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Graph homomorphism = edge preserving map



G— K, &  an n-coloring of G.
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G<H (= G is homomorphic to H.

G={finite graphs up to homomorphic equivalence}

(G, <) is a partial order.



The set of complete graphs

K.K,,Ky,...K, ...

form an increasing chain in G.




The set of complete graphs

K.K,,K;,...K, ...

form an increasing chain in G.

For a G, the
of Gis

XG)=min{n:G <K, }.




The chain K ,K,,K;,...K

IS a scale that measures the
chromatic number of graphs.
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Theorem [Welzl (1984)]:

Any countable partial order is
isomorphic to a suborder of G.

— We can find a dense chain in G.




There is a natural dense chain corresponding to rationals.

For P >72. et Kp be the graph with vertex set
q q

vV={0, 1, ..., p-1}
~ ¢ qdi-jlkp-q
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Theorem [ Bondy-Hell,1988]

Kk, <k, psp'
q q' q g



The chain

K.K,,Ky,...K, ...

IS extended to a dense chain.




Now we use this finer scale
to measure the “chromatic number”
of graphs.

The circular chromatic number

X.(G) = mfn<Z: G<K ;




X.(G) is a refinement of X(G)

X(G) is an approximation of X.(G)

X.(G) : the real chromatic number
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I'm 5.67 years old




What’s you chromatic number ?

My ‘real’ chromatic
number is 2.5




Why “circular” ?
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The distance between p, p’ in the circle is
lp-pl.=min{| p-p'l, r—1p-p'}
f Is a circular r-coloring if

X~y == [1(x)-t(y)|_r = 1



Circular graph coloring is a model for periodic
scheduling problem



A.Vince, 1988.
X (G)

More than 250 papers published, and
publications are accelerating.

Quote from Feder, Hell, Mohar (2003):

“The theory of circular colorings of graphs has become
an important branch of chromatic graph theory with
many exciting results and new techniques.”

This is more true today



Bondy-Hell, JGT, 1990
A note on the star chromatic number

I would like to dedicate the talk to Pavol’s
65.46 birthday



“The theory of circular colorings of graphs has become
an important branch of chromatic graph theory with
many exciting results and new techniques.”

It stimulates challenging problems, leads to better
understanding of the chromatic graph theory.



X(Cy) =3

1
Xc(Czkﬂ) — 2+;

Theorem [Z, 1996] If G is critical n-chromatic and
has large girth, then y (G)<s(n-1)+¢.



Theorem [Nesetril-Zhu,2006]

For any £ >0 and for any integer k,
there is an integer n(&, k) such that for any
graph G of treewidth at most k and girth

at least n(&,k), X.(G)<2+Ee&.

Theorem [Kostochka,Kral,Sereni,Stiebitz, 2010]

For any £ >0 and for any integer Kk,
there is an integer n(&, k) such that for any
graph G of treewidth at most k and odd girth

at least n(E,k), X.(G)<2+e.



Theorem [Z, 1996] If G is uniquely n-colorable,
en x.(G)=n.

glnlL G, girth(G) =2 g, x.(G) =2 n.




A classical result of Paul Erdos:
glnlL G, girth(G) = g, ¥(G) 2 n.
Theorem [Z, 1996]

Lglr 220G, girth(G) =2 g, . (G) 2.

Theorem [Nesetril-Z, 2004 ]
Ueg, k,UUH,LG,G - H,girth(G) = g,
UH'with|V(H) Ik, G - H'= H - H'




Kneser graph KG(n,k)
Vertex set = all k-subsets of {1,2,...,n}

Two vertices X,Y are adjacent iff X [|Y = Qj

Petersen graph

= KG(5,2)




There is an easy (n-2k+2)-colouring of KG(n,k):

Fori=1,2,..., n-2k+1,

k-subsets with minimum element |
is coloured by colour i.

Other k-subsets are contained in {n-2k+2,...,n}
and are coloured by colour n-2k+2.

= Y(KG(n,k)) <n—-2k+2.

Lovasz Theorem [1978]

Y(KG(n,k))=n—-2k +2.



There is an easy (n-2k+2)-colouring of KG(n,k):

Fori=1,2,..., n-2k+1,

k-subsets with minimum element |
is coloured by colour i.

Other k-subsets are contained in {n-2k+2,...,n}
and are coloured by colour n-2k+2.

= X(KG(n,k))<n-2k +2.
Chen Theorem [2011]

X.(KG(n,k))=n—2k +2.



Lovasz Theorem

For any (n-2k+2)-colouring c of KG(n,k),
each colour class is non-empty



Alternative Kneser Colouring Theorem [Chen, 2011]

For any (n-2k+2)-colouring c of KG(n,k),
there exists two disjoint (k-1)-subsets S and T,
such that the following is true:

s T

Ny



Alternative Kneser Colouring Theorem [Chen, 2011]

For any (n-2k+2)-colouring c of KG(n,k),
there exists two disjoint (k-1)-subsets S and T,
such that the following is true:

i

Colour 1

Ny



Alternative Kneser Colouring Theorem [Chen, 2011]

For any (n-2k+2)-colouring c of KG(n,k),
there exists two disjoint (k-1)-subsets S and T,
such that the following is true:

Colour 2




Alternative Kneser Colouring Theorem [Chen, 2011]

For any (n-2k+2)-colouring c of KG(n,k),
there exists two disjoint (k-1)-subsets S and T,
such that the following is true:

Colour n-2k+2



For a G, the clique number
of Gis

(G)= max {n:K, <G}.




