Partitions of graphs with bounded maximum average degree

André Raspaud
LaBRI
Université Bordeaux I
France

Workshop on Graph Homomorphisms
FIELDS INSTITUTE Research in Mathematical Science,
Toronto, CANADA
July 11-55, 2011

Proper k-coloring

Proper k-coloring

Let G be a graph and $k(k \geq 1)$ an integer.
A proper k-coloring of G is a mapping $\phi: V(G) \longrightarrow\{1, \cdots, k\}$ such that:

- for every edge $x y, \phi(x) \neq \phi(y)$

In other words, a k-coloring of G is a partition $V_{1}, V_{2}, \cdots, V_{k}$ of $V(G)$ such that V_{i} is an independent set for every i, i.e., the subgraph induced by V_{i} has maximum degree zero.

d-improper k-coloring

Burr and Jacobson (1985), Cowen, Cowen, and Woodall (1986), Harary and Jones (1985).

d-improper k-coloring

Let G be a graph and $k, d(k, d \geq 1)$ integers.
A d-improper k-coloring of G is a mapping $\psi: V(G) \longrightarrow\{1, \cdots, k\}$ such that:

- $\forall i, 1 \leq i \leq k, G[i]$ has a maximum degree at most d
- $G[i]$ is the subgraph induced by color i.

Every vertex v has at most d neighbors receiving the same color as v.

- a d-improper k-coloring : (d, \cdots, d)-coloring
- a ($0,0,0,0$)-coloring is a proper 4 -coloring.
- a $(2,2,2)$-coloring is a 2 -improper 3-coloring.
d-improper k-coloring

(1, 1)-coloring

Known results

Appel and Haken, 1977

- Every planar graph is $(0,0,0,0)$-colorable.

Cowen, Cowen, and Woodall, 1986

- Every planar graph is 2 -improperly 3 -colorable, i.e. (2,2,2)-colorable.

Xu, 2009

Every plane graph with neither adjacent triangles nor 5-cycles is (1, 1, 1)-colorable.

Known results-Choosability

Definition

A graph G is d-improper m-choosable, or simply $(m, d)^{*}$-choosable, if for every list assignment L, where $|L(v)| \geq m$ for every $v \in V(G)$, there exists an L-colouring of G such that each vertex of G has at most d neighbours coloured with the same colour as itself.

Eaton and Hull (1999), Škrekovski (1999)

- Every planar graph is 2-improper 3-choosable: $(3,2)^{*}$-choosable.

If a graph G is 2-improper 3-choosable then it is (2,2,2)-colorable.

Škrekovski proved that for every k, there are planar graphs which are not k-improper 2-colorable.

Known results

Cushing and Kierstead (2009)

Every planar graph is 1 -improper 4 -choosable $\left((4,1)^{*}\right.$-choosable).

Dong and Xu 2009

Let G be a plane graph without any cycles of length in $\{4,8\}$, then G is $(3,1)^{*}$-choosable.

Question (Xu and Zhang, 2007)

Is-it true that every planar graph without adjacent triangle is
$(3,1)^{*}$-choosable.
Every planar graph without adjacent triangle is $(1,1,1)$-colorable?

Known results

Definition-Maximum average degree

$$
\operatorname{Mad}(G)=\max \left\{\frac{2 \cdot|E(H)|}{|V(H)|}, H \subseteq G\right\} .
$$

Known results

Definition-Maximum average degree

$$
\operatorname{Mad}(G)=\max \left\{\frac{2 \cdot|E(H)|}{|V(H)|}, H \subseteq G\right\} .
$$

In 1995, Jensen and Toft showed that there is a polynomial algorithm to comput $\operatorname{Mad}(G)$ for a given graph G.
> T. R. Jensen and B. Toft, Choosability versus chromaticity, Geombinatorics 5(1995), 45-64.

if G is a planar graph with girth g, then $\operatorname{Mad}(G)<\frac{2 g}{g-2}$.

Known results

Havet and Sereni, 2006

- For every $k \geq 0$, every graph G with $\operatorname{Mad}(G)<\frac{4 k+4}{k+2}$ is k-improperly 2 -colorable (in fact k-improperly 2 -choosable), i.e. (k, k)-colorable
- $k=1 \operatorname{Mad}(G)<\frac{8}{3}:(1,1)$-colorable (planar, $\left.g=8\right)$.
- $k=2 \operatorname{Mad}(G)<3:(2,2)$-colorable (planar, $g=6$).

