Analysis of discounted sum of ladder heights within Sparre-Andersen risk model

Hélène Cossette École d'actuariat, Université Laval

Joint work with: David Landriault Etienne Marceau Khouzeima Moutanabbir

WIM 2012 Toronto February 3rd 2012

- Trufin, Albrecher and Denuit (2010): Properties of a risk measure derived from ruin theory
- Dynamic risk measures motivated by ruin theory
- VaR-Type risk measures based on infinite-time ruin probability
- Link: maximum aggregate loss rv
- Infinite-time ruin probability: survival function of maximum aggregate loss rv
- Analysis of distribution of discounted maximum aggregate loss within Sparre-Andersen risk model

▲圖▶ ▲ 圖▶ ▲ 圖▶

- Sparre Andersen risk model
- Moments of the discounted sum of ascending ladder heights over finite and infinite-time horizon
- Special cases:
- Compound Poisson model: general and mixed Erlang claim sizes
- Sparre-Andersen model with exponential claims: general and mixed Erlang interclaim times
- Moment based approximation

2. Classical Sparre-Andersen risk model

- Claim number process (renewal process) : $\underline{N} = \{N(t), t \ge 0\}$
- Interclaim times rvs $\{W_j, j \in \mathbb{N}^+\}$:
 - sequence of iid rvs
 - pdf k, cdf $K\left(t
 ight)=1-\overline{K}\left(t
 ight)$, and LT \widetilde{k}
- Claim amount rvs $\{X_j, j \in \mathbb{N}^+\}$:
 - sequence of iid positive rvs
 - pdf p, cdf $P(x) = 1 \overline{P}(x)$, LT \widetilde{p} , and mean μ
- For each j, W_j and X_j are independent (time between claims and claim amount independent)
- Aggregate claim amount process $\underline{S}=\left\{ S\left(t
 ight)$, $t\geq0
 ight\}$ where

$$S(t) = \begin{cases} \sum_{i=1}^{N(t)} X_i, & N(t) > 0\\ 0, & N(t) = 0 \end{cases}$$

・聞き ・ ヨキ ・ ヨキ … 臣

• Surplus process associated to portfolio of insurance business: $\underline{U} = \{U(t), t \ge 0\}$

$$U(t) = u + ct - S(t)$$

- $u \ge 0$: initial surplus level
- c > 0 : premium rate
- Time to ruin rv τ (first passage time below level 0): $\tau = \inf_{t \ge 0} \{t, U(t) < 0\}$ with $\tau = \infty$ if $U(t) \ge 0$ for all $t \ge 0$
- Deficit at ruin: $|U(\tau)|$
- Surplus just prior to ruin: $U(au^{-})$

伺下 くまト くまト

- Use some results obtained from the analysis of the EDPF to analyze the discounted sum of ascending ladder heights over finite and infinite-time horizon
- Expected discounted penalty function:

$$E\left[e^{-\delta\tau}w\left(U(\tau^{-}),|U(\tau)|\right)I(\tau<\infty)|U(0)=u\right],\quad u\geq 0$$

- $\delta \ge 0$: force of interest
- $w(x, y) : \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}^+$: penalty function
- I: indicator function (I(A) = 1 if the event A occurs and 0 otherwise)

- Net aggregate loss process: $\underline{Y} = \{Y(t), t \ge 0\}$ with Y(t) = S(t) ct
- $\{v_i\}_{i=1}^{\infty}$: sequence of ascending ladder epochs associated to \underline{Y}

•
$$v_1 = \inf \{ t \ge 0 : Y(t) > 0 \}$$

- Recursively: $v_{i} = \inf \{ t \geq v_{i-1} : Y(t) Y(v_{i-1}) > 0 \}$
- For convenience: $v_0 = 0$

