
The Complexity of the List Homomorphism
Problem for Graphs

L. Egri, 1 A. Krokhin, 2 B. Larose, 3 P. Tesson 4

1School of Computer Science

McGill University, Montréal

2School of Engineering and Computing Sciences

Durham University, UK

3Department of Mathematics and Statistics

Concordia University, Montréal

4Département d’informatique et de génie logiciel

Université Laval, Québec

Workshop on Graph Homomorphisms, Fields Institute,
July 2011

Introduction Preliminaries Main Result Special Features

Overview

We completely classify the computational complexity of the list
H-colouring problem for graphs:

in combinatorial and algebraic terms;

descriptive complexity equivalents are given as well via
Datalog and its fragments;

for every graph H, the problem is either

NP-complete,
NL-complete,
L-complete or
first-order definable.

Introduction Preliminaries Main Result Special Features

Overview, continued

Motivation: our algebraic characterisations match general
complexity conjectures on constraint satisfaction problems;

Metaproblem: the procedure to identify in which class a graph
belongs is efficient.

Introduction Preliminaries Main Result Special Features

Graphs, lists and homomorphisms

Preliminaries

Definition

A graph is a structure H = 〈H; θ〉 with a single binary relation θ

which is symmetric: (a, b) ∈ θ iff (b, a) ∈ θ.

Remark: Our graphs may have loops on certain vertices.

Definition

A graph homomorphism is an edge-preserving map between two
graphs. Formally, f is a homomorphism f : G→ H if (f (u), f (v))
is an edge of H for every edge (u, v) of G.

Introduction Preliminaries Main Result Special Features

Graphs, lists and homomorphisms

Pictures of graphs and homomorphisms

Introduction Preliminaries Main Result Special Features

Graphs, lists and homomorphisms

List Homomorphism Problems

Given a graph H, the list homomorphism problem for H is:

CSP(H + lists)

Input: a graph G, and for each vertex v of G a list Lv of
vertices of H;

Question: is there a homomorphism f : G→ H, such that
f (v) ∈ Lv for all v ∈ G ?

Introduction Preliminaries Main Result Special Features

Graphs, lists and homomorphisms

List Homomorphism Problems, cont’d

{0,1}

{0,2,3}

{2}
0 1

3 2

?

Introduction Preliminaries Main Result Special Features

Graphs, lists and homomorphisms

Motivation and Background

Our main motivation is a series of general conjectures that
predict the (descriptive) complexity of Constraint Satisfaction
Problems based on the properties of their associated algebra;

Since part of the proof of our results relies on the algebraic
and descriptive complexity approach, we give a brief overview
of these.

Introduction Preliminaries Main Result Special Features

General CSPs

CSPs (homomorphism form)

Definition

Let G = 〈G ; ρ1, · · · , ρs〉 and H = 〈H; θ1, · · · , θs〉 be similar
relational structures. A homomorphism from G to H is a relation
preserving map f : G → H, i.e. such that f (ρi) ⊆ θi for each
1 ≤ i ≤ s.

Definition (CSP(H))

Let H be a structure.

CSP(H) = {G : G→ H}, i.e.

Input: a structure G similar to H;

Question: is there a homomorphism from G to H ?

Introduction Preliminaries Main Result Special Features

General CSPs

CSP Classification Problems

Two main classification problems about problems CSP(H):

1 Classify CSP(H) w.r.t. computational complexity,
i.e., w.r.t. membership in a given complexity class
(e.g. P, NL, L), modulo assumptions like P 6= NP

2 Classify CSP(H) w.r.t. descriptive complexity,
i.e., w.r.t. definability of CSP(H) in a given logic
(FO, Datalog and its fragments - linear, symmetric)

In addition, there is a meta-problem:

Determine the complexity of deciding whether CSP(H) has
given (computational or descriptive) complexity.

Introduction Preliminaries Main Result Special Features

Datalog

Datalog

A Datalog Program consists of rules, and takes as input a
relational structure.

a typical Datalog rule might look like this one:

θ1(x , y)← θ2(w , u, x), θ3(x), R1(x , y , z), R2(x , w)

the relations R1 and R2 are basic relations from the input
structures (EDBs);

the relations θi are auxiliary relations (IDBs);

the rule stipulates that if the condition on the righthand side
(the body of the rule) holds, then the condition of the left
(the head) should also hold.