A more general result:

Theorem (Havet and Sereni)

For every $l \geq 2$ and every $k \geq 0$, all graphs of maximum average degree less than $\frac{l(l+2 k)}{l+k}$ are k-improper l-choosable.
it implies (k, \cdots, k)-colorable.

$\left(d_{1}, d_{2}, \cdots, d_{k}\right)$-coloring

$\left(d_{1}, d_{2}, \cdots, d_{k}\right)$-coloring

A graph G is $\left(d_{1}, d_{2}, \cdots, d_{k}\right)$-colorable if and only if:

- it exists a partition of $V: V=V_{1} \cup V_{2} \cup \cdots \cup V_{k}$ such that $\forall i \in[1, k]$, $\Delta\left(G\left[V_{i}\right]\right) \leq d_{i}$

$(2,1)$-coloring

In this talk: $(1,0),(k, 0),(k, 1),(k, j)$

(1, 0)-colorable

Theorem (Glebov and Zambalaeva, 2007)
 Every planar graph is $(1,0)$-colorable if $g(G) \geq 16$.

Theorem (Borodin and Ivanova, 2009)
 Every graph is $(1,0)$-colorable if $\operatorname{Mad}(G)<\frac{7}{3}$

This implies: A planar graph is (1,0)-colorable if $g(G) \geq 14$

Sketch of proof: every graph is $(1,0)$-colorable if $\operatorname{Mad}(G)<\frac{7}{3}$

New technique first introduced by Borodin, Ivanova and Kostochka in 2006.

Let $G=(V, E)$ be a minimum counterexample to the theorem.

- $\delta(G) \geq 2$ and G is connected.
$-\frac{\sum_{v \in V} d(v)}{|V|}=\frac{2|E|}{|V|}<\frac{7}{3} \Longrightarrow 3 \sum_{v \in V} d(v)<7|V|$

$$
\Longrightarrow \sum_{v \in V}(6 d(v)-14)<0
$$

- We give a charge $\forall v \in V \mu(v)=6 d(v)-14$ $d(v)=2 \Longrightarrow \mu(v)=-2, d(v)=3 \Longrightarrow \mu(v)=4$ etc.
- The total charge is negative, we will redistribute the charges in such a way that the total charge will be non negative. The sum of charges does not change, this is a CONTRADICTION.

Sketch of proof: every graph is $(1,0)$-colorable if $\operatorname{Mad}(G)<\frac{7}{3}$

Let $G=(V, E)$ be a minimum counterexample to the theorem.

Lemme

G does not contain no 2-vertex adjacent to two 2-vertices.

Sketch of proof: every graph is $(1,0)$-colorable if $\operatorname{Mad}(G)<\frac{7}{3}$

Lemme

G does not contain $a(2,2,2)$-vertex.

Sketch of proof: every graph is $(1,0)$-colorable if $\operatorname{Mad}(G)<\frac{7}{3}$

Recall: $d(v)=2 \Longrightarrow \mu(v)=-2, d(v)=3 \Longrightarrow \mu(v)=4$

- 2-vertex $\Longrightarrow \mu^{*}(v)=0$
- $(2,2,1)$-vertex $\Longrightarrow \mu^{*}(v)=-1$
- $(2,1,1)$-vertex $\Longrightarrow \mu^{*}(v)=0$
- $(1,1,1)$-vertex $\Longrightarrow \mu^{*}(v)=1$

Sketch of proof: every graph is $(1,0)$-colorable if $\operatorname{Mad}(G)<\frac{7}{3}$

Feading Area

A maximal subgraph consisting of $(2,2,1)-,(2,1,1),-(1,1,1)$-vertices mutually accessible from each other along 1-paths, and of those 2-vertices adjacent to vertices of FA only.

Sketch of proof: every graph is $(1,0)$-colorable if $\operatorname{Mad}(G)<\frac{7}{3}$

Sketch of proof: every graph is $(1,0)$-colorable if $\operatorname{Mad}(G)<\frac{7}{3}$

Soft component

A feading area FA such that all edges from FA to $G \backslash F A$ belongs to 2-paths

Sketch of proof: every graph is $(1,0)$-colorable if $\operatorname{Mad}(G)<\frac{7}{3}$

Soft component

A feading area FA such that all edges from FA to $G \backslash F A$ belongs to 2-paths

Lemma

G has no soft component.

