# The Complexity of the List Homomorphism Problem for Graphs 

L. Egri, ${ }^{1}$ A. Krokhin, ${ }^{2} \quad$ B. Larose, ${ }^{3} \quad$ P. Tesson ${ }^{4}$<br>${ }^{1}$ School of Computer Science<br>McGill University, Montréal<br>${ }^{2}$ School of Engineering and Computing Sciences Durham University, UK<br>${ }^{3}$ Department of Mathematics and Statistics<br>Concordia University, Montréal<br>${ }^{4}$ Département d'informatique et de génie logiciel Université Laval, Québec

Workshop on Graph Homomorphisms, Fields Institute, July 2011

## Overview

We completely classify the computational complexity of the list H-colouring problem for graphs:

- in combinatorial and algebraic terms;
- descriptive complexity equivalents are given as well via Datalog and its fragments;
- for every graph $\mathbf{H}$, the problem is either
- NP-complete,
- NL-complete,
- L-complete or
- first-order definable.


## Overview, continued

- Motivation: our algebraic characterisations match general complexity conjectures on constraint satisfaction problems;
- Metaproblem: the procedure to identify in which class a graph belongs is efficient.


## Preliminaries

## Definition

A graph is a structure $\mathbf{H}=\langle H ; \theta\rangle$ with a single binary relation $\theta$ which is symmetric: $(a, b) \in \theta$ iff $(b, a) \in \theta$.

Remark: Our graphs may have loops on certain vertices.

## Definition

A graph homomorphism is an edge-preserving map between two graphs. Formally, $f$ is a homomorphism $f: \mathbf{G} \rightarrow \mathbf{H}$ if $(f(u), f(v))$ is an edge of $\mathbf{H}$ for every edge $(u, v)$ of $\mathbf{G}$.

## Pictures of graphs and homomorphisms



## List Homomorphism Problems

Given a graph $\mathbf{H}$, the list homomorphism problem for $\mathbf{H}$ is:
$\operatorname{CSP}(\mathbf{H}+$ lists $)$

- Input: a graph $\mathbf{G}$, and for each vertex $v$ of $\mathbf{G}$ a list $L_{v}$ of vertices of $\mathbf{H}$;
- Question: is there a homomorphism $f: \mathbf{G} \rightarrow \mathbf{H}$, such that $f(v) \in L_{v}$ for all $v \in \mathbf{G}$ ?


## List Homomorphism Problems, cont'd



## Motivation and Background

- Our main motivation is a series of general conjectures that predict the (descriptive) complexity of Constraint Satisfaction Problems based on the properties of their associated algebra;
- Since part of the proof of our results relies on the algebraic and descriptive complexity approach, we give a brief overview of these.


## CSPs (homomorphism form)

## Definition

Let $\mathbf{G}=\left\langle G ; \rho_{1}, \cdots, \rho_{s}\right\rangle$ and $\mathbf{H}=\left\langle H ; \theta_{1}, \cdots, \theta_{s}\right\rangle$ be similar relational structures. A homomorphism from $\mathbf{G}$ to $\mathbf{H}$ is a relation preserving map $f: G \rightarrow H$, i.e. such that $f\left(\rho_{i}\right) \subseteq \theta_{i}$ for each $1 \leq i \leq s$.

## Definition ( $\operatorname{CSP}(\mathbf{H})$ )

Let $\mathbf{H}$ be a structure.
$\operatorname{CSP}(\mathbf{H})=\{\mathbf{G}: \mathbf{G} \rightarrow \mathbf{H}\}$, i.e.

- Input: a structure $\mathbf{G}$ similar to $\mathbf{H}$;
- Question: is there a homomorphism from $\mathbf{G}$ to $\mathbf{H}$ ?


## General CSPs

## CSP Classification Problems

Two main classification problems about problems $\operatorname{CSP}(\mathbf{H})$ :
(1) Classify $\operatorname{CSP}(\mathbf{H})$ w.r.t. computational complexity, i.e., w.r.t. membership in a given complexity class (e.g. $\mathrm{P}, \mathrm{NL}, \mathrm{L}$ ), modulo assumptions like $\mathrm{P} \neq \mathrm{NP}$
(2) Classify $\operatorname{CSP}(\mathbf{H})$ w.r.t. descriptive complexity, i.e., w.r.t. definability of $\operatorname{CSP}(\mathbf{H})$ in a given logic (FO, Datalog and its fragments - linear, symmetric)

In addition, there is a meta-problem:

- Determine the complexity of deciding whether $\operatorname{CSP}(\mathbf{H})$ has given (computational or descriptive) complexity.


