V 0.0078 imatinib
V299L 0.0074 dasatinib
Y253H 0.0074 imatinib
M351T 0.0072 imatinib
F317L 0.0071 imatinib, dasatinib
T315A 0.0070 dasatinib
F317V 0.0067 dasatinib
L248R 0.0061 imatinib, dasatinib

T315I: pan-resistant
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Probability of resistance at time of diagnosis

Time of diagnosis τM= when population reaches size M. Normal
number of leukemic stem cells at diagnosis M ≈ 105 (Holyoake et al
1999).

Probability of each mutant existing at diagnosis is roughly 1.2%.

However, clone size distribution may very between mutants.
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Number of resistant types at the time of diagnosis
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At normal detection levels, approx 12-13% of patients have at least
one type of pre-existing resistance.

Later detection leads to a more diverse resistant population, with 2-3
distinct types possible.
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Evaluating benefits of combination therapy

imatinib dasatinib imat+dasat imat+dasat+nilot
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Benefits of combination therapy over monotherapy with imatinib
significantly greater for patients with late detection.
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Non-small cell lung cancer (NSCLC)

Specific mutations in the Epidermal Growth Factor Receptor (EGFR)
associated with sensitivity to targeted drugs such as erlotinib and
gefitinib (tyrosine kinase inhibitors).

Despite initial response to therapy, 100% of patients develop
resistance (usually within ∼ 10 months).

Resistance is associated (in approximately 50% of patients) with a
single point mutation (T790M) within EGFR. (Pao et al, 2006)
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Evolutionary model of resistance during treatment
schedules

Sensitive (Z0(t)) and resistant (Z1(t))
cells are binary branching processes.
Initial pop can be mixture of sensitive
and resistant cells.

Resistant cells created with
probability u each time a sensitive
cell divides (only one resistant type -
T790M)

Birth/death rates of each cell type
time-dependent (based on current
drug concentration).

Experimental data used to determine
relationship between drug
concentration and growth kinetics.
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Characterizing model parameters

Isogenic sensitive/resistant pair of NSCLC lines developed with and
w/o T790M mutation (by W. Pao, J. Chmielecki)

Figure: Growth and death rates of sensitive (PC-9) and resistant
(PC-9/ER) cells vs. erlotinib concentration.
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Model testing and validation
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Model testing and validation
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Optimized treatment schedule that delays resistance

Current FDA approved schedule:
continuous daily dose eliciting 3uM Cmax
concentration in plasma.

Validate model, evaluate a range of
possible dosing strategies and search for
strategies that maximally delay resistance.

We identify an alternate tolerated
schedule that should delay resistance:

Oral intake eliciting 20uM pulse 1/wk (or
more potent inhibitor)+1 uM/day schedule.
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Validation in cell lines

Hypothesis: High dose pulse (BIBW-2992) 1 day/wk + Very Low dose
Erlotinib 6 days/wk will result in longer time to develop resistance
than the currently-used continuous dosing strategy.



Resistance to targeted anti-cancer therapies Preexisting resistance to kinase inhibitors in CML

Effects of pharmacokinetic variability on resistance

Figure: PK trial data: Hamilton et al, CCR 2007
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Effects of non-compliance on resistance

Figure: Effects of missed and makeup doses
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Summary

Branching model of tumorigenesis with random mutational
fitness effects drawn from continuous distribution.

Asymptotic diversity in resistant population is determined by
α = λ0/(λ0 + b), small values of α imply small heterogeneity.
(results also obtained for later waves, inter-wave heterogeneity)

Applications to CML and NSCLC may provide useful information
for better understanding of inter-patient variability in response,
and the effects of dose modification and non-compliance on
development of drug resistance.
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