・御 と * 注 と * 注 と … 注

- Duration of the *ith* ladder epoch: $\gamma_i = v_i v_{i-1}$
- Corresponding (ascending) ladder height (whenever $v_i < \infty$): $L_i = Y(v_i) Y(v_{i-1})$
- Number of ladder epochs of $\underline{Y} : M = \sup \{i \in \mathbb{N} : v_i < \infty\}$
- $\{(\gamma_i, L_i)\}_{i=1}^M$ forms a sequence of iid random pairs, distributed as $(\tau, |U(\tau)|)$ when u = 0

・御 と * 注 と * 注 と … 注

5. Net aggregate loss process

• Graphic: Sample path of $\underline{Y} = \{Y(t), t \ge 0\}$

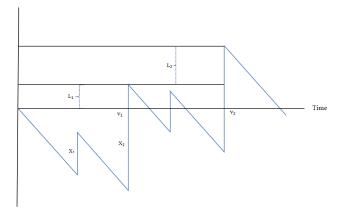


Figure 1. A sample path of \underline{Y} .

6. Maximal net aggregate loss process

- Maximal net aggregate loss process: $\underline{Z} = \{Z(t), t \ge 0\}$ where $Z(t) = \sup \{Y(s): 0 \le s \le t\}$
- In the Sparre-Andersen model, $Z \equiv Z(\infty) \sim Compound Geometric$ distribution with

$$\Pr(M = m) = (1 - \psi(0)) (\psi(0))^m$$
, $m = 0, 1, 2, ...$

Ruin probability:

$$\psi(u) = \Pr(Z > u) = \sum_{m=1}^{\infty} (1 - \psi(0)) (\psi(0))^m \overline{F}_L^{*m}(u),$$

where $\overline{F}_{L}^{*m}(x) = 1 - F_{L}^{*m}(x)$ • Alternative definition for rv Z(t):

$$Z(t) = \begin{cases} \sum_{i=1}^{M} L_i \mathbb{1}(v_i \leq t), & M > 0\\ 0, & M = 0 \end{cases}$$

(more relevant in the sequel)

イロン イボン イヨン イヨン 三日

6. Maximal net aggregate loss process

• Discounted maximum aggregate loss process (discounted version of \underline{Z}): $\underline{Z}_{\delta} = \{Z_{\delta}(t), t \ge 0\}$

$$Z_{\delta}(t) = \int_{0}^{t} e^{-\delta s} dZ(s)$$

=
$$\begin{cases} \sum_{i=1}^{M} e^{-\delta \vartheta_{i}} L_{i} 1_{\{\vartheta_{i} \leq t\}}, & M > 0 \\ 0, & M = 0. \end{cases}$$

• Interpretation: assume that at the time of the *i*th ascending ladder epoch of \underline{Y} (namely, v_i), a random amount of capital L_i (i = 1, 2, ...) is injected to the insurance portfolio. Then Z is the sum of all capital amounts injected over time and Z_{δ} is its discounted version in which the capital injections are discounted at a constant force of interest $\delta \geq 0$.

▲御▶ ▲ 臣▶ ▲ 臣▶ 二 臣

- In risk theory, $Z_{\delta}(t)$ can be viewed as the discounted aggregated loss where the interclaim times and claim sizes are distributed as an arbitrary $\gamma_i = v_i v_{i-1}$ and L_i
- In our context, pairs $\{(\gamma_i, L_i)\}_{i \ge 1}$ are mutually independent, but γ_i and L_i are in general not independent
- Departs from the usual assumption in risk theory for the analysis of the (discounted) aggregate loss

< 個 ▶ < 注 ▶ < 注 ▶ ... 注

7. Aggregate discounted ladder heights - General

- First examine LT of Z_δ (t) =total (discounted) value of all capital injections over the time interval [0, t]
- Conditioning on time and amount of first capital injection,

$$E\left[e^{-sZ_{\delta}(t)}\right] = \Pr\left(\gamma_{1} > t\right) + E\left[e^{-se^{-\delta\gamma_{1}\left(L_{1} + Z_{\delta}'(t-\gamma_{1})\right)};\gamma_{1} < t\right]$$