Sketch of proof: every graph is $(1,0)$-colorable if $\operatorname{Mad}(G)<\frac{7}{3}$
A tough vertex is a 3 -vertex incident with at least one 0-path.
No soft component implies:

Corollary

For each feeding area FA, there exists a xz 1-path such that $x \in F A$ and $z \notin$ FA where z is tough or $d(z) \geq 4$

The key Lemma

Let n_{221} be the number of $(2,2,1)$-vertices in a feeding area FA, n_{111} be the number of $(1,1,1)$-vertices of FA, b be the number of 1-path going from $F A$ to tough or ≥ 4-vertices. Then $n_{221} \leq n_{111}+b$

Rules of discharging

R1 Every 2-vertex that belong to a 1-path gets 1 from its ends, each 2-vertex that belongs to a 2-path gets charge 2 from the neighbor vertex of degree greater than 2.
R2 Each (2, 2, 1)-vertex gets 1 from its feeding area, each feeding area gets 1 from each of its (1,1,1)-vertex and along each 1-path that goes to a tough vertex or $\mathrm{a} \geq 4$-vertex.

Sketch of proof: every graph is $(1,0)$-colorable if $\operatorname{Mad}(G)<\frac{7}{3}$

- After appliying R1 and R2, the new charge of a 2-vertex v is $\mu^{*}(v)=0$. By the Key lemma the total charge of each feeding area is non negative. Each tough vertex has also a nonnegative charge.
- If $d(v) \geq 4$. v gives at most 2 along each incident edge by R 1 and R 2 , then:

$$
\mu^{*}(v) \geq 6 d(v)-14-2 d(v)=4 d(v)-14>0
$$

The total charge is non negative: a contradiction.

Improvement

Theorem (Borodin and Kostochka, 2010)

Every graph G with $\operatorname{Mad}(G) \leq \frac{12}{5}$ is $(1,0)$-colorable and the restriction on $\operatorname{Mad}(G)$ is sharp.

Improvement

Theorem (Borodin and Kostochka, 2010)

Every graph G with $\operatorname{Mad}(G) \leq \frac{12}{5}$ is $(1,0)$-colorable and the restriction on $\operatorname{Mad}(G)$ is sharp.

$$
\operatorname{Mad}\left(G_{p}\right)=\frac{2\left|E\left(G_{p}\right)\right|}{\left|V\left(G_{p}\right)\right|}=\frac{12 p+6}{5 p+2}=\frac{12}{5}+\frac{6}{5(5 p+2)}
$$

$(k, 0)$-coloring

($k, 0$)-coloring

- Bipartition V_{1}, V_{2} of $V(G)$
- $\Delta\left(G\left[V_{1}\right]\right) \leq k$ and $G\left[V_{2}\right]$ is a stable set.

Color k : vertices of V_{1}
Color 0: vertices of V_{2}.
$k=1$
Theorem (Borodin and Kostochka, 2010)
Every graph is $(1,0)$-colorable if $\operatorname{Mad}(G) \leq \frac{12}{5}$

Corollary

A planar graph is $(1,0)$-colorable if $g(G) \geq 12$

Outerplanar graphs

Smallest value of k such that G admits a ($k, 0$)-coloring?

Outerplanar graphs

Smallest value of k such that G admits a $(k, 0)$-coloring?

$$
k=1 ?
$$

Outerplanar graphs

Smallest value of k such that G admits a $(k, 0)$-coloring?

$$
k=1 ?
$$

Outerplanar graphs

(2, 0)-coloring

Outerplanar graphs

Claim

- Outerplanar graphs with girth 4 are (2,0)-colorable.
- Outerplanar graphs with girth 5 are (1,0)-colorable.
(the girth of a graph G is the length of a shortest cycle of G.)

Outerplanar graphs

For outerplanar graphs with girth $3, k$ is unbounded.

Non ($k, 0$)-colorable outerplanar graph with girth 3

Outerplanar graphs

For outerplanar graphs with girth $3, k$ is unbounded.

