Valuing GWBs with Stochastic Interest Rates and Stochastic Volaility

2nd Québec - Ontario Workshop on Insurance Mathematics

Sebastian Jaimungal

sebastian.jaimungal@utoronto.ca

University of Toronto, Toronto, Canada http://www.utstat.utoronto.ca/sjaimung

joint work with

Ryan Donnelly, U. Toronto &

Dmitri H. Rubisov, BMO Capital Markets

Feb 3, 2012

Determine the behaviour of **fair management fees** for a class of **Guaranteed Withdrawal Benefit** insurance contracts

- Funds invested in equity / bond portfolio
- Funds (if any) returned to investor at year 5

- Attraction for Investors:
 - Provides investor with equity participation
 - Provides guaranteed income stream
 - Drawndown protection
 - ▶ Allows investor to tune portfolio through time
 - be aggressive now; be conservative later
 - Excess funds returned to investor

- Insurer's embedded risks
 - Income draws the fund below zero
 - ► Interest rates
 - Volatility
 - ► Mortality

Several authors studied similar contracts. Limited list:

```
Milevsky & Salisbury (2006); Dai, Kwok, & Zong (2008); Chen, Vetzal, & Forsyth (2008); Shah & Bertsimas (2008); Kling, Ruez & Ruß (2010); Forsyth (2011)
```

- What distinguishes this work
 - Using a time varying mixed-fund to back the sub-account
 - Allow for both stochastic interest rates and volatility
 - Using dimensional reduction techniques to simplify the PDEs
 - Applying operator splitting for numerical solutions
 - Derive analytical approximation for deterministic volatility and interest rates

Main Findings

- Stylized results
 - Stochastic Vol
 - Increasing vol-vol does not always increase mgt. fees
 - ▶ Reducing leverage effect tends to decrease mgt. fees
 - Stochastic Interest Rates
 - ▶ Increasing IR vol decreases mgt. fee
 - ▶ Increasing IR mean-reversion rate has little effect

- ▶ The backing assets:
 - **Equity index** value S_t satisfies:

$$\frac{dS_t}{S_t} = r_t dt + \sqrt{v_t} dW_t^1,$$
 Equity Value, (1a)

$$dv_t = \xi_t dt + \beta_t dW_t^2$$
, Stochastic Variance, (1b)

$$dr_t = \theta_t dt + \sigma_t dW_t^3$$
 Stochastic Interest Rates, (1c)

- ▶ The backing assets:
 - Default-free bond prices then satisfy the SDE:

$$\frac{dP_t(T)}{P_t(T)} = r_t dt + \sigma_t^P(T) dW_t^3, \qquad (2)$$

where, $\sigma_t^P(T) = \sigma(t, r_t) \partial_r \ln P(t, r_t; T)$

► **Fixed-Income** index *P*_t satisfies:

$$\frac{dP_t}{P_t} = r_t dt + \varsigma_t dW_t^3, \tag{3}$$

where
$$\varsigma_t = \left(\sum_{i=1}^m \psi_i \, \sigma_t(T_i) \, P(t, r_t; T_i)\right) / \left(\sum_{i=1}^m \psi_i \, P(t, r_t; T_i)\right)$$

- ▶ The backing assets:
 - **Tracking index** value I_t satisfies:

$$\frac{dI_t}{I_t} = \omega_t \frac{dS_t}{S_t} + (1 - \omega_t) \frac{dP_t}{P_t}$$

$$= r_t dt + \omega_t \sqrt{v_t} dW_t^1 + (1 - \omega_t) \varsigma_t dW_t^3.$$
(4)

where ω_t are deterministic weights:

Allows investor to be aggressive early on and conservative later on.