• Taking the *n*-th derivative (n = 1, 2, ...) with respect to *s* on both sides and letting $s \rightarrow 0$

$$E\left[\left(Z_{\delta}\left(t\right)\right)^{n}\right] = \sum_{l=0}^{n} \binom{n}{l} \int_{0}^{t} e^{-n\delta w} f_{\gamma}\left(w\right) E\left[\left(L_{1}\right)^{n-l} | \gamma_{1} = w\right] m_{\delta,l}\left(t - w\right) dw$$

where $m_{\delta,n}(t) = E\left[\left(Z_{\delta}(t)\right)^{n}\right]$ (n = 0, 1, ...).

・聞き ・ ほき・ ・ ほき・ … ほ

7. Aggregate discounted ladder heights - General

• Notation:
$$\widetilde{m}_{\delta,n}\left(z
ight)=\int_{0}^{\infty}e^{-zt}m_{\delta,n}\left(t
ight)dt$$

Taking LT on both sides yields

$$\widetilde{m}_{\delta,n}(z) = \sum_{l=0}^{n} {n \choose l} E\left[e^{-(z+n\delta)\gamma_1} (L_1)^{n-l}\right] \widetilde{m}_{\delta,l}(z)$$

$$= \sum_{l=0}^{n-1} {n \choose l} \frac{E\left[e^{-(z+n\delta)\gamma_1} (L_1)^{n-l}\right]}{1-E\left[e^{-(z+n\delta)\gamma_1}\right]} \widetilde{m}_{\delta,l}(z) \qquad (1)$$

• For $\delta > 0$, (1) is also equivalent to

$$\widetilde{m}_{\delta,n}(z) = \sum_{l=0}^{n-1} \binom{n}{l} \frac{E\left[e^{-(z+n\delta)\gamma_1} \left(L_1\right)^{n-l}; \gamma_1 < \infty\right]}{1 - E\left[e^{-(z+n\delta)\gamma_1}; \gamma_1 < \infty\right]} \widetilde{m}_{\delta,l}(z)$$
(2)

伺下 イヨト イヨト

7. Aggregate discounted ladder heights - General

- Expressed in terms of discounted moments of deficit at ruin $|U(\tau)|$ for an initial surplus of 0 since $\{(\gamma_i, L_i)\}_{i=1}^M$ forms a sequence of iid random pairs, distributed as $(\tau, |U(\tau)|)$ when u = 0
- $E\left[e^{-(z+n\delta)\gamma_1}(L_1)^{n-l};\gamma_1<\infty\right]$: known in a variety of risk models (thanks to numerous advances on the Gerber-Shiu discounted penalty function)
- See e.g., Lin and Willmot (2000), Tsai and Willmot (2002), and Ren (2007)
- Recursive expression for the moments of $Z_{\delta}\left(t
 ight)$ can be identified when the inversion wrt z can be performed

▲御▶ ▲ 臣▶ ▲ 臣▶ ― 臣

7. Aggregate discounted ladder heights - Infinite time

- Moments of $Z_{\delta}\equiv Z_{\delta}\left(\infty
 ight)$: infinite-time horizon
- Final value theorem (see Feller (1969))

$$\lim_{z\to 0} z\widetilde{m}_{\delta,n}(z) = E\left[\left(Z_{\delta}\right)^{n}\right]$$

• Multiply by z both sides of

$$\widetilde{m}_{\delta,n}(z) = \sum_{l=0}^{n-1} \binom{n}{l} \frac{E\left[e^{-(z+n\delta)\gamma_1} \left(L_1\right)^{n-l}; \gamma_1 < \infty\right]}{1 - E\left[e^{-(z+n\delta)\gamma_1}; \gamma_1 < \infty\right]} \widetilde{m}_{\delta,l}(z) \quad (3)$$

and take the limit when $z \rightarrow 0$

$$E\left[\left(Z_{\delta}\right)^{n}\right] = \sum_{l=0}^{n-1} {n \choose l} \frac{E\left[e^{-n\delta\gamma_{1}}\left(L_{1}\right)^{n-l};\gamma_{1}<\infty\right]}{1-E\left[e^{-n\delta\gamma_{1}};\gamma_{1}<\infty\right]} E\left[\left(Z_{\delta}\right)^{l}\right]$$
(4)