Non ($k, 0$)-colorable outerplanar graph with girth 3

Outerplanar graphs

For outerplanar graphs with girth $3, k$ is unbounded.

Non ($k, 0$)-colorable outerplanar graph with girth 3

$$
\operatorname{Mad}\left(G_{p, k}\right)=\frac{2\left|E\left(G_{p, k}\right)\right|}{\left|V\left(G_{p, k}\right)\right|}=\frac{2((3 k+2)(p+1)-1)}{(2 k+2)(p+1)-1} \underset{p \rightarrow \infty}{ } \frac{3 k+2}{k+1}
$$

Sparse graphs

Key concepts:

soft components, feading area

Theorem (Borodin, Ivanova, Montassier, Ochem, R., 2009)

Let $k \geq 0$ be a integer. Every graph with maximum average degree smaller than $\frac{3 k+4}{k+2}$ is $(k, 0)$-colorable.

- $\operatorname{Mad}(G)<\frac{5}{2} \rightarrow(2,0)$
- $\operatorname{Mad}(G)<\frac{13}{5} \rightarrow(3,0)$

Sparse graphs

Key concepts:

soft components, feading area

Theorem (Borodin, Ivanova, Montassier, Ochem, R., 2009)

Let $k \geq 0$ be a integer. Every graph with maximum average degree smaller than $\frac{3 k+4}{k+2}$ is $(k, 0)$-colorable.

- $\operatorname{Mad}(G)<\frac{5}{2} \rightarrow(2,0)$
- $\operatorname{Mad}(G)<\frac{13}{5} \rightarrow(3,0)$

Optimality:

$$
\lim _{p \rightarrow \infty} \operatorname{Mad}\left(G_{p, k}\right)=\frac{3 k+2}{k+1}<\frac{3 k+4}{k+2}+\frac{1}{k+3} .
$$

Planar graphs

Corollary

Every planar graph G is:

- (1,0)-colorable if $g(G) \geq 14$,
- $(2,0)$-colorable if $g(G) \geq 10$,
- $(3,0)$-colorable if $g(G) \geq 9$,
- $(4,0)$-colorable if $g(G) \geq 8$,
- (8,0)-colorable if $g(G) \geq 7$.

Planar graphs

Corollary

Every planar graph G is:

- (1,0)-colorable if $g(G) \geq 14$,
- $(2,0)$-colorable if $g(G) \geq 10$,
- $(3,0)$-colorable if $g(G) \geq 9$,
- $(4,0)$-colorable if $g(G) \geq 8$,
- $(8,0)$-colorable if $g(G) \geq 7$.

For planar graphs with girth $6, k$ is unbounded.

Non ($k, 0$)-colorable planar graph with girth 6

Theorem (Borodin, Ivanova, Montassier, R., 2010)

Let $k \geq 2$ be a integer. Every graph with maximum average degree smaller than $\frac{10 k+22}{3 k+9}$ is $(k, 1)$-colorable.

$(k, 1)$-coloring

An example of $G_{n, k}$ with $n=3$ and $k=3$.

Non ($k, 1$)-colorable graph.

$$
\begin{aligned}
\operatorname{Mad}\left(G_{n, k}\right)=\frac{2\left|E\left(G_{n, k}\right)\right|}{\left|V\left(G_{n, k}\right)\right|} & =\frac{2(2 n-1+5(k-1) n+n(2 k+3))}{2 n-1+3(k-1) n+n(k+2)}=\frac{2(7 n k-1)}{n(4 k+1)-1} \\
& \lim _{n \rightarrow \infty} \operatorname{Mad}\left(G_{n, k}\right)=\frac{14 k}{4 k+1}
\end{aligned}
$$

(k, j)-coloring

For planar graphs:

$g(G)$	$(k, 0)$	$(k, 1)$	$(k, 2)$	$(k, 3)$	$(k, 4)$
3,4	\times	\times	\times	\times	\times
5	\times	$?$	$(13,2)$	$(7,3)$	$(4,4)[\mathrm{HS06}]$
6	\times	$(5,1)$	$(2,2)[\mathrm{HSO6}]$		
7	$(8,0)$	$(2,1)$			
8	$(4,0)$	$(1,1)[\mathrm{HS} 06]$			
9	$(3,0)$				
10	$(2,0)$				
14	$(1,0)$				

(k, j)-coloring: very last result

Let $F(j, k)$ denote the supremum of x such that every graph G with $\operatorname{Mad}(G)<x$ is (k, j)-colorable. It is easy to see that $F(0,0)=2$.

