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Background

Determine the behaviour of fair management fees for a class of

Guaranteed Withdrawal Benefit insurance contracts

eg.,

1 million paid back over 3
years

semi-annual payments of
$166,666.67

Funds invested in equity /
bond portfolio

Funds (if any) returned to
investor at year 5

Fund Value

Time (years)
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Background

» Attraction for Investors:

>

>

v

v

v

Provides investor with equity participation
Provides guaranteed income stream
Drawndown protection

Allows investor to tune portfolio through time

> be aggressive now; be conservative later

Excess funds returned to investor
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Background

» Insurer's embedded risks

» Income draws the
fund below zero

» Interest rates

Fund Value

» Volatility
» Mortality
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Background

» Several authors studied similar contracts. Limited list:

Milevsky & Salisbury (2006); Dai, Kwok, & Zong (2008);
Chen, Vetzal, & Forsyth (2008); Shah & Bertsimas (2008);
Kling, Ruez & RuB (2010); Forsyth (2011)

> What distinguishes this work
» Using a time varying mixed-fund to back the sub-account

» Allow for both stochastic interest rates and volatility
» Using dimensional reduction techniques to simplify the PDEs
» Applying operator splitting for numerical solutions

» Derive analytical approximation for deterministic volatility
and interest rates

5/28



Main Findings

> Stylized results

» Stochastic Vol

> Increasing vol-vol does not always increase mgt. fees

> Reducing leverage effect tends to decrease mgt. fees

» Stochastic Interest Rates
> Increasing IR vol decreases mgt. fee

> Increasing IR mean-reversion rate has little effect
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Underlying Assumptions

» The backing assets:
» Equity index value S; satisfies:

d
55‘ = redt + /vi dW; Equity Value,
t
dve = & dt + B dW?, Stochastic Variance,
dry = 0 dt + o th3 Stochastic Interest Rates,
g
c
e
s
B

2000
1500

1000

500

Term (T) o Strike (K)

(1a)

(1b)
(1c)
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Underlying Assumptions

» The backing assets:
» Default-free bond prices then satisfy the SDE:

dP:(T) P 3
P(T) — redt + o (T) dW?,

where, of (T) = o(t, )0, In P(t, rt; T)

» Fixed-Income index P; satisfies:

dpe _ re dt + ¢e dW2,
P:

where ¢; = (X7 i oe(Ti) P(t, re; T)) ) (00, 0i P(t, re;

Bond Yield

.
53

Q
=

Msaturit; (yeafs)

)

(2)

3)
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Underlying Assumptions

» The backing assets:
» Tracking index value /; satisfies:
dlt dSt dPt

o s, TUmed R

= rp dt + we Ve AW 4 (1 — we) 6 dWS

where w; are deterministic weights:

Equity Weight (mt)
°
&

2 3 4 5
Time (years)

(4)

Allows investor to be aggressive early on and conservative later on.
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Underlying Assumptions

» The sub-account or fund value F; then satisfies:

dFt: (#) Ft—CKFtdt—th
t
=(r —a) Fedt — dJ +wi /i FedW) + (1 —wi) s Fr dW? . (5)
Here, J: = >, (T < t):

10°

Income Process (3)

2 3
Time (years)

» “Four” sources of risk:

v

Equity index returns through W}
Bond index returns through W3
Volatility through v;

Interest rates through r;

v vy
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Underlying Assumptions

Proposition
Explicit Fund Value. The unique solution to the SDE (5) is given by
ST (ry—a) du T — [§(ry—a)du -1
FT = elo V¥ « nr Fo —/ e SO (775) dJs y (6)
0

where 1 is the following Dolean-Dades exponential
t t
nt:S( wu\/deWUIJr/(lfwu)gude), (M
0 0

This simplifies when the equity index is a GBM and interest rates are
constant/deterministic.

[ Milevsky & Salisbury (2006) have the constant ir and vol case].
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Valuation

» The cash-flows provided by the product have value

Vo= 3" 2w Po(Ti) +E® [ " (Fr),[ 70 . (®)
k=1

Option portion — denote by O
Fixed-income portion

» Fixed-Income portion is easy... bonds calibrated to market

» Option portion is hard... need an efficient way to deal with
path-dependency
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Valuation

> Use “replicating portfolio” to reduce dimension. Note,

Fo— [7 Y. dJs
0o =E? |:e_f°Trsds (OI;)/T> foj| .

where Y, = e~ fot(rs—oz)ds(nt)—l

» Introduce a process X; such that
dXt:qtdYt, )(():I:()—JT7 and qt:Jt—JT.