• Equation allows for the recursive calculation of the moments of Z_{δ} whenever a closed-form expression exists for the discounted moments of the deficit at ruin $|U(\tau)|$ when initial surplus is 0

7. Aggregate discounted ladder heights - Finite time

- Back to finite time case for special cases...
- Key element: analysis of LT of discounted sum of ladder heights

$$\widetilde{m}_{\delta,n}(z) = \sum_{l=0}^{n-1} {n \choose l} \frac{E\left[e^{-(z+n\delta)\gamma_1} \left(L_1\right)^{n-l}; \gamma_1 < \infty\right]}{1 - E\left[e^{-(z+n\delta)\gamma_1}; \gamma_1 < \infty\right]} \widetilde{m}_{\delta,l}(z)$$
(5)

- Examine two special classes of models: compound Poisson model and Sparre-Andersen model with exponential claim amounts
 - Class 1: $W \sim Exp(\lambda)$ and $X \sim Dist$ (not specified)

• Special case: $X \sim Mixed \ Erlang$

• Class 2: $W \sim Dist$ (not specified) and $X \sim Exp(\beta)$

• Special case: $W \sim Mixed \ Erlang$

- $W \sim Exp(\lambda)$ and $X \sim Dist$ (not specified)
- Discounted moments of the deficit at ruin has been thoroughly studied within classical compound Poisson risk model by Lin and Willmot (2000)
- Capitalizing on their results, aim at analytically inverting (5) to obtain a closed-form expression for $E[(Z_{\delta})^n]$
- Lemma:

$$\frac{E\left[e^{-\delta\gamma_{1}}\left(L_{1}\right)^{l};\gamma_{1}<\infty\right]}{1-E\left[e^{-\delta\gamma_{1}};\gamma_{1}<\infty\right]}=\int_{0}^{\infty}e^{-\delta t}g_{l}\left(t\right)dt,$$
(6)

where...

▲御▶ ▲ 臣▶ ▲ 臣▶ 二 臣

8. Class 1: Compound Poisson risk model – General

$$g_{l}(t) = ce^{-\lambda t}f_{l}(ct) + \sum_{n=1}^{\infty} \frac{\lambda^{n}}{n!}t^{n-1}e^{-\lambda t}\int_{0}^{ct}yp^{*n}(ct-y)f_{l}(y) dy$$

$$f_{l}(t) = \frac{\lambda}{c}\left\{\mu_{l,t}\overline{P}(t) + \sum_{k=1}^{\infty} \left(\frac{1}{1+\theta}\right)^{k}\int_{0}^{t}\mu_{l,w}\overline{P}(w)p_{e}^{*k}(t-w) dw\right\}$$

$$\mu_{l,t} : Ith \text{ moment of the residual lifetime density } p_{t}(y) = p(t+y)/\overline{P}$$

$$p_{e} : \text{ equilibrium dist. of } X = \frac{\sum_{k=1}^{\infty}p(y)dy}{\mu}$$

$$p \text{ and } P : \text{ pdf and cdf of the claim amount } X$$

8. Class 1: Compound Poisson risk model - General

• Replacing δ by $z + n\delta$ in (6), one obtains

$$\frac{E\left[e^{-(z+n\delta)\gamma_{1}}\left(L_{1}\right)^{\prime};\gamma_{1}<\infty\right]}{1-E\left[e^{-(z+n\delta)\gamma_{1}};\gamma_{1}<\infty\right]}=\int_{0}^{\infty}e^{-zt}\left\{e^{-n\delta t}g_{l}\left(t\right)\right\}dt\qquad(7)$$

