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Recall...

CSP Dichotomoy Classification Conjecture

For a core relational structure H, CSP(H) is NP-complete if
H omits WNU polymorphisms and is otherwise polynomial
time solvable.
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A symmetric graph H is reflexive if every edge has a loop.
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We usually don’t draw the loops.
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CSP(H) is trivial for such H, so we assume H also has all
singleton unary relations.
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I CSP(H) is H-precolouring extension

I Any H is a core.

I All polymorphisms are idempotent.



Semilattice
Polymorphisms

Mark Siggers

Motivation

Reflexive Graphs

Semilattice
Polymorphisms

Goals

Semilattice
Polymorphisms

SL vs. NUF

Homotopy

End

We don’t draw these singleton relations either.
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I CSP Dichotomy is equivalent to Dichotomy for
symmetric reflexive graphs. [Feder Vardi 98] .

I Dichotomy is done for MinHOM of reflexive graphs.
[Gutin Hell Rafiey Yao 07] .
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A vague notion: Reflexive Graphs have no
Pushing

I One characterization of the set of structures omitting
WNU is that one can make edge gadgets for them to
encode 3-colouring.

I For this some vertex gadget that will map to one of
three spots, and some edge gadget that keeps two
vertex gadgets apart.

I To keep them apart the only way we can do it seems to
be to push them apart, for which we basically need
direction, or to pull them apart by wrapping the gadget
around a ’hole’.

I In mapping to reflexive graphs, there is only pulling,
requiring ’holes’, which will translate to cycles that we
can’t move across- induced cycles, but more than just
that.
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Why Semilattice polymorphisms?
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For reflexive graphs that ’hardness’ comes from induced
cycles that are ’non-contractible’.
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Chordal

WNU

Chordal graphs have no induced cycles, while Larose ’04 shows
that if a reflexive graph admits WNU then cycles ’contract’.
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Chordal

WNU

TSI

Graphs admitting TSI ’contract’ in a stronger sense.
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Between this are graphs admitting SL or NUF.

While Larose and Zadori [03] show there are
structures in NUF \ TSI, Loten [03] shows for
reflexive graphs that NUF ⊂ TSI.

Reflexive graphs admitting NU polymorphisms
have been characterised by Brewster, Feder,
Hell, Huang, MacGillivray [06] and Larose,
Loten, Tardif, [06] .
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Our goals are to...

I Draw this diagram
properly.

I Characterise the various
intersections.

I Relate the intersections to
the way circles contract.

NUF

TSI

SL
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Definition: Polymorphism

A polymorphism of H is a homomorphism of Hd to H.

Polymorphisms of reflexive graphs are necessarily
idempotent:

φ(a, a, . . . , a) = a
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A polymorphism is TSI if

φ(x1, . . . , xd) = φ(y1, . . . , yd)

when {x1, . . . xd} = {y1, . . . , yd} as sets.
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A polymorphism is a NUF if

φ(x , x , . . . , x , y)

= φ(x , x , . . . , y , x)

=
...

= φ(y , x , . . . , x , x) = x

for all x , y .
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A 2-ary polymorphism is SL (semi-lattice) if it is symmetric
and associative.



Recall that

A semilattice operation φ on a set
of points defines a partial order of
the points by

u < v if φ(u, v) = u.

We represent a semilattice by its
Hasse diagram of covers.
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Recall that

The semilattice operation is glb:
φ(a, b) = a ∧ b.
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Given a semilattice operation on a set of vertices,

and a re-
flexive graph on the vertices,
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Given a semilattice operation on a set of vertices, and a re-
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What other edges are needed so that the semilattice operation
is a polymorphism?
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Polymorphism: u ∼ u′, v ∼ v ′ ⇒ u ∧ v ∼ u′ ∧ v ′
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For a chain semilattice, the polymorpihsm property simply
becomes the min-property, or the X -underbar property, so by
Feder Hell 98 , the graphs admitting chain semilattices are
exactly interval graphs.
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embedded skeletal

tree

embedded
skeletal

embedded
skeletal
tree

embedded skeletaltree

Semilattice

There are SL polymorphisms of
graphs that are

I tree and embedded but not
skeletal

I tree and skeletal but not
embedded

But...



tree

embedded skeletal

tree

embedded
skeletal

embedded
skeletal
tree

embedded skeletaltree

Semilattice

If a SL polymorphism is skeletal and
embedded, then it must be tree.
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tree

embedded

skeletal
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Semilattice

Proposition

Any graph admitting a tree SL
admits an embedded tree SL.