Introduction Preliminaries Main Result Special Features

Datalog

2-colouring

Let H = 〈{0, 1}; E = {(0, 1), (1, 0)}〉 be the complete graph
on 2 vertices. Clearly CSP(H) is just the 2-colouring problem.

We describe a Datalog program that accepts precisely those
graphs that cannot be 2-coloured.

It uses a single binary auxiliary relation (IDB) we’ll denote
OddPath.

Introduction Preliminaries Main Result Special Features

Datalog

A Datalog program for 2-colouring

A Datalog program recursively computes the auxiliary relations
(IDBs).
Intuition: locally derive new constraints, trying to get a
contradiction (to certify that there’s no solution).

OddPath(x , y) ← E (x , y)

OddPath(x , y) ← OddPath(x , z), E (z , u), E (u, y)

γ ← OddPath(x , x)

The 0-ary relation γ is the goal predicate of the program: it ”lights
up” precisely if the input structure admits NO homomorphism to
the target structure H.

Introduction Preliminaries Main Result Special Features

Datalog

Fragments

A Datalog program is linear if each rule contains at most one
occurrence of an IDB in the body, i.e. if each rule looks like this

θ1(x , y)← θ2(w , u, x), R1(x , y , z), R2(x , w)

where the θi ’s are the only IDBs in it.

A linear Datalog program is symmetric if it is invariant under
symmetry of rules, i.e. if the program contains the above rule, then
it must also contain its symmetric:

θ2(w , u, x)← θ1(x , y), R1(x , y , z), R2(x , w).

Introduction Preliminaries Main Result Special Features

Datalog

Definability in Datalog (and fragments)

We say that ¬CSP(H) is definable in (linear, symmetric) Datalog
if there exists a (linear, symmetric) Datalog program that accepts
precisely those structures that do not admit a homomorphism to H.

Facts:

¬CSP(H) definable in Datalog ⇒ CSP(H) ∈ P;

¬CSP(H) definable in lin. Dat. ⇒ CSP(H) ∈ NL;

¬CSP(H) definable in sym. Dat. ⇒ CSP(H) ∈ L.

The converse of the last two statements holds for all CSPs known
to belong to NL and L.

Introduction Preliminaries Main Result Special Features

Datalog

Definability in Datalog, cont’d

The 3 fragments constitute a strict hierarchy, and there are CSPs
in P not expressible in Datalog:

LinEq(mod 2) belongs to P, but not definable in Datalog;

Horn 3-Sat is def in Datalog, but not in lin. Datalog;

Directed st-Conn is in lin., but not sym. Datalog.

Introduction Preliminaries Main Result Special Features

Datalog

Example: 2-col is in Symmetric Datalog

The program we described to solve 2-colouring can be
symmetrised, i.e. we can safely add the symmetric of every rule
without changing the outcome;

OddPath(x , y) ← E (x , y)

OddPath(x , y) ← OddPath(x , z), E (z , u), E (u, y)

OddPath(x , z) ← OddPath(x , y), E (z , u), E (u, y)

γ ← OddPath(x , x)

Hence, 2-colouring is solvable in Logspace.

Introduction Preliminaries Main Result Special Features

Algebra

Polymorphisms

A polymorphism of H is a homomorphism f : Hn → H; we
denote by Pol(H) the set of all polymorphisms of H.

If H is a graph: an edge-preserving mapping, i.e.

a1 a2 . . . an f (a1, a2, . . . , an)
| | . . . | ⇒ |

b1 b2 . . . bn f (b1, b2, . . . , bn)

For H + lists: the above + conservativity, i.e.
∀x1, . . . , xn f (x1, x2, . . . , xn) ∈ {x1, x2, . . . , xn}.

Introduction Preliminaries Main Result Special Features

Algebra

The algebra A(H)

Definition

Let H be a relational structure. The algebra associated to H is
defined as A(H) = 〈H; Pol(H)〉.

Fact (Bulatov, Jeavons, Krokhin ’05 + L, Tesson ’09)

The (computational and descriptive) complexity of CSP(H) is
completely determined by the properties of A(H).

BJK+LT prove that specific properties of A(H) that are necessary
(and conjecture that they are sufficient) for:

CSP(H) to be in P,

CSP(H) to be in NL & definable in Linear Datalog,

CSP(H) to be in L & definable in Symmetric Datalog.