▶ The **sub-account** or **fund value** F_t then satisfies:

$$dF_t = \left(\frac{dI_t}{I_t}\right) F_t - \alpha F_t dt - dJ_t$$

= $(r_t - \alpha) F_t dt - dJ_t + \omega_t \sqrt{v_t} F_t dW_t^1 + (1 - \omega_t) \varsigma_t F_t dW_t^3$. (5)

Here, $J_t = \sum_k \gamma_k \mathbb{I}(T_k \leq t)$:

- "Four" sources of risk:
 - Equity index returns through W_t^1
 - Bond index returns through W_t³
 - Volatility through v_t
 - Interest rates through r_t

Proposition

Explicit Fund Value. The unique solution to the SDE (5) is given by

$$F_{T} = e^{\int_{0}^{T} (r_{u} - \alpha) du} \eta_{T} \left(F_{0} - \int_{0}^{T} e^{-\int_{0}^{s} (r_{u} - \alpha) du} (\eta_{s})^{-1} dJ_{s} \right), \tag{6}$$

where η_t is the following Dolean-Dades exponential

$$\eta_t = \mathcal{E}\left(\int_0^t \omega_u \sqrt{\nu_u} \, dW_u^1 + \int_0^t (1 - \omega_u) \, \varsigma_u \, dW_u^3\right). \tag{7}$$

This simplifies when the equity index is a GBM and interest rates are constant/deterministic.

[Milevsky & Salisbury (2006) have the constant ir and vol case].

▶ The cash-flows provided by the product have value

$$V_0 = \sum_{k=1}^{n} \gamma_k P_0(T_k) + \mathbb{E}^{\mathbb{Q}} \left[e^{-\int_0^T r_s \, ds} (F_T)_+ | \mathscr{F}_0 \right]. \tag{8}$$
Fixed-income portion

Option portion – denote by \mathcal{O}

- Fixed-Income portion is easy... bonds calibrated to market
- Option portion is hard... need an efficient way to deal with path-dependency

► Use "replicating portfolio" to reduce dimension. Note,

$$\mathcal{O}_0 = \mathbb{E}^{\mathbb{Q}} \left[\left. e^{-\int_0^T r_s \, ds} \left(\frac{F_0 - \int_0^T Y_s \, dJ_s}{Y_T} \right)_{\!\scriptscriptstyle \perp} \, \right| \mathscr{F}_0 \right] \, .$$

where $Y_t = e^{-\int_0^t (r_s - \alpha) ds} (\eta_t)^{-1}$

▶ Introduce a process X_t such that

$$dX_t = q_t dY_t, \qquad X_0 = F_0 - J_T, \qquad \text{and} \qquad q_t = J_t - J_T.$$

By integration by parts, it is not difficult to see that

$$X_T = F_0 - \int_0^T Y_t \, dJ_t \,,$$

 \triangleright X_T replicates the the numerator in the expectation

Next, let $Z_t = X_t/Y_t$, then

$$\mathcal{O}_{0} = \mathbb{E}^{\mathbb{Q}}\left[\left.e^{-\int_{0}^{T}r_{s}\,ds}\left(Z_{T}\right)_{+}\right|\mathscr{F}_{0}
ight]$$

Moreover,

$$dZ_t = \left(Z_t - q_t\right)\left(r_t - \alpha\right)dt + \left(Z_t - q_t\right)\left[\omega_t\sqrt{v_t}\ dW_t^1 + \left(1 - \omega_t\right)\varsigma_t\ dW_t^3\right],$$

$$Z_0 = F_0 - J_T,$$

- ▶ Looks like we've only changed F_T into Z_T ! True, but...
 - $ightharpoonup Z_t$ as a process has **no jump integrators**
 - ► Z_t contains ALL of the "info" in both Y_t and $\int_0^t Y_s dJ_s$

ightharpoonup Use **forward-neutral measure** \mathbb{Q}^T to remove discount factor

$$\mathcal{O}_0 = P_0(T) \underbrace{\mathbb{E}^{\mathbb{Q}^T} \left[(Z_T)_+ \middle| \mathscr{F}_0 \right]}_{\text{Expectation of interest}}.$$
 (9)

where

$$\begin{split} dZ_t &= (Z_t - q_t) \left[(r_t - \alpha) + \rho_{13} \, \omega_t \, \sqrt{v_t} \, \sigma_t^P(T) + (1 - \omega_t) \, \varsigma_t \, \sigma_t^P(T) \right] \, dt \\ &+ (Z_t - q_t) \left[\omega_t \, \sqrt{v_t} \, d\overline{W}_t^1 + (1 - \omega_t) \, \varsigma_t \, d\overline{W}_t^3 \right] \,, \end{split} \tag{10a}$$

$$dv_t = (\xi_t + \rho_{23} \beta_t \sigma_t^P(T)) dt + \beta_t d\overline{W}_t^2,$$
(10b)

$$dr_{t} = (\theta_{t} + \sigma_{t} \sigma_{t}^{P}(T)) dt + \sigma_{t} d\overline{W}_{t}^{3}.$$
(10c)