• Substituting (7) into (5) yields

$$\widetilde{m}_{\delta,n}(z) = \int_0^\infty e^{-zt} \left\{ \int_0^t e^{-n\delta w} g_n(w) dw \right\} dt + \int_0^\infty e^{-zt} \left\{ \sum_{l=1}^{n-1} \binom{n}{l} \int_0^t e^{-n\delta w} g_{n-l}(w) m_{\delta,l}(t-w) dw \right\} dt(8)$$

• Examine moments of $Z_{\delta}(t)$ through functional $\left\{\varphi_{n,\delta}(t), t \geq 0\right\}$ whose LT $\tilde{\varphi}_{n,\delta}(z) = z \tilde{m}_{\delta,n}(z)$.

• Then,
$$m_{\delta,n}(z) = \int_0^t \varphi_{n,\delta}(y) dy$$

8. Class 1: Compound Poisson risk model – General

Multiply both sides of (8) by z leading to

$$\begin{split} \widetilde{\varphi}_{n,\delta}(z) &= z \widetilde{m}_{\delta,n}(z) \\ &= \int_0^\infty e^{-zt} \left\{ e^{-n\delta t} g_n(t) \right\} dt \\ &+ \int_0^\infty e^{-zt} \left\{ \sum_{l=1}^{n-1} \binom{n}{l} \int_0^t e^{-n\delta w} g_{n-l}(w) \varphi_{l,\delta}(t-w) dw \right\} dt \end{split}$$

• By uniqueness property of LT

$$\varphi_{n,\delta} = e^{-n\delta t}g_n(t) + \sum_{l=1}^{n-1} \binom{n}{l} \int_0^t e^{-n\delta w}g_{n-l}(w) \varphi_{l,\delta}(t-w)dw$$

伺下 イヨト イヨト

9. Class 1: Compound Poisson risk model – Mixed Erlang claims

• Assume that X follows the mixed Erlang distribution

•
$$p(y) = \sum_{i=1}^{\infty} q_i \frac{\beta^i(y)^{i-1} e^{-\beta y}}{(i-1)!}$$

• $\widetilde{p}(s) = Q\left(\frac{\beta}{\beta+s}\right)$

- We show that ...
 - First: $\mu_{l,t}\overline{P}(t)$ is mixed Erlang
 - Second: $f_{I}(t)$ is mixed Erlang
 - Third: $g_{I}(t)$ is mixed Erlang
 - Fourth: $\varphi_{n,\delta}(t)$ is mixed Erlang

< 回 > < 三 > < 三 > .

9. Class 1: Compound Poisson risk model – Mixed Erlang claims

• Expression for $\varphi_{n,\delta}(t)$:

$$\varphi_{n,\delta}(t) = \sum_{j=1}^{\infty} \chi_{n,j} h(t; j, \lambda + c\beta + n\delta)$$

where $h(t; j, \lambda + c\beta + n\delta)$: pdf of an Erlang distribution of order jand scale factor $\lambda + c\beta + n\delta$

- Recursive relation to compute the weights $\chi_{n,i}$
- Closed-form expression for nth moment of $Z_{\delta}(t)$:

$$m_{n,\delta}(t) = \sum_{j=1}^{\infty} \chi_{n,j} \left(1 - \sum_{i=0}^{j-1} \frac{\left((\lambda + c\beta + n\delta)t \right)^i e^{-(\lambda + c\beta + n\delta)t}}{i!} \right)$$

10. Class 2: Sparre-Andersen Risk Model with Exponential claims

- We assume: $X \sim Exp(\beta)$ and $W \sim Dist$ (not specified)
- Exponential claims: time of first capital injection γ_1 and its size L_1 are independent
- Result:

$$E\left[e^{-\delta\gamma_{1}}\left(L_{1}\right)^{n};\gamma_{1}<\infty\right]=\frac{n!}{\beta^{n}}E\left[e^{-\delta\gamma_{1}};\gamma_{1}<\infty\right].$$
(9)

