Optimal Allocations of deductibles and policy limits with generalized dependence structures

Wei Wei

Department of Statistics and Actuarial Science University of Waterloo, Waterloo

2nd WIM, Feb. 3, 2012

Joint work with Professor Jun Cai.

Introduction

Dependence Structures Properties of UOAI/CUOAI and SAI Applications in Optimal Allocation Problems Conclusion and Future Work

- Introduce the motivation and background.
- Define new dependence structures.
- Study the properties of new dependence structures.
- Application in optimal allocation problems.

Introduction

Dependence Structures Properties of UOAI/CUOAI and SAI Applications in Optimal Allocation Problems Conclusion and Future Work

Motivations

- Continuation of optimal reinsurance problem.
 - Classical optimal reinsurance problem.

 $X \wedge d \leq_{cx} I(X).$

• Multivariate case with dependent risks. Suppose the risks $X_1, X_2, ..., X_n$ are PDS. Then, $\sum_{n=1}^{n} X_n A_n A_n = \sum_{n=1}^{n} L(X)$

$$\sum_{i=1}^{m} X_i \wedge d_i \leq_{cx} \sum_{i=1}^{m} I_i(X_i).$$

- Difficulties in identifying the parameters of the optimal form; $\inf_{\vec{d}} \mathbb{E} \left[u(\sum_{i=1}^{n} X_i \wedge d_i) \right].$
- Alternative approach: consider optimal allocation problem.

Introduction

Dependence Structures Properties of UOAI/CUOAI and SAI Applications in Optimal Allocation Problems Conclusion and Future Work

Literature Review

- Kijima et al (1996): Optimal weights between different assets.
 sup_k 𝔼 [u(kX + (1 − k)Y)].
- Cheung (2007): Optimal deductibles and policy limits.

 $\inf_{\vec{d}} \mathbb{E} \left[u(\sum_{i=1}^{n} X_i \wedge d_i) \right], \text{ or } \inf_{\vec{d}} \mathbb{E} \left[u(\sum_{i=1}^{n} (X_i - d_i)_+) \right].$

• Zhuang et al (2008): incorporated the discounted factor.

$$\inf_{\vec{d}} \mathbb{E}\left[u(\sum_{i=1}^{n} X_i \wedge d_i \times e^{-\delta T_i})\right], \text{ or }$$

$$\inf_{\vec{d}} \mathbb{E} \left[u(\sum_{i=1}^n (X_i - d_i)_+ \times e^{-\delta T_i}) \right].$$

- Limitation and Improvement.
 - Only comonotonicity and independence have been studied.
 - Generalize dependence structure to unify the existing models.

Stochastic Orders

Ordinary Stochastic Orders

- $X \leq_{st} Y$ if and only if $\overline{F}_X(x) \leq \overline{F}_Y(x)$ for all $x \in \mathbb{R}$;
- $X \leq_{hr} Y$ if and only if $\overline{F}_Y(x)\overline{F}_X(y) \leq \overline{F}_Y(y)\overline{F}_X(x), \forall x \leq y;$
- $X \leq_{lr} Y$ if and only if $f_Y(x)f_X(y) \leq f_Y(y)f_X(x), \forall x \leq y$.

Bivariate Stochastic Orders

イロン イ部ン イヨン イヨン 三日

Remarks

• Ordinary orders and bivariate orders do not imply each other. For example,

 $X \leq_{hr} Y \Rightarrow X \leq_{hr:j} Y, \qquad X \leq_{hr:j} Y \Rightarrow X \leq_{hr} Y.$

- Bivariate orders involve dependence, ordinary orders don't. Define through joint d.f. vs through marginal d.f.
- Inspiration to generalize the bivariate stochastic orders. Integrate the inequality describing joint hazard rate order,

$$\int_x^y \frac{\partial}{\partial s} \bar{F}(s,y) \leq \int_x^y \frac{\partial}{\partial s} \bar{F}(y,s) \Longrightarrow \bar{F}(y,x) \leq \bar{F}(x,y), \forall x \leq y.$$

Arrangement Increasing Function

Arrangement Order

Let \vec{x} and \vec{y} be two vectors. We say $\vec{x} \leq_a \vec{y}$, if \vec{x} can be obtained from \vec{y} through successive pairwise interchanges of its components, with each interchange resulting in a decreasing order of the two interchanged component. For example, we say $(3,2,1) \leq_a (1,3,2)$ since $(1,3,2) \rightarrow (3,1,2) \rightarrow (3,2,1)$. Also, $(y,x) \leq_a (x,y)$ if $x \leq y$.