Proposition

Valuation PDE. The process $g_t = \mathbb{E}^{\mathbb{Q}^I} [(Z_T)_+ | \mathscr{F}_t]$ is a martingale and there exists a function $G(t, z, v, r) : \mathbb{R}^+ \times \mathbb{R} \times \mathbb{R}^+ \times \mathbb{R} \mapsto \mathbb{R}$ such that $g_t = G(t, Z_t, v_t, r_t)$. Moreover, the function $G(\cdot)$ satisfies the PDE

$$\begin{cases}
\partial_t G + (\mathcal{L}_{z,t} + \mathcal{L}_{v,t} + \mathcal{L}_{r,t} + \mathcal{L}_t) G = 0, \\
G(T, z, v, r) = \max(z, 0),
\end{cases} (11)$$

where the various pieces of the infinitesimal generators are defined as follows:

$$\mathcal{L}_{z,t} = (z - q_t) \left[(r - \alpha) + \rho_{13} \,\omega_t \,\sqrt{v} \,\sigma^P(t,r;T) + (1 - \omega_t) \,\varsigma(t,r) \,\sigma^P(t,r;T) \right] \,\partial_z \\ + \,\frac{1}{2} (z - q_t)^2 \left[\omega_t^2 \,v + (1 - \omega_t)^2 \,\varsigma^2(t,r) + \rho_{13} \,\omega_t (1 - \omega_t) \,\sqrt{v} \,\varsigma(t,r) \right] \,\partial_{zz} \,, \tag{12a}$$

$$\mathcal{L}_{r,t} = \left(\theta(t,r) + \sigma(t,r)\sigma^{P}(t,r;T)\right) \partial_{r} + \frac{1}{2}\sigma^{2}(t,r)\partial_{rr}, \qquad (12b)$$

$$\mathcal{L}_{v,t} = \left(\xi(t,v) + \rho_{23}\,\beta(t,v)\,\sigma^P(t,r;T)\right)\partial_v + \tfrac{1}{2}\beta^2(t,v)\partial_{vv}\,,\quad\text{and} \tag{12c}$$

$$\mathcal{L}_{t} = \rho_{23} \beta(t, v) \sigma(t, r) \partial_{rv} + (z - q_{t}) \left(\rho_{12} \omega_{t} \sqrt{v} + \rho_{23} (1 - \omega_{t}) \varsigma(t, r)\right) \beta(t, v) \partial_{vz}$$

$$+ (z - q_{t}) \left(\rho_{13} \omega_{t} \sqrt{v} + (1 - \omega_{t}) \varsigma(t, r)\right) \sigma(t, r) \partial_{rz}.$$

$$(12d)$$

Numerical Scheme

With deterministic interest rates and volatility PDE reduces to

$$\begin{cases} \partial_t G + (z - q_t)(r(t) - \alpha) \partial_z G + \frac{1}{2} v(t) \omega_t^2 (z - q_t)^2 \partial_{zz} G = 0, \\ G(T, z) = (z)_+, \end{cases}$$

solve using standard implicit-explicit scheme.

		σ							
r	10%	20%	30%	40%	50%				
1%	43.4	150.5	267.1	377.5	477.5				
2%	12.3	72.4	148.2	227.5	301.0				
3%	2.9	37.3	90.9	149.9	209.2				
4%	0.5	19.8	57.4	103.3	150.9				
5%	0.0	10.2	37.0	73.1	112.0				

T=20 years, $F_0=10^6$, $\sigma=30\%$, r=3% and $\gamma=\frac{1}{9}\times0.05\times F_0$ paid monthly for the first 15 years.