10. Class 2: Sparre-Andersen Risk Model with Exponential claims

- After some calculations, we obtain
 - for *n* = 1, 2, ...:

$$m_{\delta,n}(t) = \frac{n!}{\beta^n} \left(R_{\delta,n}(t) - R_{\delta,n-1}(t) \right)$$

• $R_{\delta,n}(t) = 0$ • $R_{\delta,n}(t) = \int_0^t r_{\delta,n}(x) dx$ • $r_{\delta,1}(y) = h_{\delta}(y)$ • $r_{\delta,n}(y) = r_{\delta,n-1}(y) + h_{n\delta}(y) + \int_0^y h_{n\delta}(x) r_{\delta,n-1}(y-x) dx$, n = 2, 3, ...• $h_{j\delta}(y) = e^{-j\delta y} \sum_{n=1}^{\infty} k^{*n}(y) \sum_{j=0}^{n-1} \left(1 - \frac{j}{n}\right) \frac{(c\beta y)^j e^{-c\beta y}}{j!}$ • k is the pdf of W

11. Class 2: Sparre-Andersen Risk Model – Exponential claims & Mixed Erlang interclaim times

- We assume that W follows a mixed Erlang distribution
- It implies that
 - $h_{\delta}(y)$ is mixed Erlang
 - $r_{\delta,I}(y)$ is mixed Erlang with weights obtained recursively:

$$r_{\delta,l}(y) = \sum_{i=1}^{\infty} \pi_{n,i} \tau_{\lambda+c\beta+l\delta,i}(y)$$

- $m_{\delta,n}(t)$ is mixed Erlang
- Expression for $m_{\delta,n}(t)$:

$$m_{\delta,n}(t) = \frac{n!}{\beta^n} \sum_{i=1}^{\infty} \left(\pi_{n,i} - \eta_{n-1,i} \right) \left(1 - \sum_{j=0}^{i-1} \frac{\left((\lambda + c\beta + n\delta)t \right)^j e^{-(\lambda + c\beta + n\delta)t}}{j!} \right)$$

12. Moment-based approximation

- Further analyze distribution of $Z_{\delta}\left(t
 ight)$ which can not be derived
- Precise knowledge of this distribution is crucial to compute popular risk measures VaR and TVaR
- Note that rv $Z_{\delta}\left(t
 ight)$ has a mass at zero and its cdf is of the form

$$F_{Z_{\delta}(t)}(x) = 1 - \psi(0, t) + \psi(0, t) F_{Y_{\delta}(t)}(x)$$

- $\psi(0, t) =$ prob.of ruin within [0, t] with an initial surplus of 0
- $F_{Y_{\delta}(t)} = \mathsf{cdf}$ of a strictly positive rv $Y_{\delta}\left(t
 ight)$ whose moments are given by

$$E[Y_{\delta}(t)^{n}] = \frac{E[Z_{\delta}(t)^{n}]}{\psi(0,t)} = \frac{m_{\delta,n}(t)}{\psi(0,t)}$$
(10)

- Objective: provide a moment-matching method to approximate the distribution of $Y_{\delta}(t)$ given (10) and elements previously presented
- Moment-matching techniques: well known research topic
- Approach: approximate unknown dist. with mixture of known distributions

- Johnson and Taffe (1989): based on finite mixture of Erlang dist. with different scale parameters and identical shape parameters
- Feldmann and Whitt (1998) based on finite mixture of exponentials
- Technique proposed to approximate dist.of $Y_{\delta}\left(t
 ight)$:
 - based on densiness of mixed Erlang class (see Tijms (1994))
 - finite mixture of Erlang dist. with identical scale parameters but different shape parameters

- 4 週 ト - 4 ヨ ト - 4 ヨ ト - -

• Let the rv $Y_{\delta}\left(t
ight)$ be approx. by the mixed Erlang rv $\widetilde{Y}_{\delta}\left(t
ight)$ where

$$\widetilde{Y}_{\delta}\left(t
ight)=\sum_{k=1}^{K}C_{k}$$

where $C_k \sim Exp(\beta)$ and K is discrete rv defined on \mathbb{N}^+ with $\Pr(K = k) = \zeta_k$. • Cdf of $\widetilde{Y}_{\delta}(t)$: $F_{\widetilde{Y}_{\delta}(t)}(x) = \sum_{k=1}^{\infty} \zeta_k H(x; k, \beta)$