Arrangement Increasing Function

Definition: Multivariate function $f(\vec{x})$ is said to be arrangement increasing (AI), if $\vec{x} \leq_a \vec{y}$ implies $f(\vec{x}) \leq f(\vec{y})$. **Example:** $f(x_1, x_2, x_2) = a_1x_1 + a_2x_2 + a_3x_3$, with $0 \leq a_1 \leq a_2 \leq a_3$.

Generalization of Bivariate Stochastic Orders

Definition - Upper Orthant Arrangement Increasing (UOAI)

Random vector \vec{X} is said to be upper orthant arrangement increasing (UOAI), if the survival function $\overline{F}(x_1, \dots, x_n)$ is arrangement increasing.

 \vec{X} is conditionally upper orthant arrangement increasing (CUOAI), if $(X_i, X_j) | \vec{X}_{K_{ij}} = \vec{x}_{K_{ij}}$ is UOAI for any i < j and any fixed $\vec{x}_{K_{ij}} \in S(\vec{X}_{K_{ij}})$, with $K_{ij} = \{1, 2, \cdots, n\}/\{i, j\}$.

Definition - Stochastic Arrangement Increasing (SAI)

Assume \vec{X} has joint density function $f(\vec{x})$. \vec{X} is said to be stochastically arrangement increasing (SAI) if $f(\vec{x})$ is arrangement increasing.

Equivalent Characterization of SAI

Definition - Partially Arrangement Increasing

Function $f : \mathbb{R}^n \to \mathbb{R}$ is called partially arrangement increasing (PAI), if there exists $K \subseteq \{1, \dots, n\}$ such that, for any fixed $\vec{x}_{\vec{K}} \in \mathbb{R}^{n-|K|}, g(\vec{x}_K) \equiv f(\vec{x}_K, \vec{x}_{\vec{K}}) : \mathbb{R}^{|K|} \to \mathbb{R}$ is arrangement increasing. In this case, f is also referred as K-PAI. Obviously, if f is AI, then f is K-PAI for any index set $K \subseteq \{1, \dots, n\}$.

Equivalent Definition of SAI

Random vector $\vec{X} = (X_1, \dots, X_n)$ is called stochastically arrangement increasing (SAI), if for any K-PAI function g such that the following expectations exist, it always holds that $\mathbb{E}[g(\vec{X})] \geq \mathbb{E}[g(\pi_{ij}(\vec{X}))]$ for any $i < j \in K$.

Properties of UOAI/CUOAI

Preliminaries

- If \vec{X} is CUOAI, then \vec{X} is UOAI.
- If \vec{X} are mutually independent, then \vec{X} is UOAI if and only if $X_i \leq_{hr} X_{i+1}$ for all $1 \leq i \leq n-1$.
- If \vec{X} are comonotonic, then \vec{X} is UOAI if and only if $X_i \leq_{st} X_{i+1}$ for all $1 \leq i \leq n-1$.

Upper Orthant Comparison

Assume
$$\vec{X}$$
 is UOAI and $X_i \geq 0$. Then
 $(X_j \wedge x_i, \vec{X}_{K_{ij}}) \times \mathbb{I}\{X_i > x_j\} \leq_{uo} (X_i \wedge x_i, \vec{X}_{K_{ij}}) \times \mathbb{I}\{X_j > x_j\}$

Construction of CUOAI Random Vector

Proposition - Copula and CUOAI

Assume $\vec{X} = (X_1, \dots, X_n)$ with positive joint density is linked by Archimedean survival copula: $C(u_1, \dots, u_n) = \Psi^{-1} (\sum_{k=1}^n \Psi(u_k))$, with $X_i \leq_{hr} X_{i+1}$ for $i = 1, \dots, n-1$. If $\Psi(e^t)$ is convex in $t \in (-\infty, 0]$, then \vec{X} is CUOAI.