By integration by parts, it is not difficult to see that
T
XT:F()—/ Ytht7
0

» X7 replicates the the numerator in the expectation
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Valuation

» Next, let Z; = X;/ Y, then
Oo = EQ [6‘7 fDT rs ds (ZT)Jr‘ 9\0:|
Moreover,

dZ; = (Z: — qt) (re — o) dt + (Z: — q¢) [Wt\/VT thl +(1—wi)s dWS] )
Zy = Fo— Jr,

» Looks like we've only changed Ft into Z7! True, but...

» Z; as a process has no jump integrators

» Z; contains ALL of the “info” in both Y; and fot Y, dJs
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Valuation

» Use forward-neutral measure Q7 to remove discount factor

where

0o = Po(T) E¥ [(Z7)+|70] -

Expectation of interest

dZe = (Zt — at) [(r — @)+ pr3we VoL (T) + (1= w) s o (T)] ae
(2 — ar) [wt Ve dW} + (1 — wt) ot de] ,

dve = (&t + p23 Bt Uf(T)) dt + Bt de s

dre = (6¢ + or oF (T)) dt + o1 dW° .

(9)

(10a)

(10b)
(10c)
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Valuation

Proposition

Valuation PDE. The process g; = E2’ [(Z7)+|.Z¢] is a martingale and there
exists a function G(t,z,v,r) : RT" x R x RT x R — R such that

gt = G(t, Z¢, vt, rt). Moreover, the function G(-) satisfies the PDE

atG + (ﬁz,t + ﬁvyt + ﬁyyt + ﬁt) G = 07 (11)
G(T,z,v,r) = max(z0),

where the various pieces of the infinitesimal generators are defined as follows:

Lop=(z—a) [(r— o)+ pr3zwe Vvl (6. T) + (1 = wi)s(t, ) oP (e, T)] 0

+ 3@ —a) [wfv + (1w P60 + pr3we(l — we) Vi s(t )] 02z, o)
Loi= (Q(t, 1)+ o(t, e (t, T)) R L (12b)
L= (&) + 23 (e, V) o (6,1 T)) By + $87(5, V)0, and (12¢)

Lt = px B(t,v)o(t,r) O + (2 — ar) (P12 we VV + pa3 (1 — we) s(t, 7)) B(t, v) Duz (124)

+ (2= a0) (pr3we V7 + (1 — we) s(t, 1)) o(t, 1) Oy -

16
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Numerical Scheme

> With deterministic interest rates and volatility PDE reduces to

{ G+ (z—qe)(r(t) — ) 0:G + 2t v(t)wi (z — q:)*0=.G = 0,
G(T,z) = (2)+,

solve using standard implicit-explicit scheme.

x10°

T e towvaie o
e I S " r 10% 20% 30% 40% 50%
8 1% 43.4 1505 267.1 3775 4775
8 2% 123 72.4 148.2 2275 301.0
g 3% 2.9 37.3 90.9 1499 209.2
4 4% 05 19.8 57.4 103.3 150.9
2 \ 5% 0.0 10.2 37.0 73.1 112.0
¢ 10 20 30 20 o 50
> T =20 years, Ffp = 10°%, & = 30%, r = 3% and v = é X 0.05 X Fg paid monthly for the first 15 years.
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Numerical Scheme

» For the general case, we use operator splitting

» Treat cross-partial-derivative terms L; explicitly

» Treat partial-derivatives in a fixed direction (LZJ, Lo & EM)
implicitly/explicitly

Ve = (L= 6t(L"+L0+L"+L")G",  fully explicit

(1 — Lot LQ’I) Vi =V —LotllGn, implicit along z

( — 16t LC_I) Vi =W —16tL)G", implicit along v

( — 16t Lf_l) G"l=vy— 16tLG", implicit along r
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Numerical Experiments

x 10
12 T T T T T T T T T
option value
cash flow value
10 =B o= == == == === = total value §
= = =par

Value
(2]

. . . . . . . n n X

0
0 0005 001 0015 002 0025 003 0035 0.04 0.045 0.05
Management Fee (a )

Figure: Comparison of Heston Model and Local Vol Model

19/28



Numerical Scheme

» Local volatility models often used in place of SV models

d?sf = redt +/v(t, S;) dW;
t

Volatility /variance is an explicit function of time and equity level

o o

Implied Vol @™P(T,K))

po © © o o o
Local Volatility ((t,S))

2000
1500 6
1000 4

2000
6 1500

1000

Term (T) Strike (K) time (t) Spot Price (S)

(a) Heston Model (b) Local Vol Model

» Similar valuation equations can be derived in this case
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Numerical Experiments