• Finding dist. of $\widetilde{Y}_{\delta}(t)$ that approximates dist. of $Y_{\delta}(t)$: finding $\zeta_{k}(k = 1, 2, ...)$

個人 くほん くほん … ほ

- Assume $K \in \{1, 2, ..., n\}$ and defined such that $E\left[(Y_{\delta}(t))^{j}\right] = E\left[(\widetilde{Y}_{\delta}(t))^{j}\right]$, $j = 1, ..., m_{0}$
- Since $K \in \{1, 2, ..., n\}$: approx. finite mixture of Erlang dist.

$$\sum_{k=1}^{n} \zeta_{k} = 1$$

$$\mu_{l} = E\left[(Y_{\delta}(t))\right] = \sum_{k=1}^{n} \zeta_{k} \frac{\prod_{i=0}^{l-1} (k+i)}{\beta^{m_{0}}}, \text{ for } l = 1, 2, ..., m_{0}.$$

御 と く き と く き と …

12. Moment-based approximation

• Example $m_0 = 2$:

(1)
$$\sum_{k=1}^{n} \zeta_{k} = 1$$

(2)
$$\sum_{k=1}^{n} \zeta_{k} k = E[Y_{\delta}(t)]\beta$$

(3)
$$\sum_{k=1}^{n} \zeta_{k} k (k+1) = E[Y_{\delta}^{2}(t)]\beta^{2}$$

To this system of equations exist an infinite number of solutions

• However, exist a finite number of distr. with $(m_0 + 1)$ atoms that satisfy such a system of $(m_0 + 1)$ equations

- Denote by $A\left(\underline{\mu} = (\mu_1, \mu_2, ..., \mu_{m_0}), n, \beta\right)$: space of discrete distributions for K such that moment constraints are verified
- For β and m_0 fixed, n must be large enough to ensure a solution exists in $A\left(\underline{\mu} = (\mu_1, \mu_2, ..., \mu_{m_0}), n, \beta\right)$
- Rule of thumb: select approximation that minimizes difference between their $(m_0 + 1)$ -th moment among set of eligible approximations

《聞》 《臣》 《臣》 《臣

- Interclaim times and claim sizes: exponentially distributed with mean 1
- Premium rate: c = 1.2 and force of interest: $\delta = 4\%$
- First 6 moments of $Z_{\delta}(t)$ for t = 10, 50, 100 and 200:

m_0/t	10	50	100	200
1	2.0904	2.7911	2.8291	2.8309
2	10.3922	16.5036	16.8041	16.8173
3	71.3258	132.4999	135.4742	135.5999
4	612.7045	1315.6872	1350.1879	1351.605563
5	6254.4329	15381.4273	15837.2994	15855.6367
6	73472.8075	205368.4629	212098.8478	212364.9329

• Moments of $Z_{\delta}(t)$ converge as t becomes large, since $Z_{\delta}(t)$ converges to $Z_{\delta}(\infty)$ (strictly positive solvency margin)

- Recall that $E\left[Y_{\delta}\left(t\right)^{n}\right] = \frac{E[Z_{\delta}(t)^{n}]}{\psi(0,t)} = \frac{m_{\delta,n}(t)}{\psi(0,t)}$
- Prob.that no ascending ladder heights occurs in (0, *t*]:

t	10	50	100	200
$1-\psi(0,t)$	0.25519	0.18129	0.16996	0.16738

- Values of $\psi\left(0,t
 ight)$ obtained with 100000 Monte Carlo simulations of $Z_{\delta}\left(t
 ight)$
- For approximation, consider a time horizon of t=200 and assume $K\in\{1,2,...,10\}$
- For convenience, assume that K has pmf ρ $(\rho_k = \Pr(K = k))$