Proposition

Any graph admitting a skeletal SL
admits a skeletal embedded tree SL.
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On skeletal trees, the polymorphism
property again simplifies to the X -
underbar property, and so

Easy Proposition

A graph admits a skeletal
polymorphism if and only if it is
chordal.

= interval graph

= chordal

embedded

tree

skeletal

chain  

Semilattice

TSI



Semilattice
Polymorphisms

Mark Siggers

Motivation

Semilattice
Polymorphisms

Picture of a
Semilattice

Types of SL
Polymorphisms

Chordal Graphs

SL vs. NUF

Homotopy

End

Recall that...

a chordal graph can be represented as the intersection graph
of a set of subtrees of some tree.

Definition

The leafage of a chordal graph H is the minimum number of
leaves in a tree that gives an intersection representation of
H.

Theorem [BFFHM]

Every chordal graph of leafage k admits a NUF of arity k + 1.
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Proposition

A chordal graph has leafage k if and only if it admits a
skeletal SL polymorphism in which the Hasse diagram has k
leaves.
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Given a graph H, take its clique graph CL(H), and add edges
between them accoring to incidence: CR(H).



If we can remove edges from H such that it remains connected,
and the full graph CR∗(H) is chordal, then H is chordal re-
ducible .
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I Chordal graphs are chordal reducible.

I Graphs with a universal vertex are chordal reducible.

I Chordal reducible graphs have NUF of some arity.

I Are all graphs with 4-NU chordal reducible?
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V properties of tree SL polymorphisms

In a graph with an embedded SL polymorphism, and edge be-
tween incomparible vertices induces edges in the V below it.
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V properties of tree SL polymorphisms

Other parts of the graph may induce more edges in the V , so
these edges are not enough to ensure we have a polymorphism.
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Other parts of the graph may induce more edges in the V , so
these edges are not enough to ensure we have a polymorphism.
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V properties of tree SL polymorphisms

The strong-V property more than ensures our SL ordering is a
polymorphism.
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Proposition

Chordal reducible graphs admit strong V tree
polymorphisms.
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Further...

Proposition

If a reflexive graph admits a strong-V tree SL, then it
admits NUF.
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The starting point of the theory of homotopy of graphs it the

product I × Cd , if I×
→
Cd .
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H

Hom(C ,H)5

The graph Hom(Cd ,H) for a graph H has as vertices the ho-
momorphisms of Cd to H.
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Two are adjacent if the are the restriction of a homomorphism
of I × Cd to the end copies of Cd .
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Of course, the homomorphisms need not be injective.
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We can do the same with a directed cycle
→
Cd .
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I As H is reflexive, the constant maps induce a copy of H
in Hom(C5,H). This is the constant copy of H.

I A homorphism in Hom(Cd ,H) contracts if it is in the
same component as the constant copy of H.
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A contraction of a copy C of C5 in H can be viewed as a
homomorphism Pd × C5 to H, where the first copy of C5 is C
and the last copy is constant.



Consider the graph H above.



In Hom(
→
C5,H), the outer cycle is adjacent to the inner C5, so contracts.



However it is isolated in Hom(C5,H).



Theorem [LLT 06, BFHHM 08]

If a reflexive graph admits a NUF
then it is dismantlable.

Well known

If a graph H is dismantlable then
Hom(G ,H) is connected.

So H omits NUF.



Theorem [Loten 03]

The shown graph admits TSI of every arity (so
WNU).

Theorem [Larose 04]

If H admits a Taylor term (so WNU) then any
cycle Cd in H contracts in Hom(CD ,H) for large
enough D.