Introduction Preliminaries Main Result Special Features

Algebra

The Five Types (in Conservative Algebras)

Consider the problem CSP(H + lists); its associated algebra is
conservative, denote it by A.
Let X = {0, 1} be an arbitrary 2-element subset of H.
The set X can be assigned (in A) one of five types:
By Post’41, there exist only five possibilities for the set
{f (x1, . . . , xn, 0, 1) | f = g|{0,1}, g ∈ Pol(H + lists)}:

1 essentially unary op’s s(x1, . . . , xn) = t(xi) unary

2 all linear Boolean op’s
∑

aixi + a0 (mod 2) affine

3 all possible Boolean operations Boolean

4 all monotone Boolean operations lattice

5 all op’s of the form min(x1, . . . , xn) and 0,1 semilattice

Introduction Preliminaries Main Result Special Features

Algebra

Ordering of Types

Introduction Preliminaries Main Result Special Features

Algebra

Types and Conjectures

Introduction Preliminaries Main Result Special Features

Algebra

Types and Conjectures

Introduction Preliminaries Main Result Special Features

Algebra

Types and Conjectures

Introduction Preliminaries Main Result Special Features

Algebra

Types and Conjectures

Introduction Preliminaries Main Result Special Features

Algebra

Some Classification Results

Schaefer ’78 – each Boolean CSP(H) (aka generalised Sat) is
in P or NP-complete;

Allender et al. ’09 + L, Tesson ’09 –
each Boolean CSP(H) is in AC0 or else complete for one of
the following classes: NP, P, NL, ⊕L, L.
Also classification wrt definability in FO and (fragments of)
Datalog;

Bulatov ’03 – algebraic characterisation of list CSPs in P
(= omitting the unary type);

Barto, Kozik ’09 – algebraic characterisation of CSPs
definable in Datalog (= omitting the unary and affine types).

Introduction Preliminaries Main Result Special Features

Statement of Main Result

Bi-arc graphs

(Feder, Hell, Huang) a graph H is bi-arc iff H×K2 is the
complement of a circular arc graph:

bi-arc means: vertices are arcs, and vertices are adjacent if the
corresponding arcs intersect.

Ex: odd cycles and the 6-cycle are NOT bi-arc graphs.

a

b

Introduction Preliminaries Main Result Special Features

Statement of Main Result

Statement of Main Result

Full fine-grained classification of CSP(H + lists) for graphs.

Theorem

Let H be a graph. Then the following holds.

If H is not bi-arc then CSP(H + lists) is NP-complete and
¬CSP(H + lists) is not definable in Datalog;

if H is bi-arc, but not in class L (def later),
then CSP(H + lists) is NL-complete. Also, ¬CSP(H + lists)
is definable in linear, but not in symmetric, Datalog;

If H is in L then CSP(H + lists) is in L and ¬CSP(H + lists)
is definable in Symmetric Datalog.

Everything matches the algebraic conjectures.

Introduction Preliminaries Main Result Special Features

Sketch of Proof

Proof: Step 1

Definition

A 3-ary operation M : H3 → H is a majority operation if it satisfies
M(x , x , y) = M(x , y , x) = M(y , x , x) = x for all x ∈ H.

Our starting point is the following dichotomy result:

Theorem (Feder, Hell, Huang, 1999)

Let H be a graph. Then t.f.a.e.:

1 H + lists admits a majority operation;

2 H is a bi-arc graph.

If this condition is satisfied then CSP(H + lists) is in P, otherwise
it is NP-complete.

Introduction Preliminaries Main Result Special Features

Sketch of Proof

Proof: Step 2

From FHH: every bi-arc graph admits a (conservative) majority
operation.

Theorem (Dalmau, Krokhin, 2008)

If H is invariant under a majority operation then ¬CSP(H) is
expressible in linear Datalog; in particular CSP(H) is in NL.

Hence list-homomorphism problem for bi-arc graphs is in NL and
expressible in linear Datalog.

Introduction Preliminaries Main Result Special Features

Sketch of Proof

Proof: Step 3

What now ?

from the above, the algebra associated to any bi-arc graph
omits the unary, affine and semilattice types;

if the algebra admits the lattice type, then the CSP is
NL-complete;

we sieve to find all these graphs and see what remains.