Use the finer scale

to measure the “clique number”

of graphs.

The circular clique

-

9

t.(G) = max

.

p.
q




A graph G is perfect if for every induced subgraph
HorG ) = w(H)



A graph G is perfect if for every induced subgraph
MorG ) = w(H)

A graph G is circular perfect if for every induced subgraph
55, X.(H) = (H)



A graph G is perfect if for every induced subgraph
MorG ) = w(H)

A graph G is circular perfect if for every induced subgraph
s, X.(H) = (H)

Theorem [Grotschel-Lovasz-Schrijver, 1981 ]

For perfect graphs, the chromatic number
is computable in polynomial time.



A graph G is perfect if for every induced subgraph
MorG ) = w(H)

A graph G is circular perfect if for every induced subgraph
o, X.(H) = (H)

Theorem [Bochoc Pecher Thiery, 2011] ]

Fo!perfect graphs, therx¢chromatic number

is computable in polynomial time.



A key step in the proof is calculating the Lovasz theta
number of circular cliques and their complements.

4 3

BOR" ,B=0
9(G)=maxy Y B(x,y): Y B(xx)=1
xLV

(x,y)V?

Vo

B(x,y)=0 xyUE|

.

G, w(G) < 3(G) < x(G)

For perfect graph G, estimating ( G ) with

error less than + determines its chromatic number.

Theorem [Bochoc Pecher Thiery, 2011] ]

Fo!perfect graphs, therx¢chromatic number

is computable in polynomial time.




A key step in the proof is calculating the Lovasz theta
number of circular cliques and their complements.

4 3

BUOR"™ ,B=0
z9(G) = maxs ZB(x, y): ZB(x,x) =1
x[V

(x,y)V?

Vo

B(x,y)=0 xyUE|

0G. o GF=8GI< X (G)
For nerfect oranh (7 estimatino » (6) with

ﬂ(Es) =45, w.(C,)=x.(Cy) = % hromatic number.

Theorem [Bochoc Pecher Thiery, 2011] ]

Fo!perfect graphs, therx¢chromatic number

is computable in polynomial time.




A key step in the proof is calculating the Lovasz theta
number of circular cliques and their complements.

G circular perfect with Y .(G)=k/d
= 3(G)= ﬂ(E%)

2d <k <IV(G)|

For all (k,d), with (k,d)=1,2d < k <n,

79(?% ) are all distinct and separated by at least £

for some £ with polynomial space encoding.




There are very few families of graphs for which
the theta number is known.

Theorem [Bochoc Pecher Thiery, 2011] ]

Fo!perfect graphs, therx¢chromatic number

is computable in polynomial time.



A powerful tool in the study of list colouring graphs is

Combinatorial Nullstellensatz

AssumeV (G) :{Vl,Vza"‘aVn}

Give G an arbitrary orientation.
Q(;(xla'”axn) = I_l (xi _xj)
(vi,vj)DE
c 1s a proper colouring of C Find a proper colouring=

find a nonzero assignment
= Qg (c(n),c(v, ) #0 53 bolynomial



Combinatorial Nullstellensatz:

Let F' be a field, f(z1,...,2n) € Flz1, ..., 2,]

Suppose the degree of f is 2;1:1 t;.

If the coefficient of JT/_, % in f is nonzero,

then for any subsets Sy,....5, of F

with |S;| =t; + 1,

there exist s;1 € S4.,...,s, € .5, such that

f(Sl:" .. :'Sﬂ,) # 0




What is the polynomial for circular colouring?

AssumeV (G) :{Vl,Vz,"‘aVn}

Give G an arbitrary orientation.

QG(xl’”.’xn): I_lgxi—xj)

(Vv JE



Assume p > g are positive integers

A (p, g)-colouring of & is
c:V — Z, such that

r~y = q=|c(z)—c(y)|=p—gq

0

1 4
A (5, 2)-colouring of C'5

A (p, 1)-colouring 1s a p-colouring



r~y = q=|c(x) —c(y)| =p—q
7
Colors assigned to adjacent 8

vertices have circular distance
at least g

11

12

13




Colorset 7z, = {0,1,...,p —1} . 4

r~y = q=|c(x) —c(y)| =p—q
7
Colors assigned to adjacent

vertices have circular distance
at least 1

11 12 13

The circle has perimeter g



The circular chromatic number of & is

Xc(G) = min{p/q : G has a (p, g)-colouring }



What is the polynomial for circular colouring?