So the outer C5, when allowed to expand to a C6 contracts, as it should.
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Lemma

Two Cds are homotopic in Hom(
→
Cd ,H) if and only if they

are homotopic in Hom(Cd+1,H).
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Proposition

If a reflexive graph H admits a d-ary TSI then any copy of

Cd contracts in Hom(
→
Cd ,H), ( so in Hom(Cd+1,H)).
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Proof:

For a C5, a ∼ b ∼ c ∼ d ∼ e in H, the TSI restricted to the
following P4 × C5 in H5

aa
aa
a

b
b
b
b
b

cc
cc
c

dd
dd
d

ee
ee
e

aaaae

aaaed

aaedc

aedcb

ba
ed
c

cb
ae
d

dc
ba
e

edcba

eeeed

eeedc

eedcb

is a contraction of the C5.
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An aside

Larose’s [La04] result that all cycles contract ( if allowed to
expand) if H has a Taylor term follows

I by the above proof

I from Barto and Kozik’s [BK10] result that such H has a
cyclic term of some arity.
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So far...

I If H admits WNU then all Cd contract with expansion.

I If H admits SL then all Cd contract by expanding at
most one (as H admits TSI of all arity).

I If H admits NUF then all Cd contract without
expanding (as H is dismantlable).
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Relative Homotopy

Definition

For reflexive graphs G and H and vertices g and h of these
graphs respectively, let Hom(G , g ;H, h) be the subgraph of
Hom(G ,H) induced by homomorphisms taking g to h.

Using a result of [LLT 06] on can easily show

Proposition

If G admits a NUF, then for all G , g , H, and h,
Hom(G , g ;H, h) is connected.



Relative Homotopy Example

The outer circle contracts relative to the blue vertex.
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Relative Homotopy Example

The outer circle contracts relative to the blue vertex.



Relative Homotopy Example

But not relative to the red one. So it omits NUF.
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Observation: Not only are reflexive graphs admitting NUF
dismantlable, they must have at least two dismantlable
vertices.
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If H has a semilattice polymorphism ∧ then applying
φ(v1, . . . , v5) = v1 ∧ · · · ∧ v5 to
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If H has a semilattice polymorphism ∧ then applying
φ(v1, . . . , v5) = v1 ∧ · · · ∧ v5 to

gives a homotopy of a ∼ . . . e ∼ a to
∧
C5.
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If
∧
C5 is a vertex in C5, then



Semilattice
Polymorphisms

Mark Siggers

Motivation

Semilattice
Polymorphisms

SL vs. NUF

Homotopy

Definitions

Examples

Relative Homotopy

Shrinking Homotopies
under SL

End

If
∧
C5 is a vertex in C5, then

it appears at least twice consecutively in the first step of the
homotopy, so the cycle can be viewed as shrinking to a C4.
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And continuing to shrink by at least one vertex per step.
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We can view such a homotopy as homomorphism of this to H.
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In the case that ∧ is a (embedded) tree SL
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In the case that ∧ is a (embedded) tree SL

∧
appears at least twice in the first step, whether or not

∧
C5

is in C5, but not necessarily consecutively.
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In the case that ∧ is a strong-V tree,
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In the case that ∧ is a strong-V tree,

∧
appears at least twice consecutively in the first step, whether

or not
∧
C5 is in C5.
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In the case that ∧ is a strong-V tree,
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In the case that ∧ is a strong-V tree,

Then the strong V -property implies more edges.
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In just the first step one can find a ’strong’ contraction of the
C6 to a C3 in Hom(C6,H), and a contraction of C9 to a C3 in
Hom(C9,H).
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So if H has a

I TSI, then cycles contract without expanding.

I NUF, then cycles contract relative to any vertex.

I SL, then cycles contract, shrinking at each step except
maybe the first.

I Tree SL, then cycles contract, shrinking at each step.

I Strong-V SL, cycles contract quickly.

( In Hom(
→
Cd ,H). )
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So, this...

Omits tree SL as the outer circle is not adjacent in Hom(
→
C5,H)

to anything with only 4 distinct vertices.
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So, this...

This graph has an embedded SL, but omits tree SL by the same
reason. ...
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So, this...

This graph has a NUF and an tree SL but omits strong-V SL.
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Also.

Can any of these classes be characterised in terms of these
homotopies of circles?
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Also.

Can any of these classes be characterised in terms of these
homotopies of circles?
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