## Datalog

## Datalog

- A Datalog Program consists of rules, and takes as input a relational structure.
- a typical Datalog rule might look like this one:

$$
\theta_{1}(x, y) \leftarrow \theta_{2}(w, u, x), \theta_{3}(x), R_{1}(x, y, z), R_{2}(x, w)
$$

- the relations $R_{1}$ and $R_{2}$ are basic relations from the input structures (EDBs);
- the relations $\theta_{i}$ are auxiliary relations (IDBs);
- the rule stipulates that if the condition on the righthand side (the body of the rule) holds, then the condition of the left (the head) should also hold.


## Datalog

## 2-colouring

- Let $\mathbf{H}=\langle\{0,1\} ; E=\{(0,1),(1,0)\}\rangle$ be the complete graph on 2 vertices. Clearly $\operatorname{CSP}(\mathbf{H})$ is just the 2-colouring problem.
- We describe a Datalog program that accepts precisely those graphs that cannot be 2-coloured.
- It uses a single binary auxiliary relation (IDB) we'll denote OddPath.


## Datalog

## A Datalog program for 2-colouring

A Datalog program recursively computes the auxiliary relations (IDBs).
Intuition: locally derive new constraints, trying to get a contradiction (to certify that there's no solution).

$$
\begin{aligned}
\operatorname{OddPath}(x, y) & \leftarrow E(x, y) \\
\operatorname{OddPath}(x, y) & \leftarrow \operatorname{OddPath}(x, z), E(z, u), E(u, y) \\
\gamma & \leftarrow \operatorname{OddPath}(x, x)
\end{aligned}
$$

The 0 -ary relation $\gamma$ is the goal predicate of the program: it "lights up" precisely if the input structure admits NO homomorphism to the target structure $\mathbf{H}$.

## Datalog

## Fragments

A Datalog program is linear if each rule contains at most one occurrence of an IDB in the body, i.e. if each rule looks like this

$$
\theta_{1}(x, y) \leftarrow \theta_{2}(w, u, x), R_{1}(x, y, z), R_{2}(x, w)
$$

where the $\theta_{i}$ 's are the only IDBs in it.
A linear Datalog program is symmetric if it is invariant under symmetry of rules, i.e. if the program contains the above rule, then it must also contain its symmetric:

$$
\theta_{2}(w, u, x) \leftarrow \theta_{1}(x, y), R_{1}(x, y, z), R_{2}(x, w) .
$$

## Datalog

## Definability in Datalog (and fragments)

We say that $\neg \operatorname{CSP}(\mathbf{H})$ is definable in (linear, symmetric) Datalog if there exists a (linear, symmetric) Datalog program that accepts precisely those structures that do not admit a homomorphism to $\mathbf{H}$.

Facts:

- $\neg \operatorname{CSP}(\mathbf{H})$ definable in Datalog $\Rightarrow \operatorname{CSP}(\mathbf{H}) \in \mathrm{P}$;
- $\neg \operatorname{CSP}(\mathbf{H})$ definable in lin. Dat. $\Rightarrow \operatorname{CSP}(\mathbf{H}) \in \mathrm{NL}$;
- $\neg \operatorname{CSP}(\mathbf{H})$ definable in sym. Dat. $\Rightarrow \operatorname{CSP}(\mathbf{H}) \in \mathrm{L}$.

The converse of the last two statements holds for all CSPs known to belong to NL and L.

## Datalog

## Definability in Datalog, cont'd

The 3 fragments constitute a strict hierarchy, and there are CSPs in P not expressible in Datalog:

- LinEq(mod 2) belongs to P, but not definable in Datalog;
- Horn 3-Sat is def in Datalog, but not in lin. Datalog;
- Directed st-Conn is in lin., but not sym. Datalog.