Examples

- Gumbel copula: Ψ(x) = (-log x)^α with α ≥ 1. Independent and comonotonic copulas are special Gumbel copulas with α = 1 and α = ∞ respectively.
- Clayton copula: $\Psi(x) = x^{-\theta} 1$ with $\theta > 0$.

イロト イポト イヨト イヨト

3

Properties of SAI

Preliminaries

- If \vec{X} is SAI, then \vec{X} is CUOAI and thus UOAI.
- Assume X

 = (X₁, · · · , X_n) is mutually independent. Then X
 is SAI if and only if X_i ≤ lr X_{i+1} for all i = 1, · · · , n − 1.
- Assume X

 = (X₁, · · · , X_n) is comonotonic. Then X
 is SAI if and only if X_i ≤_{st} X_{i+1} for all i = 1, · · · , n − 1.

Example - Bivariate Normal Distribution

Suppose $(X, Y) \sim BVN(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$ with $\rho \ge 0$. Then (X, Y) is SAI if

• $\mu_1,\mu_2\geq 0$ and $\mu_2/\mu_1\geq \sigma_1^2/\sigma_2^2\geq 1;$ or

•
$$\mu_2 \ge \mu_1$$
 and $\sigma_1^2 = \sigma_2^2$.

Model Formulation

- Original Risks are modeled as $X_1, X_2, ..., X_n$.
- Strategy: policy limit or deductible. Retained risk is

$$I(\vec{d}) = \sum_{i=1}^{n} X_i \wedge d_i, \text{ or } R(\vec{d}) = \sum_{i=1}^{n} (X_i - d_i)_+.$$

• Target: $\inf_{\vec{d}} \mathbb{E}[u(I(\vec{d}))]$ with $u \in \mathcal{U}_1($ or $\mathcal{U}_2,$ or $\mathcal{U}_3)$ where

$$\begin{aligned} \mathcal{U}_1 &= \{u : u(x) \text{ is increasing}\}, \mathcal{U}_2 = \{u : u(x) \text{ is increasing convex}\}, \\ \mathcal{U}_3 &= \{u : u(x) = x^n, n \in \mathbb{N} \text{ or } e^{\gamma x}, \gamma > 0\}. \end{aligned}$$

Assumptions: comonotonicity, independence vs UOAI/CUOAI.

Statement of the optimization problem

$$\inf_{\sum \vec{d}=l} \mathbb{E}\left[u\left(\sum \vec{X} \wedge \vec{d}\right)\right], \text{ for any } u \in \mathcal{U}_3; \tag{1}$$

$$\inf_{\sum \vec{d}=I} \mathbb{E}\left[u\left(\sum \vec{X} \wedge \vec{d}\right)\right], \text{ for any } \in \mathcal{U}_2; \tag{2}$$

$$\inf_{\sum \vec{d}=l} \mathbb{E}\left[u\left(\sum (\vec{X}-\vec{d})_+\right)\right], \text{ for any } u \in \mathcal{U}_2.$$
(3)

Denote the optimal solution as $\vec{d}^* = (d_1^*, ..., d_n^*)$.

・ロット (四) (日) (日)

3

Models with Discounted Factor

Let δ be the discounted factor and $\vec{S} = (S_1, ..., S_2)$ be the occurrence times of claims. Suppose \vec{S} is independent of \vec{X} .

