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Proper k-coloring

Proper k-coloring

Let G be a graph and k (k > 1) an integer.
A proper k-coloring of G is a mapping ¢ : V(G) — {1,--- ,k} such that:

» for every edge zy, ¢(x) # (y)

In other words, a k-coloring of G is a partition Vi, Va,---, Vi of V(G) such
that V; is an independent set for every 4, i.e., the subgraph induced by V;
has maximum degree zero.



d-improper k-coloring

Burr and Jacobson (1985), Cowen, Cowen, and Woodall (1986), Harary and
Jones (1985).

d-improper k-coloring

Let G be a graph and k, d (k,d > 1) integers.
A d-improper k-coloring of G is a mapping ¢ : V(G) — {1,--- , k} such
that :

» Vi, 1 <i <k, G[i] has a maximum degree at most d

» G[i] is the subgraph induced by color 4.
Every vertex v has at most d neighbors receiving the same color as v.
» a d-improper k-coloring : (d,--- ,d)-coloring

» a (0,0,0,0)-coloring is a proper 4-coloring.

> a (2,2,2)-coloring is a 2-improper 3-coloring.



d-improper k-coloring

(1, 1)-coloring



Known results

Appel and Haken, 1977

» Every planar graph is (0,0, 0, 0)-colorable.

Cowen, Cowen, and Woodall, 1986

» Every planar graph is 2-improperly 3-colorable, i.e. (2,2, 2)-colorable.

Xu, 2009

Every plane graph with neither adjacent triangles nor 5-cycles is
(1,1, 1)-colorable.



Known results-Choosability

A graph G is d-improper m-choosable, or simply (m, d)*-choosable, if for
every list assignment L, where |L(v)| > m for every v € V(G), there exists
an L-colouring of G such that each vertex of G has at most d neighbours
coloured with the same colour as itself.

Eaton and Hull (1999), Skrekovski (1999)

» Every planar graph is 2-improper 3-choosable: (3,2)*-choosable.

If a graph G is 2-improper 3-choosable then it is (2,2, 2)-colorable.

Skrekovski proved that for every k, there are planar graphs which are not
k-improper 2-colorable.



Known results

Cushing and Kierstead (2009)

Every planar graph is 1-improper 4-choosable ((4,1)*-choosable).

Dong and Xu 2009

Let G be a plane graph without any cycles of length in {4,8}, then G is
(3,1)"-choosable.

Question (Xu and Zhang, 2007)

Is-it true that every planar graph without adjacent triangle s
(3,1)"-choosable.

Every planar graph without adjacent triangle is (1,1, 1)-colorable?



Known results

Definition-Maximum average degree

Mad(G) :max{2'|E(H)|,H C G}.

V() "~



Known results

Definition-Maximum average degree

Mad(G) :max{2'|E(H)|,H C G}.

V() "~

In 1995, Jensen and Toft showed that there is a polynomial algorithm to
comput Mad(G) for a given graph G.

T. R. Jensen and B. Toft, Choosability versus chromaticity,

Geombinatorics 5(1995), 45-64.

if G is a planar graph with girth g, then Mad(G) < %.



Known results

Havet and Sereni, 2006

» For every k > 0, every graph G with Mad(G) < 4:%24 is k-improperly

2-colorable (in fact k-improperly 2-choosable), i.e. (k, k)-colorable

» k=1 Mad(G) < % : (1,1)-colorable (planar, g = 8).
» k=2 Mad(G) < 3: (2,2)-colorable (planar, g = 6).

A more general result:

Theorem (Havet and Sereni)

For every | > 2 and every k > 0, all graphs of maximum average degree less

than l(éi—i’“) are k-improper l-choosable.

it implies (k,--- , k)-colorable.