Introduction Preliminaries Main Result Special Features

Sketch of Proof

The class L by forbidden subgraphs

Definition (Version 1)

H is in L if it avoids as induced subgraph every of the following 12
forbidden graphs:

The 2 reflexive and 4 irreflexive bad guys ...

Introduction Preliminaries Main Result Special Features

Sketch of Proof

The class L by forbidden subgraphs, cont’d

... and the 6 mixed bad guys:

c

b

a

c

b

a

d

c

b

a

e

d

c

b

a

a′

b′

c′

a

b

c

a′

b′

c′

a

b

c

Introduction Preliminaries Main Result Special Features

Sketch of Proof

Proof: Step 4

Hopefully we have found all bad guys, i.e. no graph in L
admits the lattice type;

if this holds, conjectures predict the CSP is in symm Datalog;

unfortunately, the graphs in L are defined by a negative
condition, which is useless to prove this;

We’re in luck: this family of graphs admits a very nice
inductive definition !

Introduction Preliminaries Main Result Special Features

Sketch of Proof

The class L by inductive definition

first we consider only irreflexive graphs:

define the special sum of two bipartite graphs H1 and H2 as
follows: connect every vertex of one colour class of H1 to
every vertex of one colour class of H2:

H1 H2H2

Introduction Preliminaries Main Result Special Features

Sketch of Proof

The class L by inductive definition, cont’d

Lemma

Let H be an irreflexive graph. Tfae:

H is obtained from one-element graphs using disjoint union
and special sum;

H is bipartite, and avoids the 6-cycle and 5-path;

H ∈ L.

Introduction Preliminaries Main Result Special Features

Sketch of Proof

The class L by inductive definition, cont’d

A connected graph H is basic if it is an irreflexive graph in L or is
obtained from one by turning one colour class into a reflexive
clique.
The graph H1 ⊘ H2 is obtained from the disjoint union of the two
graphs by connecting every loop in H1 to every vertex in H2.

Lemma

The class L is the smallest class C of graphs such that:

1 C contains the basic graphs;

2 C is closed under disjoint union;

3 if H1 is a basic graph and H2 ∈ C then H1 ⊘ H2 ∈ C.

Introduction Preliminaries Main Result Special Features

Sketch of Proof

The class L

Theorem

Let H be a graph, and let A be the algebra associated to H + lists.
Then t.f.a.e.:

1 H ∈ L;

2 V(A) admits only the Boolean type;

3 V(A) is 4-permutable;

4 ¬CSP(H + lists) is expressible in symmetric Datalog.

If these conditions hold then CSP(H + lists) is in L; otherwise it is
NL-complete (and ¬CSP(H + lists) is expressible in linear
Datalog) or it is NP-complete.

Introduction Preliminaries Main Result Special Features

Sketch of Proof

FO-definable Problems CSP(H + lists)

Theorem (L, Tesson’ 09)

Every problem CSP(H) is either FO-definable or else L-hard under
FO-reductions.

Theorem

For a graph H, CSP(H + lists) is FO-definable iff the following
holds:

the loops in H form a clique,

the non-loops in H form an independent set,

the non-loops can be ordered v1 . . . vn so that
N(vi) ⊆ N(vi+1) for all i = 1 . . . n − 1.

Introduction Preliminaries Main Result Special Features

Meta-problem

Meta-Problem

Theorem

Given a graph H, it can be decided in polynomial-time what
computational and descriptive complexity CSP(H + lists) has.

H is bi-arc iff H×K2 is circular arc. Circular arc graphs can
be recognised in poly-time (McConnell ’03)

The class L is defined by a finite number of forbidden induced
subgraphs, hence poly-time recognition.

Structures with FO-definable CSPs can be recognised in
poly-time (L, Loten, Tardif ’06).

Introduction Preliminaries Main Result Special Features

Sieve: an example

An illustration: Why the 5-path is bad:

the 5-path is a bi-arc graph, so admits a majority operation
and hence V(A) omits types 1, 2 and 5;

we produce (by pp-definability) a 2-element subalgebra with
monotone terms;

hence this divisor is of type 4.

{0,4}

x

{1,3}

{0,4}

y

{2,4}

{1,5}

0 2 4

1 53

	Introduction
	Preliminaries
	Graphs, lists and homomorphisms
	General CSPs
	Datalog
	Algebra

	Main Result
	Statement of Main Result
	Sketch of Proof
	Meta-problem

	Special Features