Assume V (G) :{Vl,Vza"‘aVn}

Give G an arbitrary orientation.

g—1
f(:rla L2y .'.'mﬂ-) — H H (Tj T Ezw.ikfpﬂ?j")'

(vj.vr)e D k=—qg+1




An idea of Norine



a. Ny
v : Z, — C be defined as v(l) = p2mil/p

qg—1

f("T'l_'.' L2y .. _._.11?.”_) — H H (TJ — Ezﬁik";p;’l‘.jr).

h:V — Z,is a (p, q)-colouring of G

F(y(h(v)),v(R(v2)),...,v(h(vy))) # 0.




Combinatorial Nullstellensatz:

Let F' be a field, f(z1,...,2n) € Flz1, ..., 2,]

Suppose the degree of f is 2;1:1 t;.

If the coefficient of JT7_, % in f is nonzero,

then for any subsets Sy,....5, of F

with |S;| =t; + 1,

there exist s;1 € S4.,...,s, € .5, such that

f(Sl:" .. :'Sﬂ,) # 0




Theorem [Alon-Tarsi]

Suppose D 1s an orientation of G with
\[EE(D)l #10OE(D)\. Then G 1s

(d}, +1)—choosable




¢: E(D)—{0,1,...,2¢ — 1} eulerian {—)

i

for each vertex v, Z o(e) = Z o(e).

ec B (v) ecE L (v)



> [J (=)

JC{—q+1,....q—1},|J|=l j&J

the coefficient of the monomial

l—[n ,- t; in fis
j=13

> D" ey

o 18 eulerian el



An eulerian mapping ¢ is even if Z¢(€) IS even
elLlE(D)

Wp,q(¢): |_| aq)(e)(paQ)

elLIE(D)

w, (@) =1

|EE(D)IZIOE(D)l= > w, (#)Z > w, (§)

@ is even @ is odd




Theorem [Norine-Wong-Z, 2008]

Suppose D 1s an orientation of G with

dw (@B D w (P

@ is even @ is odd
If Lisa p-list with IL(v)I=d}(v)(2g—1)+1,
then G 1s L-(p,q)- colourable.




Theorem [Norine-Wong-Z, (JGT 2008)]

Suppose G 1s bipartite, [ 1s a list - size assignment

such that for any subgraph H of G,
D> ()= =2 EH)I(2g-1)

xV (H)

Then G 1s [-(p,q)- choosable.

gd=1 case was proved by Alon-Tarsi in 1992.

Corollary[Norine]:
Even cycle are circular 2-choosable.

The only known proof uses combinatorial nullstellensatz



X.,(G) =minq¢:

\

p,q,if [(x) = tq, then

G 1s/—=(p,q)—choosable

X.,(G) :circular choosability of G

Corollary: Even cycle are circular 2-choosable.

XC,Z(CZIC) = 2



Theorem [Z, 2005]: For any positive integer k, for any
£ > (), there is a k-degenerate graph G with

X (G)>2k—¢€

X,(G) <k +1

Conjecture: Every 2-choosable graph is circular
2-choosable.

Equivalent formulation:
92 22k IS circular 2-choosable.



Theorem [Norine-Wong-Z, 2008]

If G is bipartitie then Xcl(G) <D mad(G)

4k +8
Xei(6s5,50) S 2k +3

Theorem [Liu-Norine-Pan-Z,2010]

Every 2-choosable graph is consecutive
circular 2-choosable.




Circular chromatic index
Theorem [Vizing] For any simple graph G,
AG) € ¥'(G) < AG) +1
Corollary For any simple graph G,

AG) < x.'(G) < AG) +1

If A(G)=2 , then

1 1 1
"(G)U2,3,2+—,2+—,...,2+—,...
vonfazelael 2l ]

What are the possible values of circular chromatic
Indices?



Theorem [Afshani-Ghandehari-Ghandehari-Hatami-
Tusserkani-Z, 2005]

If A(G)=3, then X.'(G) 5[3,%] D{4}
(1—1,4) IS @ gap
3
Are there other gaps?

Petersen graph is the only known graph with
circular chromatic index 11/3.

No graphs are known to have y '(G)D(z,l—l)
‘ 2 3

(z 1—1) i ibl
29 3 IS a POSSIDIE gap.



Theorem [Kral-Macajova-Mazak-Sereni, 2011]

A(G)=3,girth(G)=26= Y.'(G) < %
If A(G)=2 |, then
1 1 1
"(G)U<2,3,2+—,2+—,...,2+—,...
vopfanaet ot ol ]

Theorem [Lukot’ka-Mazak, 2011]

For any rational rU[3,10/3] , there is a cubic G
WIth . "(G) =



Theorem [Kaiser-Kral-Skrekovki-Z,2007]

£>0,k 22,Cg,girth(G) = g = x.'(G) <k +&.

Theorem [Lin-Wong-Z,2011]

1
For any rational r U[2k +1,2k +1+—] | there is a
(2k+1)-regular graph G with

X. (G)=r.



Question: Are there other gaps ?

Question: Are there other intervals where
circular chromatic indices are dense ?



y o P e o

2| Thank you!




Thank youl!