(d1,da,- -+ ,dy)-coloring

(d1,da,- -+ ,dy)-coloring

A graph G is (di,do, - - - , dy)-colorable if and only if:
> it exists a partition of V: V. =Vi UV, U--- UV} such that Vi € [1, k],

A(GVi]) < ds

(2, 1)-coloring

In this talk: (1,0), (k,0), (k, 1), (k)



(1,0)-colorable

Theorem (Glebov and Zambalaeva, 2007)

Every planar graph is (1,0)-colorable if g(G) > 16.

Theorem (Borodin and Ivanova, 2009)

Every graph is (1,0)-colorable if Mad(G) < %

This implies: A planar graph is (1, 0)-colorable if g(G) > 14



Sketch of proof: every graph is (1, 0)-colorable if Mad(G) < %

New technique first introduced by Borodin, Ivanova and Kostochka in

2006.

Let G = (V, E) be a minimum counterexample to the theorem.

» 0(G) > 2 and G is connected.

>vev Av) 2|E
pozeey ) A <1 = 3% d(v) < TV

= > v (6d(v) —14) <0

» We give a charge Yv € V pu(v) = 6d(v) — 14
d(v) =2 = p(v) = =2, d(v) =3 = u(v) = 4 etc.

» The total charge is negative, we will redistribute the charges in such a
way that the total charge will be non negative. The sum of charges
does not change, this is a CONTRADICTION.



Sketch of proof: every graph is (1, 0)-colorable if Mad(G) < %

Let G = (V, E) be a minimum counterexample to the theorem.

Lemme

G does not contain no 2-vertex adjacent to two 2-vertices.

[ ]
0 1 1 0 1
_____ o -----
different diffrente




Sketch of proof: every graph is (1, 0)-colorable if Mad(G) < %

Lemme

G does not contain a (2,2,2)-vertes.




Sketch of proof: every graph is (1, 0)-colorable if Mad(G) < %

Recall: d(v) =2 = p(v) = -2,d(v) =3 = u(v) =4

(1,1,1)-vertex

> 2-vertex = p*(v) =0

> (2,2,1)-vertex = p*(v) = -1
> (2,1,1)-vertex => p*(v) =0
> (1,1,1)-vertex = p*(v) =1



Sketch of proof: every graph is (1, 0)-colorable if Mad(G) < %

Feading Area

A maximal subgraph consisting of (2,2,1)-,(2,1,1),-(1,1, 1)-vertices
mutually accessible from each other along 1-paths, and of those 2-vertices
adjacent to vertices of FA only.




Sketch of proof: every graph is (1, 0)-colorable if Mad(G) < %



Sketch of proof: every graph is (1, 0)-colorable if Mad(G) < %

Soft component

A feading area FA such that all edges from FA to G\ F A belongs to 2-paths




Sketch of proof: every graph is (1, 0)-colorable if Mad(G) < %

Soft component

A feading area FA such that all edges from FA to G\ F A belongs to 2-paths

Lemma

G has no soft component.



Sketch of proof: every graph is (1, 0)-colorable if Mad(G) < %

A tough vertex is a 3-vertex incident with at least one O-path.
No soft component implies:

Corollary

For each feeding area FA, there exists a xz 1-path such that © € FA and z ¢
FA where z is tough or d(z) > 4

The key Lemma

Let m221 be the number of (2,2, 1)-vertices in a feeding area FA, ni11 be the
number of (1,1, 1)-vertices of FA, b be the number of 1-path going from FA
to tough or > 4-vertices. Then nz1 < ni11 + b

Rules of discharging

R1 Every 2-vertex that belong to a 1-path gets 1 from its ends, each
2-vertex that belongs to a 2-path gets charge 2 from the neighbor
vertex of degree greater than 2.

R2 Each (2,2,1)-vertex gets 1 from its feeding area, each feeding area gets

1 from each of its (1,1, 1)-vertex and along each 1-path that goes to a
tough vertex or a > 4-vertex.



Sketch of proof: every graph is (1, 0)-colorable if Mad(G) < %

» After appliying R1 and R2, the new charge of a 2-vertex v is p*(v) = 0.
By the Key lemma the total charge of each feeding area is non
negative. Each tough vertex has also a nonnegative charge.