## Datalog

## Example: 2-col is in Symmetric Datalog

The program we described to solve 2-colouring can be symmetrised, i.e. we can safely add the symmetric of every rule without changing the outcome;

$$
\begin{aligned}
\text { OddPath }(x, y) & \leftarrow E(x, y) \\
\text { OddPath }(x, y) & \leftarrow \text { OddPath }(x, z), E(z, u), E(u, y) \\
\text { OddPath }(x, z) & \leftarrow \operatorname{OddPath}(x, y), E(z, u), E(u, y) \\
\gamma & \leftarrow \operatorname{OddPath}(x, x)
\end{aligned}
$$

Hence, 2-colouring is solvable in Logspace.

## Algebra

## Polymorphisms

- A polymorphism of $\mathbf{H}$ is a homomorphism $f: \mathbf{H}^{n} \rightarrow \mathbf{H}$; we denote by $\operatorname{Pol}(\mathbf{H})$ the set of all polymorphisms of $\mathbf{H}$.
- If $\mathbf{H}$ is a graph: an edge-preserving mapping, i.e.

$$
\begin{array}{cccc}
a_{1} & a_{2} & \ldots & a_{n} \\
\mid & \mid & \ldots & \mid \\
b_{1} & b_{2} & \ldots & b_{n}
\end{array} \Rightarrow \begin{gathered}
f\left(a_{1}, a_{2}, \ldots, a_{n}\right) \\
f\left(b_{1}, b_{2}, \ldots, b_{n}\right)
\end{gathered}
$$

- For $\mathbf{H}+$ lists: the above + conservativity, i.e. $\forall x_{1}, \ldots, x_{n} \quad f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.


## Algebra

## The algebra $\mathbb{A}(\mathbf{H})$

## Definition

Let $\mathbf{H}$ be a relational structure. The algebra associated to $\mathbf{H}$ is defined as $\mathbb{A}(\mathbf{H})=\langle H ; \operatorname{Pol}(\mathbf{H})\rangle$.

Fact (Bulatov, Jeavons, Krokhin '05 + L, Tesson '09)
The (computational and descriptive) complexity of $\operatorname{CSP}(\mathbf{H})$ is completely determined by the properties of $\mathbb{A}(\mathbf{H})$.

BJK+LT prove that specific properties of $\mathbb{A}(\mathbf{H})$ that are necessary (and conjecture that they are sufficient) for:

- $\operatorname{CSP}(\mathbf{H})$ to be in P ,
- $\operatorname{CSP}(\mathbf{H})$ to be in NL \& definable in Linear Datalog,
- $\operatorname{CSP}(\mathbf{H})$ to be in $L \&$ definable in Symmetric Datalog.


## Algebra

## The Five Types (in Conservative Algebras)

Consider the problem $\operatorname{CSP}(\mathbf{H}+$ lists $)$; its associated algebra is conservative, denote it by $\mathbb{A}$.
Let $X=\{0,1\}$ be an arbitrary 2-element subset of $H$.
The set $X$ can be assigned (in $\mathbb{A}$ ) one of five types:
By Post'41, there exist only five possibilities for the set $\left\{f\left(x_{1}, \ldots, x_{n}, 0,1\right) \mid f=g_{\mid\{0,1\}}, g \in \operatorname{Pol}(\mathbf{H}+\right.$ lists $\left.)\right\}:$
(1) essentially unary op's $s\left(x_{1}, \ldots, x_{n}\right)=t\left(x_{i}\right)$
unary
(2) all linear Boolean op's $\sum a_{i} x_{i}+a_{0}(\bmod 2)$
affine
(3) all possible Boolean operations

Boolean
(9) all monotone Boolean operations
lattice
(3) all op's of the form $\min \left(x_{1}, \ldots, x_{n}\right)$ and 0,1
semilattice

## Algebra

## Ordering of Types



## Algebra

## Types and Conjectures



## Algebra

## Some Classification Results

- Schaefer '78 - each Boolean $\operatorname{CSP}(\mathbf{H})$ (aka generalised SAT) is in P or NP-complete;
- Allender et al. '09 + L, Tesson '09each Boolean $\operatorname{CSP}(\mathbf{H})$ is in $\mathrm{AC}^{0}$ or else complete for one of the following classes: NP, P, NL, $\oplus \mathrm{L}, \mathrm{L}$. Also classification wrt definability in FO and (fragments of) Datalog;
- Bulatov '03 - algebraic characterisation of list CSPs in P ( = omitting the unary type);
- Barto, Kozik '09 - algebraic characterisation of CSPs definable in Datalog ( $=$ omitting the unary and affine types).