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

• Mixed Erlang models obtained to approximate $Y_{\delta}(t)$ when first m_0 moments matched:

m_0	β	ρ_1	$ ho_2$	$ ho_3$	ρ_4	$ ho_5$	$ ho_6$
2	0.75	0.2404	0.4962	_	_	0.2635	-
3	0.75	0.3885	_	0.4987	_	0.0115	0.1013
4	0.75	0.3568	0.1217	0.3288	0.0965	_	0.0962

Figure:compare cdf of mixed Erlang dist. with empirical cdf (10 million Monte Carlo simulations of Z_δ (t))

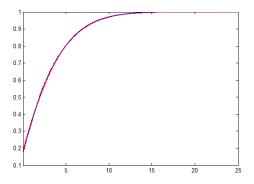


Figure 2. Cdf of the a Mixed Erlang distributions (2 moments; 3 atoms) with the empirical cdf that resulted from 10 millions MC simulations of $Z_{\delta}(t)$.

Figure:compare cdf of mixed Erlang dist. with empirical cdf (10 million Monte Carlo simulations of Z_δ (t))

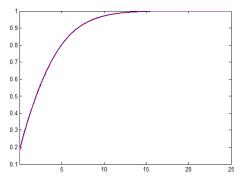


Figure 3. Cdf of the a Mixed Erlang distributions (3 moments; 4 atoms) with the empirical cdf that resulted from 10 millions MC simulations of $Z_{\delta}(t)$.

Figure:compare cdf of mixed Erlang dist. with empirical cdf (10 million Monte Carlo simulations of Z_δ(t))

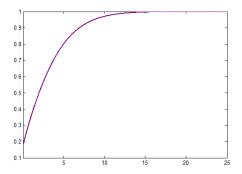


Figure 4. Cdf of the a Mixed Erlang distributions (4 moments; 5 atoms) with the empirical cdf that resulted from 10 millions MC simulations of $Z_{\delta}(t)$.

- Approximations obtained with 3 and more moments are very good
- Comparison of $VaR_{\kappa}(Z_{\delta}(200))$ and $TVaR_{\kappa}(Z_{\delta}(200))$ with simulation

$m_0 \setminus \kappa$	0.95	0.99	0.995	
2	8.8586800	12.4862927	13.9031533	
3	8.7480563	12.5766479	14.0930303	
4	8.7625088	12.5599779	14.0645152	
simulation	8.7625	12.5484	14.0566	
Table 3: Values of $V_2 R$ (Z. (200))				

Table 3: Values of $VaR_{\kappa}(Z_{\delta}(200))$

$m_0 \setminus \kappa$	0.95	0.99	0.995		
2	11.0969683	14.4676157	15.8164438		
3	11.1064767	14.6950350	16.1364655		
4	11.1028197	14.6636129	16.0959678		
simulation	11.0959	14.6619	16.1005		
Table 4: Values of $TVaR_{\kappa}(Z_{\delta}(200))$					

• With first 4 moments matched, VaR and TVaR compare very well with simulated counterparts

イロト イポト イヨト 一日

- We insist on the importance to study the behavior of Z and Z(t) for capital assessment
- ullet We generalize Z and Z (t) to Z $_{\delta}$ and Z $_{\delta}(t)$
- We consider computation of moments of Z_{δ} and $Z_{\delta}\left(t
 ight)$
- We examine in more detail two particular classes of Sparre Andersen risk models:
 - Class 1: $W \sim Exp(\lambda)$ and $X \sim Dist$ (not specified)
 - Class 2: $X \sim Exp(\beta)$ and $W \sim Dist(not specified)$
- We use a moment-matching approximation to evaluate VaR and TVaR

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

si le montant de sinistres obéit à une loi exp, alors le surplus à la ruine obéit à une expon et indép du temps à la ruine

イロト イポト イヨト 一日