» If d(v) > 4. v gives at most 2 along each incident edge by R1 and R2,
then:
u"(v) > 6d(v) — 14 — 2d(v) = 4d(v) — 14 > 0

The total charge is non negative: a contradiction.



Improvement

Theorem (Borodin and Kostochka, 2010)

Every graph G with Mad(G) < 2 is (1,0)-colorable and the restriction on
Mad(G) is sharp.




Improvement

Theorem (Borodin and Kostochka, 2010)

Every graph G with Mad(G) < 2 is (1,0)-colorable and the restriction on
Mad(G) is sharp.

_2IE(G,)|  12p+6 12 6

Mad(Gp)

T V(G| Bsp+2 5



(k,0)-coloring

(k,0)-coloring

» Bipartition V1,5 of V(G)
» A(G[V1]) < k and G[V%] is a stable set.

Color k: vertices of V3
Color 0: vertices of V5.

k=1

Theorem (Borodin and Kostochka, 2010)

Every graph is (1,0)-colorable if Mad(G) < 2

Corollary
A planar graph is (1,0)-colorable if g(G) > 12




Outerplanar graphs

Smallest value of k such that G admits a (k, 0)-coloring?



Outerplanar graphs

Smallest value of k such that G admits a (k, 0)-coloring?
k=17



Outerplanar graphs

Smallest value of k such that G admits a (k, 0)-coloring?
k=17



Outerplanar graphs

(2,0)-coloring



Outerplanar graphs

» Outerplanar graphs with girth 4 are (2,0)-colorable.
» Outerplanar graphs with girth 5 are (1,0)-colorable.

(the girth of a graph G is the length of a shortest cycle of G.)



Outerplanar graphs

For outerplanar graphs with girth 3, k£ is unbounded.

Non (k,0)-colorable outerplanar graph with girth 3



Outerplanar graphs

For outerplanar graphs with girth 3, k£ is unbounded.

Non (k,0)-colorable outerplanar graph with girth 3



Outerplanar graphs

For outerplanar graphs with girth 3, k£ is unbounded.

Non (k,0)-colorable outerplanar graph with girth 3

_2|E(Gpr)] _ 2(Bk+2)(p+1)—1) _ 3k+2
= |V(Gp,k)| - (2k:+2)(p_|_1)_1 P

Mad(prk)



Sparse graphs

Key concepts:

soft components, feading area

Theorem (Borodin, Ivanova, Montassier, Ochem, R., 2009)

Let k> 0 be a integer. Fvery graph with mazimum average degree smaller

than 315:_’24 is (k, 0)-colorable.

» Mad(G) < 2 — (2,0)
» Mad(G) <2 — (3,0)



Sparse graphs

Key concepts:

soft components, feading area

Theorem (Borodin, Ivanova, Montassier, Ochem, R., 2009)

Let k> 0 be a integer. Fvery graph with mazimum average degree smaller
than 315:_’24 is (k, 0)-colorable.

» Mad(G) < 2 — (2,0)

» Mad(G) <2 — (3,0)
Optimality:

. C3k+2 3k+4 1
pim Mad(Gpr) = 3= < 3755 T 353




Planar graphs

Corollary

Every planar graph G is:

> (1,0)-colorable if g(G) > 14,
> (2,0)-colorable if g(G) > 10,
> (3,0)-colorable if g(G) > 9,
> (4,0)-colorable if g(G) > 8,
> (8,0)-colorable if g(G) > 7.



Planar graphs

Corollary

Every planar graph G is:

> (1,0)-colorable if g(G) > 14,
> (2,0)-colorable if g(G) > 10,
> (3,0)-colorable if g(G) > 9,
> (4,0)-colorable if g(G) > 8,
> (8,0)-colorable if g(G) > 7.

For planar graphs with girth 6, k£ is unbounded.