Numerical Scheme

- ▶ For the general case, we use operator splitting
 - ▶ Treat cross-partial-derivative terms \mathcal{L}_t explicitly
 - ▶ Treat partial-derivatives in a fixed direction ($\mathcal{L}_{z,t}$, $\mathcal{L}_{r,t}$, & $\mathcal{L}_{v,t}$) implicitly/explicitly

$$\begin{split} V_0^n &= \left(1 - \delta t \left(L_z^n + L_v^n + L_r^n + L^n\right)\right) G^n \,, \qquad \text{fully explicit} \\ \left(1 - \tfrac{1}{2} \, \delta t \, L_z^{n-1}\right) \, V_1^n &= V_0^n - \tfrac{1}{2} \, \delta t \, L_z^n \, G^n \,, \qquad \qquad \text{implicit along } z \\ \left(1 - \tfrac{1}{2} \, \delta t \, L_v^{n-1}\right) \, V_2^n &= V_1^n - \tfrac{1}{2} \, \delta t \, L_v^n \, G^n \,, \qquad \qquad \text{implicit along } v \\ \left(1 - \tfrac{1}{2} \, \delta t \, L_r^{n-1}\right) \, G^{n-1} &= V_2^n - \tfrac{1}{2} \, \delta t \, L_r^n \, G^n \,, \qquad \qquad \text{implicit along } r \end{split}$$

Figure: Comparison of Heston Model and Local Vol Model

Numerical Scheme

▶ Local volatility models often used in place of SV models

$$\frac{dS_t}{S_t} = r_t dt + \sqrt{v(t, S_t)} dW_t^1$$

Volatility/variance is an explicit function of time and equity level

Similar valuation equations can be derived in this case

Heston Model					Local Volatility Model			
ρ_{12}						ρ	12	
η	-0.75	-0.5	-0.25	0	-0.75	-0.5	-0.25	0
0.001	64.6	64.6	64.6	64.6	81.3	81.3	81.3	81.3
0.5	65.0	64.1	62.5	60.2	88.8	86.9	81.0	78.6
1	58.4	58.4	57.2	54.4	79.2	75.6	72.6	70.0
2	46.4	49.4	51.1	48.9	66.0	59.4	54.9	51.0

Table: Implied management fee (in *bps*) versus skewness and vol-vol. The remaining model parameters are $\theta=0.2^2$, $v_0=0.4^2$, $\kappa=1$ and r=3%.

Figure: Fair management fee for various values of vol-vol η and correlation ρ under two different Heston model parameters.

					σ^r			
IR curve	κ	10^{-5}	1%	2%	3%	4%	5%	6%
	0.5	6.5	5.8	4.4	0.5	-6.2	-16.6	-31.3
(a)	1	6.8	6.3	5.9	5.0	3.4	0.7	-2.7
	2	6.9	6.7	6.4	6.2	5.8	5.3	4.5
	0.5	46.2	44.5	42.0	36.4	25.3	7.2	-16.8
(b)	1	46.2	45.1	44.0	42.5	40.0	36.2	30.8
	2	46.2	45.6	45.0	44.4	43.7	42.7	41.5
	0.5	53.0	51.0	48.7	43.1	31.4	11.8	-15.6
(c)	1	52.7	51.5	50.3	48.9	46.5	42.6	37.0
	2	52.6	51.9	51.2	50.5	49.8	48.9	47.6

Table: Fair management fee (in basis points) versus interest rate volatility, $\sigma^S = 0.25$, $S_0 = \$1000$, $\rho_{13} = -0.3$, for the three yield curves.

Analytical Approximation

 In practice, often deterministic vol which match the ATM implied vol is used

$$v_t = (\sigma^{imp}(t))^2 + 2 t \sigma^{imp}(t) \partial_t \sigma^{imp}(t).$$
 (14)

together with deterministic interest rates

 \blacktriangleright An accurate approximation can be applied in this case by introducing the measure $\widehat{\mathbb{Q}}$

$$\frac{d\widehat{\mathbb{Q}}}{d\mathbb{Q}} = \eta_{\mathcal{T}} \,. \quad \text{so that,} \quad \mathcal{O}_0 = \mathrm{e}^{-\alpha\,T}\,\mathbb{E}^{\widehat{\mathbb{Q}}}\left[\left.\left(F_0 - \int_0^T Y_s\,dJ_s\right)_+\right|\mathscr{F}_0\right]\,,$$