## Bi-arc graphs

- (Feder, Hell, Huang) a graph $\mathbf{H}$ is bi-arc iff $\mathbf{H} \times \mathbf{K}_{2}$ is the complement of a circular arc graph:
- bi-arc means: vertices are arcs, and vertices are adjacent if the corresponding arcs intersect.
- Ex: odd cycles and the 6-cycle are NOT bi-arc graphs.



## Statement of Main Result

Full fine-grained classification of $\operatorname{CSP}(\mathbf{H}+$ lists $)$ for graphs.

## Theorem

Let $\mathbf{H}$ be a graph. Then the following holds.

- If $\mathbf{H}$ is not bi-arc then $\operatorname{CSP}(\mathbf{H}+$ lists $)$ is NP-complete and $\neg \operatorname{CSP}(\mathbf{H}+$ lists $)$ is not definable in Datalog;
- if $\mathbf{H}$ is bi-arc, but not in class $\mathcal{L}$ (def later), then $\operatorname{CSP}(\mathbf{H}+$ lists $)$ is NL-complete. Also, $\neg \operatorname{CSP}(\mathbf{H}+$ lists $)$ is definable in linear, but not in symmetric, Datalog;
- If $\mathbf{H}$ is in $\mathcal{L}$ then $\operatorname{CSP}(\mathbf{H}+$ lists $)$ is in L and $\neg \operatorname{CSP}(\mathbf{H}+$ lists $)$ is definable in Symmetric Datalog.
- Everything matches the algebraic conjectures.


## Proof: Step 1

## Definition

A 3-ary operation $M: H^{3} \rightarrow H$ is a majority operation if it satisfies $M(x, x, y)=M(x, y, x)=M(y, x, x)=x$ for all $x \in H$.

Our starting point is the following dichotomy result:

## Theorem (Feder, Hell, Huang, 1999)

Let $\mathbf{H}$ be a graph. Then t.f.a.e.:
(1) $\mathbf{H}+$ lists admits a majority operation;
(2) $\mathbf{H}$ is a bi-arc graph.

If this condition is satisfied then $\operatorname{CSP}(\mathbf{H}+$ lists $)$ is in P , otherwise it is NP-complete.

## Proof: Step 2

From FHH: every bi-arc graph admits a (conservative) majority operation.

## Theorem (Dalmau, Krokhin, 2008)

If $\mathbf{H}$ is invariant under a majority operation then $\neg \operatorname{CSP}(\mathbf{H})$ is expressible in linear Datalog; in particular $\operatorname{CSP}(\mathbf{H})$ is in NL.

Hence list-homomorphism problem for bi-arc graphs is in NL and expressible in linear Datalog.

## Proof: Step 3

What now ?

- from the above, the algebra associated to any bi-arc graph omits the unary, affine and semilattice types;
- if the algebra admits the lattice type, then the CSP is NL-complete;
- we sieve to find all these graphs and see what remains.


## Sketch of Proof

## The class $\mathcal{L}$ by forbidden subgraphs

## Definition (Version 1)

$\mathbf{H}$ is in $\mathcal{L}$ if it avoids as induced subgraph every of the following 12 forbidden graphs:

The 2 reflexive and 4 irreflexive bad guys ...


## Sketch of Proof

## The class $\mathcal{L}$ by forbidden subgraphs, cont'd

... and the 6 mixed bad guys:


## Proof: Step 4

- Hopefully we have found all bad guys, i.e. no graph in $\mathcal{L}$ admits the lattice type;
- if this holds, conjectures predict the CSP is in symm Datalog;
- unfortunately, the graphs in $\mathcal{L}$ are defined by a negative condition, which is useless to prove this;
- We're in luck: this family of graphs admits a very nice inductive definition!


