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Graph homomorphism = edge preserving map

G
H

G H



G
nK an n-coloring of G.



G={finite graphs up to homomorphic equivalence}

G<H G is homomorphic to H.

(G, <) is a partial order. 

G, H are homomorphic equivalent means

G H   and    H G
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For a G, the chromatic number
of G is 
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The chain ,...,,...,,, 321 nKKKK

is a scale that measures the 
chromatic number of graphs.
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Theorem [Welzl (1984)]: 

Any countable partial order is 

isomorphic to a suborder of G.

We can find a dense chain in GG.



There is a natural dense chain corresponding to rationals.

For ,2≥
q

p
let 

q

pK be the graph with vertex set

V={0, 1, …, p-1}

i~j .|| qpjiq −≤−≤
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Theorem [ Bondy-Hell,1988]
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The chain 

...,,...,,, ,321 nKKKK

is extended to a dense chain.
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Now we use this finer scale 

to measure the “chromatic number”

of graphs. 

The circular chromatic number

=)(Gcχ inf
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)(Gcχ )(Gχis a refinement of 

)(Gχ )(Gcχis an approximation of

)(Gcχ :   the real chromatic number



What’s your age?

I’m 5.67 years old



What’s you chromatic number ?

My ‘real’ chromatic 
number is 2.5



Why “circular” ?

0=r

3

1

24

x~y |f(x)-f(y)|_r ≥ 1

The distance between  p, p’ in the circle is 

{ } |'|   |,'| min|p'-p| r pprpp −−−=

f is a circular r-coloring if

0 r

p
p’



Circular graph coloring is a model for periodic
scheduling problem



A.Vince, 1988. 
B.star chromatic number )(*

Gχ

More than 250 papers published, and 
publications are accelerating.

Quote from Feder, Hell, Mohar (2003):

“The theory of circular colorings of graphs has become 
an important branch of chromatic graph theory with 
many exciting results and new techniques.”

This is more true today



Bondy-Hell, JGT, 1990
A note on the star chromatic number

I would like to dedicate the talk to Pavol’s
65.46 birthday



It stimulates challenging problems, leads to better
understanding of the chromatic graph theory.

“The theory of circular colorings of graphs has become 
an important branch of chromatic graph theory with 
many exciting results and new techniques.”



Theorem [Z, 1996] If G is critical n-chromatic and
has large girth, then .)1()( εχ +−≤ nGc

k
C kc

1
2)( 12 +=+χ

3)( 12 =+kCχ



Theorem [Kostochka,Kral,Sereni,Stiebitz, 2010]

For any           and for any integer k, 
there is an integer              such that for any 
graph G of treewidth at most k and odd girth 
at least              , 

0>ε
),( kn ε

),( kn ε .2)( εχ +<Gc

Theorem [Nesetril-Zhu,2006]

For any           and for any integer k, 
there is an integer              such that for any 
graph G of treewidth at most k and girth 
at least              , 

0>ε
),( kn ε

),( kn ε .2)( εχ +<Gc



Theorem [Z, 1996] If G is uniquely n-colorable, 
then .)( nGc =χ

.)(,)(girth , nGgGGng c ≥≥∃∀∀ χ



A classical result of Paul Erdos:

.)(,)(girth , nGgGGng ≥≥∃∀∀ χ
Theorem [Z, 1996]

.)(,)(girth ,2 rGgGGrg c ≥≥∃≥∀∀ χ

Theorem [Nesetril-Z, 2004]
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Kneser graph  KG(n,k)

Vertex set = all k-subsets of {1,2,…,n}

Two vertices X,Y are adjacent iff Ο=YX I

Petersen graph

= KG(5,2)
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There is an easy (n-2k+2)-colouring of KG(n,k):

For i=1,2,…, n-2k+1, 

k-subsets with minimum element i 
is coloured by colour i.

Other k-subsets are contained in {n-2k+2,…,n}
and are coloured by colour n-2k+2.

.22)),(( +−≤⇒ knknKGχ

Kneser Conjecture [1955] 

.22)),(( +−= knknKGχ

Lovasz Theorem  [1978] 



There is an easy (n-2k+2)-colouring of KG(n,k):

For i=1,2,…, n-2k+1, 

k-subsets with minimum element i 
is coloured by colour i.

Other k-subsets are contained in {n-2k+2,…,n}
and are coloured by colour n-2k+2.

.22)),(( +−≤⇒ knknKGχ

Kneser Conjecture [1955] 

.22)),(( +−= knknKGχ

Lovasz Theorem  [1978] Johnson-Holroyd-Stahl Conjecture [1997]

.22)),(( +−= knknKGcχ

Chen Theorem [2011]                           



Lovasz Theorem

For any (n-2k+2)-colouring c of KG(n,k), 
each colour class is non-empty



Alternative Kneser Colouring Theorem [Chen, 2011]

For any (n-2k+2)-colouring c of KG(n,k), 
there exists two disjoint (k-1)-subsets S and T, 
such that the following is true:

S T
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Alternative Kneser Colouring Theorem [Chen, 2011]

For any (n-2k+2)-colouring c of KG(n,k), 
there exists two disjoint (k-1)-subsets S and T, 
such that the following is true:
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Alternative Kneser Colouring Theorem [Chen, 2011]

For any (n-2k+2)-colouring c of KG(n,k), 
there exists two disjoint (k-1)-subsets S and T, 
such that the following is true:

S T

1i

2i

22 +− kni

Colour n-2k+2
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Use the finer scale 

to measure the “clique number”

of graphs. 