Moreover,

$$\frac{dY_t}{Y_t} = -(r_t - \alpha) dt - \omega_u \sqrt{v_u} d\widehat{W}_t^1 - (1 - \omega_u) \varsigma_u d\widehat{W}_t^3.$$

▶ Then, approximate $\int_0^T Y_s dJ_s$ in distribution as log-normal:

$$\int_0^T Y_s \, dJ_s \stackrel{d}{\sim} \widetilde{\mathcal{I}}_T = \exp\{a + b \, Z\}$$

Analytical Approximation

► The constants are determined such that first two moments are matched

$$a = 2 \ln M_1 - \frac{1}{2} \ln M_2$$
 and $b = \sqrt{\ln M_2 - 2 \ln M_1}$

where

$$\begin{split} \textit{M}_1 &= \mathbb{E}^{\widehat{\mathbb{Q}}} \left[\sum_{k=1}^N Y_{t_k} \gamma_k \right] = \sum_{k=1}^N e^{-\int_0^{t_k} (r_u - \alpha) du} \, \gamma_k, \quad \text{and} \\ \textit{M}_2 &= \mathbb{E}^{\widehat{\mathbb{Q}}} \left[\left(\sum_{k=1}^N Y_{t_k} \gamma \right)^2 \right] = \sum_{k=1}^n e^{-\int_0^{t_k} \left(2(r_u - \alpha) - \omega_u^2 \, v_u \right) du} \, \gamma_k \\ &+ 2 \sum_{k < j=1}^n e^{-\int_0^{t_k} (r_u - \alpha) \, du - \int_0^{t_j} (r_u - \alpha) \, du + \int_0^{t_k} \omega_u^2 \, v_u \, du} \, \gamma_k \, \gamma_j \end{split}$$

Under this moment matching approximation we have

$$\begin{split} \mathcal{O}_0 \approx & e^{-\alpha T} \, \mathbb{E}^{\widehat{\mathbb{Q}}} \left[\left. \left(F_0 - \widetilde{\mathcal{I}}_T \right)_+ \right| \mathscr{F}_0 \right] \\ = & e^{-\alpha T} \, \left\{ F_0 \, \Phi(d) - e^{a + \frac{1}{2} b^2} \Phi(d-b) \right\} \end{split}$$
 where $d = (\log(F_0) - a) \, / b$.

Analytical Approximation

		Mgt. Fee α (bp)					
	method	25	50	100	150	200	
Model A	MM	208.3	189.2	155.2	126.5	102.3	
	PDE (deterministic vol)	207.7	188.7	154.8	126.0	101.8	
	PDE (local vol)	237.0	215.6	177.2	144.1	115.9	
Model B	MM	192.7	173.4	139.4	110.9	87.2	
	PDE (deterministic vol)	192.5	173.3	139.2	110.6	86.8	
	PDE (local vol)	231.4	209.8	170.9	137.5	109.1	

(a) Volatility term structure for Heston model with: $\kappa = 1$, $\theta = 0.2^2$, $v_0 = 0.4^2$, $\eta = 1$, $\rho_{12} = -0.7$.

(b) Volatility term structure for Heston model with: $\kappa = 1$, $\theta = v_0 = 0.2^2$, $\eta = 1$, $\rho_{12} = -0.7$.

Conclusions

- Demonstrated how to value a class of GWBs
 - Included stochastic interest rates and stochastic volatility
 - Accounted for path dependency can be neatly for through replicating portfolio
 - Solved PDE using operator splitting methods
- Stylized results
 - Stochastic Vol
 - Increasing vol-vol does not always increase mgt. fees
 - Reducing leverage effect tends to decrease mgt. fees
 - Stochastic Interest Rates
 - Increasing IR vol decreases mgt. fee
 - Increasing IR mean-reversion rate has little effect
- Analytical approximation is reasonably accurate

Thanks for your attention!

Sebastian Jaimungal

sebastian.jaimungal@utoronto.ca
University of Toronto, Toronto, Canada
http://www.utstat.utoronto.ca/sjaimung