## Sketch of Proof

## The class $\mathcal{L}$ by inductive definition

- first we consider only irreflexive graphs:
- define the special sum of two bipartite graphs $\mathbf{H}_{1}$ and $\mathbf{H}_{2}$ as follows: connect every vertex of one colour class of $\mathbf{H}_{1}$ to every vertex of one colour class of $\mathbf{H}_{2}$ :

$\mathbf{H}_{1}$
$\mathrm{H}_{2}$


## The class $\mathcal{L}$ by inductive definition, cont'd

## Lemma

Let $\mathbf{H}$ be an irreflexive graph. Tfae:

- H is obtained from one-element graphs using disjoint union and special sum;
- H is bipartite, and avoids the 6-cycle and 5-path;
- $\mathbf{H} \in \mathcal{L}$.


## Sketch of Proof

## The class $\mathcal{L}$ by inductive definition, cont' d

A connected graph $H$ is basic if it is an irreflexive graph in $\mathcal{L}$ or is obtained from one by turning one colour class into a reflexive clique.
The graph $H_{1} \oslash H_{2}$ is obtained from the disjoint union of the two graphs by connecting every loop in $H_{1}$ to every vertex in $H_{2}$.

## Lemma

The class $\mathcal{L}$ is the smallest class $\mathcal{C}$ of graphs such that:
(1) $\mathcal{C}$ contains the basic graphs;
(2) $\mathcal{C}$ is closed under disjoint union;
(3) if $H_{1}$ is a basic graph and $H_{2} \in \mathcal{C}$ then $H_{1} \oslash H_{2} \in \mathcal{C}$.

## The class $\mathcal{L}$

## Theorem

Let $\mathbf{H}$ be a graph, and let $\mathbb{A}$ be the algebra associated to $\mathbf{H}+$ lists. Then t.f.a.e.:
(1) $\mathbf{H} \in \mathcal{L}$;
(2) $\mathcal{V}(\mathbb{A})$ admits only the Boolean type;
(3) $\mathcal{V}(\mathbb{A})$ is 4-permutable;
(3) $\neg \operatorname{CSP}(\mathbf{H}+$ lists $)$ is expressible in symmetric Datalog.

If these conditions hold then $\operatorname{CSP}(\mathbf{H}+$ lists $)$ is in L ; otherwise it is NL-complete (and $\neg \operatorname{CSP}(\mathbf{H}+$ lists) is expressible in linear Datalog) or it is NP-complete.

## Sketch of Proof

## FO-definable Problems CSP( $\mathbf{H}+$ lists $)$

## Theorem (L, Tesson' 09)

Every problem $\operatorname{CSP}(\mathbf{H})$ is either FO-definable or else L-hard under FO-reductions.

## Theorem

For a graph $\mathbf{H}, \operatorname{CSP}(\mathbf{H}+$ lists $)$ is FO-definable iff the following holds:

- the loops in $\mathbf{H}$ form a clique,
- the non-loops in $\mathbf{H}$ form an independent set,
- the non-loops can be ordered $v_{1} \ldots v_{n}$ so that

$$
N\left(v_{i}\right) \subseteq N\left(v_{i+1}\right) \text { for all } i=1 \ldots n-1
$$

## Meta-Problem

## Theorem

Given a graph $\mathbf{H}$, it can be decided in polynomial-time what computational and descriptive complexity $\operatorname{CSP}(\mathbf{H}+$ lists $)$ has.

- $\mathbf{H}$ is bi-arc iff $\overline{\mathbf{H} \times \mathbf{K}_{2}}$ is circular arc. Circular arc graphs can be recognised in poly-time (McConnell '03)
- The class $\mathcal{L}$ is defined by a finite number of forbidden induced subgraphs, hence poly-time recognition.
- Structures with FO-definable CSPs can be recognised in poly-time (L, Loten, Tardif '06).


## Sieve: an example

An illustration: Why the 5-path is bad:

- the 5-path is a bi-arc graph, so admits a majority operation and hence $\mathcal{V}(\mathbb{A})$ omits types 1,2 and 5 ;
- we produce (by pp-definability) a 2-element subalgebra with monotone terms;
- hence this divisor is of type 4.