> Theorem (Borodin and Kostochka, 2011)
> Let $j \geq 0 \quad$ and $\quad k \geq 2 j+2$. Then $F(j, k)=2\left(2-\frac{k+2}{(j+2)(k+1)}\right)$.

- If $\operatorname{Mad}(\mathrm{G})<\frac{3 k+2}{k+1}(k \geq 2)$ then G is $(k, 0)$-colorable.
- If $\operatorname{Mad}(G)<\frac{10 k+8}{3 k+3}(k \geq 4)$ then G is $(k, 1)$-colorable.

Steinberg Conjecture

Conjecture (Steinberg, 1976)

Every planar graph without 4 and 5 -cycles is 3 -colorable $((0,0,0)$-colorable)

Erdös' relaxation '91: Determine the smallest value of k, if it exists, such that every planar graph without cycles of length from 4 to k is 3 -colorable.

- $k \leq 11$ Abbott and Zhou ('91)
- $k \leq 10$ Borodin ('96)
- $k \leq 9$ Borodin ('96) and Sanders and Zhao ('95)
- $k \leq 8$ Salavatipour (2002)
- $k \leq 7$ Borodin et al. (2005)

Steinberg Conjecture

Let \mathcal{F} be the family of planar graphs without cycles of length 4 and 5 . Can we prove that every graph in \mathcal{F} is:

- ($1,0,0$)-colorable?

Steinberg Conjecture

Let \mathcal{F} be the family of planar graphs without cycles of length 4 and 5 . Can we prove that every graph in \mathcal{F} is:

- ($1,0,0$)-colorable?
- ($1,1,0$)-colorable?

Steinberg Conjecture

Let \mathcal{F} be the family of planar graphs without cycles of length 4 and 5 . Can we prove that every graph in \mathcal{F} is:

- ($1,0,0$)-colorable?
- ($1,1,0$)-colorable?
- (1, 1, 1)-colorable (Xu, 2009)

Steinberg Conjecture

Let \mathcal{F} be the family of planar graphs without cycles of length 4 and 5 . Can we prove that every graph in \mathcal{F} is:

- (1, 0, 0)-colorable?
- ($1,1,0$)-colorable?
- (1, 1, 1)-colorable (Xu, 2009)
- $(2,0,0)$-colorable?

Steinberg Conjecture

Theorem (Chang, Havet, Montassier, R. 2011)
 Every graph of \mathcal{F} is (2,1, 0$)$-colorable.

$(2,1,0)$-colorability of \mathcal{F}

$$
\omega(v)=2 d(v)-6 \text { and } \omega(f)=r(f)-6 .
$$

By Euler's Formula $|V|-|E|+|F|=2$ and
$\sum_{v \in V} d(v)=2|E|=\sum_{f \in F} r(f)$, we have:

$$
\begin{gathered}
\sum_{v \in V} \omega(v)+\sum_{f \in F} \omega(f)=-12<0 \\
\text { If } r(f)=3 \text { then } \omega(f)=-3
\end{gathered}
$$

$(2,1,0)$-colorability of \mathcal{F}

Reducible configurations for ($\mathbf{2 , 1 , 0}$)-coloring. (C1) G contains no 2^{-}-vertices.

(C6)

(C7)

(C10)

$(2,1,0)$-colorability of \mathcal{F}

The discharging rules are as follows:
R1. Every 4-vertex gives $\frac{1}{2}$ to each pendent 3-face.
R2. Every 5^{+}-vertex gives 1 to each pendent 3 -face.
R3. Every 4-vertex gives 1 to each incident 3-face.
R4. Every non-light 5-vertex gives 2 to each incident poor (3,5,5)-face.
R5. Every 5 -vertex gives $\frac{3}{2}$ to each incident non-poor $(3,5,5)$-face or (3, 4, 5)-face.
R6. Every 5-vertex gives 1 to each other incident 3-face.
R7. Every 6^{+}-vertex gives 2 to each incident 3-face.

Thank you for your attention!