Heston Model

Local Volatility Model

n -0.75 -05 -0.25 0 -0.75 -0.5 -0.25 0
0.001 646 646 646 64.6 813 813 813 813
0.5 65.0 641 625 602 88.8 869 81.0 78.6
1 58.4 58.4 57.2 544 79.2 756 726 70.0
2 46.4 494 51.1 489 66.0 594 549 510

Table: Implied management fee (in bps) versus skewness and vol-vol.
The remaining model parameters are 6 = 0.22, vy =0.42%, k=1 and

r =3%.
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Numerical Experiments

Management Fee (a)

0
Correlation (p) Vol of Vol 1)

() k=2,0=v =02

Management Fee (o)

0
Correlation (p) Vol of Vol 1)

(d) k=1,0=02% v =0.4°

Figure: Fair management fee for various values of vol-vol n and

correlation p under two different Heston

model parameters.
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Numerical Experiments

o_f

IRcurve x 107° 1% 2% 3% 4% 5% 6%
0.5 6.5 5.8 4.4 0.5 -6.2 -16.6 -31.3
(a) 1 68 63 59 50 34 07 27
2 6.9 6.7 6.4 6.2 5.8 5.3 4.5
0.5 46.2 445 420 364 253 7.2 -16.8
(b) 1 462 451 440 425 400 362 308
2 46.2 456 45.0 444 437 427 415
0.5 53.0 b51.0 48.7 431 314 11.8 -15.6
(©) 1 527 515 503 489 465 42.6 37.0
2 526 519 51.2 505 498 48.9 47.6

Table: Fair management fee (in basis points) versus interest rate
volatility, 0° = 0.25, Sy = $1000, p13 = —0.3, for the three yield curves.

23 /28



Analytical Approximation

» In practice, often deterministic vol which match the ATM
implied vol is used

ve = (0™ (t))> + 2t a"™(t) ;0™ (t). (14)
together with deterministic interest rates

» An accurate approximation can be applied in this case by
introducing the measure QQ

d@ —aT @ T
—~ =nq7. sothat, Og=e E Fo — Ys dJs ol
d@ 0 +
Moreover,
% =—(r—a)dt —wy\/vy d/V\Z1 — (1 — wu)su d/VVt3 .
t

» Then, approximate fOT Ys dJs in distribution as log-normal:

T ~
/ Yods L I = exp{a+ bZ}
0
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Analytical Approximation

» The constants are determined such that first two moments are
matched

a:2|nM1—%|nl\/l2 and b=+InM, —2In M,

where
N N
_ _ = Jok(r—a)du
M1 =K Zytk’yk —Ze 0 Yk and
k=1 k=1
N 2 n e )
= | (S ) | = 3o,
k=1 k=1

n t t; t
42 Z e fok(rufa) duffoj (ry—a) du+f0k ""121 vy du 5

k<j=1

ki
» Under this moment matching approximation we have

Oo ~e T RQ {(Fo — fT)+ <90}

=e T {Ro(d) - e 2" 0(d - b)}
where d = (log(Fo) — a) /b.
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Analytical Approximation

Mgt. Fee o (bp)

method 25 50 100 150 200
Model A MM 208.3 189.2 1552 1265 1023
PDE (deterministic vol) ~ 207.7 188.7 154.8 126.0 101.8
PDE (local vol) 237.0 2156 177.2 14411 1159
Model B MM 1927 173.4 139.4 110.9 87.2
PDE (deterministic vol) 1925 173.3 139.2 110.6 86.8
PDE (local vol) 231.4 209.8 170.9 1375 109.1
s
g om i
‘ ’ ! ¢l T\:&e rowowowem ° ! ¢l Ti:ﬁe rowowowm

(a) Volatility term structure for He-
ston model with: x =1, § = 0.2%,
Vo = 0.42, n = 1, P12 = —07

(b) Volatility term structure for He-
ston model with: Kk =1, 0 = v =
0.2, =1, po = —0.7.
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Conclusions

» Demonstrated how to value a class of GWBs
> Included stochastic interest rates and stochastic volatility
» Accounted for path dependency can be neatly for through
replicating portfolio
» Solved PDE using operator splitting methods
> Stylized results
» Stochastic Vol

> Increasing vol-vol does not always increase mgt. fees
> Reducing leverage effect tends to decrease mgt. fees

» Stochastic Interest Rates

> Increasing IR vol decreases mgt. fee
> Increasing IR mean-reversion rate has little effect

» Analytical approximation is reasonably accurate
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Thanks for your attention!

Sebastian Jaimungal
sebastian. jaimungal@utoronto.ca
University of Toronto, Toronto, Canada

http://www.utstat.utoronto.ca/sjaimung
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