2k+1 2k +1

Non (k,0)-colorable planar graph with girth 6



(K, 1)-coloring

Theorem (Borodin, Ivanova, Montassier, R., 2010)

Let k > 2 be a integer. Every graph with mazximum average degree smaller

than 13422 s (k,1)-colorable.




(K, 1)-coloring

An example of G, , with n =3 and k = 3.

Non (k, 1)-colorable graph.

_ 2[B(Gni)|  2(2n—1+5(k — 1)n+n(2k +3))  2(7nk — 1)
Mad(Gn.r) = |V(Gn,:)| T o 2n—1+43k-1n+nk+2) " n@k+1)-1

lim Mad(Gnx) = 4]1‘:]_{1




(K, j)-coloring

For planar graphs:

EIECIONINCE k2) [ (k3) ][ (k4)
3,4 X X X X X

5 X ? (13,2) (7,3) | (4,4) [HSO6]
6 X (5,1) (2,2) [HSO06]

7 (8,0) (2,1)

8 (4,0) | (1,1) [HSO06]

9 (3,0)

10 | (2,0)

14 (1,0)




(K, j)-coloring: very last result

Let F(j, k) denote the supremum of  such that every graph G
with Mad(G) < =z is (k, j)-colorable. It is easy to see that F'(0,0) = 2.

Theorem (Borodin and Kostochka, 2011)

Let >0 and k> 2j+2 Then F(j,k)zz(z—(jg)%).

» If Mad(G) < 3,%12 (k > 2) then G is (k, 0)-colorable.

> If Mad(G) < P2 (k > 4) then G is (k, 1)-colorable.




Steinberg Conjecture

Conjecture (Steinberg, 1976)

Every planar graph without 4 and 5-cycles is 3-colorable ((0,0,0)-colorable)

Erdds’ relaxation ’91: Determine the smallest value of k, if it exists, such
that every planar graph without cycles of length from 4 to k is 3-colorable.

k <11 Abbott and Zhou (’91)

k < 10 Borodin (*96)

k < 9 Borodin (’96) and Sanders and Zhao (’95)
» k < 8 Salavatipour (2002)

k < 7 Borodin et al. (2005)

v

v

v

v



Steinberg Conjecture

Let F be the family of planar graphs without cycles of length 4 and 5.
Can we prove that every graph in F is:

» (1,0, 0)-colorable?
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Steinberg Conjecture

Let F be the family of planar graphs without cycles of length 4 and 5.
Can we prove that every graph in F is:

» (1,0, 0)-colorable?
» (1,1, 0)-colorable?
» (1,1, 1)-colorable (Xu, 2009)
(2,0, 0)-colorable?



Steinberg Conjecture

Theorem (Chang, Havet, Montassier, R. 2011)

Every graph of F is (2,1,0)-colorable.



(2,1, 0)-colorability of F

w(v) = 2d(v) — 6 and w(f) =r(f) — 6.

By Euler’s Formula |V| — |E| + |F| = 2 and
> vev dv) =2|E| = ZfEF r(f), we have:

Zw(v)+2w(f):—l2<0.

veV feF
If r(f) = 3 then w(f) = -3



(2,1, 0)-colorability of F

Reducible configurations for (2, 1, 0)-coloring.
(C1) G contains no 2~ -vertices.

(2) (C3)

(C5) (C6)

(C10)




(2,1, 0)-colorability of F

The discharging rules are as follows:

R1.
R2.
R3.
R4.
R5.

R6.
R7.

Every 4-vertex gives % to each pendent 3-face.

Every 5"-vertex gives 1 to each pendent 3-face.

Every 4-vertex gives 1 to each incident 3-face.

Every non-light 5-vertex gives 2 to each incident poor (3,5, 5)-face.
Every b-vertex gives % to each incident non-poor (3,5, 5)-face or
(3,4, 5)-face.

Every 5-vertex gives 1 to each other incident 3-face.

Every 6'-vertex gives 2 to each incident 3-face.



Thank you for your attention!