- Total discounted risk under different policy: With limit: $I_{\vec{X},\vec{S}}(\vec{d}) = \sum \left((\vec{X} \land \vec{d}) \star \exp\{-\delta \vec{S}\} \right)$ With deductible: $R_{\vec{X},\vec{S}}(\vec{d}) = \sum \left((\vec{X} - \vec{d})_+ \star \exp\{-\delta \vec{S}\} \right)$ where $\vec{x} \star \vec{y} = (x_1 y_1, \cdots, x_n y_n)$.
- Optimization Problems:

$$\inf_{\substack{\sum \vec{d}=l\\ \sum \vec{d}=l}} \mathbb{E}\left[u(I_{\vec{X},\vec{S}}(\vec{d}))\right] , \text{ for any } u \in \mathcal{U}_2, \qquad (4)$$
$$\inf_{\substack{\sum \vec{d}=l}} \mathbb{E}\left[u(R_{\vec{X},\vec{S}}(\vec{d}))\right] , \text{ for any } u \in \mathcal{U}_2. \qquad (5)$$

・ロン ・回と ・ヨン・

Main Results (1)

Theorem - Comparison of m.g.f. and Moments under UOAI

Assume \vec{X} is UOAI and nonnegative. Then for any $i \leq j$ such that $d_i \geq d_j$, it holds that $\mathbb{E}\left[u\left(\sum \vec{X} \wedge \vec{d}\right)\right] \leq \mathbb{E}\left[u\left(\sum \vec{X} \wedge \pi_{ij}(\vec{d})\right)\right]$, for any $u \in \mathcal{U}_3$.

Theorem - Comparison of Convex Utility under CUOAI

Assume
$$\vec{X}$$
 is CUOAI. Then for any $i \leq j$ such that $d_i \geq d_j$, we have $\mathbb{E}\left[u\left(\sum \vec{X} \wedge \vec{d}\right)\right] \leq \mathbb{E}\left[u\left(\sum \vec{X} \wedge \pi_{ij}(\vec{d})\right)\right]$, for any $u \in \mathcal{U}_2$.

Interpretations

The above two Theorems means that the solutions to problems (1) and (2), denoted as $(d_1^*, ..., d_n^*)$, should satisfy $d_1^* \ge ... \ge d_n^*$.

Main Results (2)

Theorem - Solution to (4)

Assume \vec{X} is CUOAI and nonnegative, $-\vec{S}$ is SAI, then the solution to (4) satisfies: $d_1^* \ge \cdots \ge d_n^*$.

Theorem - Solution to (5)

Assume \vec{X} is SAI and nonnegative, $-\vec{S}$ is SAI, then the solution to (5) satisfies: $d_1^* \leq \cdots \leq d_n^*$.

Summary

Under limit policy, the limits should be arranged in a descending order; while under deductible policy, deductibles should be arranged in an ascending order.

Conclusion and Future Work

Conclusion

- Generalize the dependence structures.
- Restudy the optimal allocation problems.

Future Work

- Construct more general examples of SAI.
- Examine the relation between UOAI and PDS, to make the study consistent.
- Systematically develop the properties of UOAI/CUOAI and SAI, explore more applications.

Reference

- Cheung, K.C. (2007). Optimal allocation of policy limits and deductibles. *Insurance: Mathematics and Economics.* **41**: 291-382.
- Shanthikumar, J. George and Yao, David D. (1991) Bivariate Characterization of Some Stochastic Order. *Advances in Applied Probability.* **93**(3): 642-659.
- Zhuang, Weiwei; Chen, Zijin and Hu, Taizhong. (2009) Optimal allocation of policy limits and deductibles under distortion measures. *Insurance: Mathematics and Economics.* **44**: 409-414.
- Righter, Rhonda and Shanthikumar, J. George. (1992) Extension of the Bivariate Characterization for Stochastic Orders. *Advances in Applied Probability.* **24**(2):506-508.
- Krieger, Abba M. and Rosenbaum, Paul R. (1994) A Stochastic Comparison for Arrangement Increasing functions. *Combintorics, Probability adn Computing.* **3**: 345-348.

Thank You!

・ロン ・回と ・ヨン ・ヨン

æ