The circular chromatic number

=)(Gcχ
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A graph G is perfect if for every induced subgraph
H of G, )()( HH ωχ =



A graph G is perfect if for every induced subgraph
H of G, )()( HH ωχ =

A graph G is circular perfect if for every induced subgraph
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A graph G is perfect if for every induced subgraph
H of G, )()( HH ωχ =

A graph G is circular perfect if for every induced subgraph
H of G, )()( HH cc ωχ =

Theorem [Grotschel-Lovasz-Schrijver, 1981]

For perfect graphs, the chromatic number
is computable in polynomial time.
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Theorem [Grotschel-Lovasz-Schrijver, 1981]

For perfect graphs, the chromatic number
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Theorem [Bochoc Pecher Thiery, 2011]   

circular circular



Theorem [Grotschel-Lovasz-Schrijver, 1981]

For perfect graphs, the chromatic number
is computable in polynomial time.

Theorem [Bochoc Pecher Thiery, 2011]   

circular circular

A key step in the proof is calculating the Lovasz theta
number of circular cliques and their  complements.
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Theorem [Grotschel-Lovasz-Schrijver, 1981]

For perfect graphs, the chromatic number
is computable in polynomial time.

Theorem [Bochoc Pecher Thiery, 2011]   

circular circular

A key step in the proof is calculating the Lovasz theta
number of circular cliques and their  complements.
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A key step in the proof is calculating the Lovasz theta
number of circular cliques and their  complements.
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Theorem [Grotschel-Lovasz-Schrijver, 1981]

For perfect graphs, the chromatic number
is computable in polynomial time.

Theorem [Bochoc Pecher Thiery, 2011]   

circular circular
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There are very few families of graphs for which 
the theta number is known.



A powerful tool in the study of list colouring graphs is

Combinatorial Nullstellensatz

Give G an arbitrary orientation.

{ }nvvvGV ,,,)( Assume 21 L=
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L

Find a proper colouring=
find a nonzero assignment
to a polynomial





Give G an arbitrary orientation.
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What is the polynomial for circular colouring?
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Color set

Colors assigned to adjacent 
vertices have circular distance
at least q



0

1

2

3
4

5

6

7

8

9

10

11 12 13

14

15

Color set

Colors assigned to adjacent 
vertices have circular distance
at least q

q
1

The circle has perimeter 
q

p
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Give G an arbitrary orientation.
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What is the polynomial for circular colouring?
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An idea of Norine







Theorem [Alon-Tarsi]
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the coefficient of the monomial
in f is
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Theorem [Norine-Wong-Z, 2008]
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Theorem [Norine-Wong-Z, (JGT 2008)]

choosable.- is Then 

)12(|)(|)1)((

 , of subgraph any for such that  

assignment size-list a is bipartite, is  Suppose
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qHExl
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q=1 case was proved by Alon-Tarsi in 1992.

Corollary[Norine]: 
Even cycle are circular 2-choosable.

The only known proof uses combinatorial nullstellensatz
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Corollary: Even cycle are circular 2-choosable.



Conjecture: Every 2-choosable graph is circular
2-choosable.

Equivalent formulation: 

k2,2,2θ is circular 2-choosable.

Theorem [Z, 2005]: For any positive integer k, for any

0>ε , there is a k-degenerate graph G with

εχ −> kGlc 2)(, 1)( +≤ kGlχ



Theorem [Norine-Wong-Z, 2008]

If G is bipartitie then 
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Theorem [Liu-Norine-Pan-Z,2010]

Every 2-choosable graph is consecutive 
circular 2-choosable.



Circular chromatic index

Theorem [Vizing]  For any simple graph G,

1)()(')( +∆≤≤∆ GGG χ

Corollary   For any simple graph G,

1)()(')( +∆≤≤∆ GGG cχ

If                   , then  2)( =∆ G
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What are the possible values of circular chromatic 
Indices?



Theorem [Afshani-Ghandehari-Ghandehari-Hatami-
Tusserkani-Z, 2005]

If                  , then  3)( =∆ G { }4]
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Are there other gaps?

Petersen graph is the only known graph with
circular chromatic index 11/3.

No graphs are known to have )
3

11
,

2

7
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( is a possible gap.



Theorem [Kral-Macajova-Mazak-Sereni, 2011]
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If                   , then  2)( =∆ G
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Theorem [Lukot’ka-Mazak, 2011]

For any rational                  , there is a cubic G
with 

]3/10,3[∈r

.)(' rGc =χ



Theorem [Kaiser-Kral-Skrekovki-Z,2007]

.)(')(girth ,,2,0 εχε +<⇒≥∃≥>∀ kGgGgk c

Theorem [Lin-Wong-Z,2011]

For any rational                              , there is a
(2k+1)-regular graph G with 

]
4

1
12,12[ +++∈ kkr

.)(' rGc =χ



Question: Are there other gaps ?  

Question: Are there other intervals where
circular chromatic indices are dense ?



Thank you!



Thank you!


