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Overview

We completely classify the computational complexity of the list
H-colouring problem for graphs:

in combinatorial and algebraic terms;

descriptive complexity equivalents are given as well via
Datalog and its fragments;

for every graph H, the problem is either

NP-complete,
NL-complete,
L-complete or
first-order definable.
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Overview, continued

Motivation: our algebraic characterisations match general
complexity conjectures on constraint satisfaction problems;

Metaproblem: the procedure to identify in which class a graph
belongs is efficient.
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Graphs, lists and homomorphisms

Preliminaries

Definition

A graph is a structure H = 〈H; θ〉 with a single binary relation θ

which is symmetric: (a, b) ∈ θ iff (b, a) ∈ θ.

Remark: Our graphs may have loops on certain vertices.

Definition

A graph homomorphism is an edge-preserving map between two
graphs. Formally, f is a homomorphism f : G→ H if (f (u), f (v))
is an edge of H for every edge (u, v) of G.
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Graphs, lists and homomorphisms

Pictures of graphs and homomorphisms
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Graphs, lists and homomorphisms

List Homomorphism Problems

Given a graph H, the list homomorphism problem for H is:

CSP(H + lists)

Input: a graph G, and for each vertex v of G a list Lv of
vertices of H;

Question: is there a homomorphism f : G→ H, such that
f (v) ∈ Lv for all v ∈ G ?
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Graphs, lists and homomorphisms

List Homomorphism Problems, cont’d

{0,1}

{0,2,3}

{2}
0 1

3 2

?
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Graphs, lists and homomorphisms

Motivation and Background

Our main motivation is a series of general conjectures that
predict the (descriptive) complexity of Constraint Satisfaction
Problems based on the properties of their associated algebra;

Since part of the proof of our results relies on the algebraic
and descriptive complexity approach, we give a brief overview
of these.
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General CSPs

CSPs (homomorphism form)

Definition

Let G = 〈G ; ρ1, · · · , ρs〉 and H = 〈H; θ1, · · · , θs〉 be similar
relational structures. A homomorphism from G to H is a relation
preserving map f : G → H, i.e. such that f (ρi ) ⊆ θi for each
1 ≤ i ≤ s.

Definition (CSP(H))

Let H be a structure.

CSP(H) = {G : G→ H}, i.e.

Input: a structure G similar to H;

Question: is there a homomorphism from G to H ?
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General CSPs

CSP Classification Problems

Two main classification problems about problems CSP(H):

1 Classify CSP(H) w.r.t. computational complexity,
i.e., w.r.t. membership in a given complexity class
(e.g. P, NL, L), modulo assumptions like P 6= NP

2 Classify CSP(H) w.r.t. descriptive complexity,
i.e., w.r.t. definability of CSP(H) in a given logic
(FO, Datalog and its fragments - linear, symmetric)

In addition, there is a meta-problem:

Determine the complexity of deciding whether CSP(H) has
given (computational or descriptive) complexity.
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Datalog

Datalog

A Datalog Program consists of rules, and takes as input a
relational structure.

a typical Datalog rule might look like this one:

θ1(x , y)← θ2(w , u, x), θ3(x), R1(x , y , z), R2(x , w)

the relations R1 and R2 are basic relations from the input
structures (EDBs);

the relations θi are auxiliary relations (IDBs);

the rule stipulates that if the condition on the righthand side
(the body of the rule) holds, then the condition of the left
(the head) should also hold.
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Datalog

2-colouring

Let H = 〈{0, 1}; E = {(0, 1), (1, 0)}〉 be the complete graph
on 2 vertices. Clearly CSP(H) is just the 2-colouring problem.

We describe a Datalog program that accepts precisely those
graphs that cannot be 2-coloured.

It uses a single binary auxiliary relation (IDB) we’ll denote
OddPath.
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Datalog

A Datalog program for 2-colouring

A Datalog program recursively computes the auxiliary relations
(IDBs).
Intuition: locally derive new constraints, trying to get a
contradiction (to certify that there’s no solution).

OddPath(x , y) ← E (x , y)

OddPath(x , y) ← OddPath(x , z), E (z , u), E (u, y)

γ ← OddPath(x , x)

The 0-ary relation γ is the goal predicate of the program: it ”lights
up” precisely if the input structure admits NO homomorphism to
the target structure H.
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Datalog

Fragments

A Datalog program is linear if each rule contains at most one
occurrence of an IDB in the body, i.e. if each rule looks like this

θ1(x , y)← θ2(w , u, x), R1(x , y , z), R2(x , w)

where the θi ’s are the only IDBs in it.

A linear Datalog program is symmetric if it is invariant under
symmetry of rules, i.e. if the program contains the above rule, then
it must also contain its symmetric:

θ2(w , u, x)← θ1(x , y), R1(x , y , z), R2(x , w).
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Datalog

Definability in Datalog (and fragments)

We say that ¬CSP(H) is definable in (linear, symmetric) Datalog
if there exists a (linear, symmetric) Datalog program that accepts
precisely those structures that do not admit a homomorphism to H.

Facts:

¬CSP(H) definable in Datalog ⇒ CSP(H) ∈ P;

¬CSP(H) definable in lin. Dat. ⇒ CSP(H) ∈ NL;

¬CSP(H) definable in sym. Dat. ⇒ CSP(H) ∈ L.

The converse of the last two statements holds for all CSPs known
to belong to NL and L.
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Datalog

Definability in Datalog, cont’d

The 3 fragments constitute a strict hierarchy, and there are CSPs
in P not expressible in Datalog:

LinEq(mod 2) belongs to P, but not definable in Datalog;

Horn 3-Sat is def in Datalog, but not in lin. Datalog;

Directed st-Conn is in lin., but not sym. Datalog.
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Datalog

Example: 2-col is in Symmetric Datalog

The program we described to solve 2-colouring can be
symmetrised, i.e. we can safely add the symmetric of every rule
without changing the outcome;

OddPath(x , y) ← E (x , y)

OddPath(x , y) ← OddPath(x , z), E (z , u), E (u, y)

OddPath(x , z) ← OddPath(x , y), E (z , u), E (u, y)

γ ← OddPath(x , x)

Hence, 2-colouring is solvable in Logspace.
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Algebra

Polymorphisms

A polymorphism of H is a homomorphism f : Hn → H; we
denote by Pol(H) the set of all polymorphisms of H.

If H is a graph: an edge-preserving mapping, i.e.

a1 a2 . . . an f (a1, a2, . . . , an)
| | . . . | ⇒ |

b1 b2 . . . bn f (b1, b2, . . . , bn)

For H + lists: the above + conservativity, i.e.
∀x1, . . . , xn f (x1, x2, . . . , xn) ∈ {x1, x2, . . . , xn}.
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Algebra

The algebra A(H)

Definition

Let H be a relational structure. The algebra associated to H is
defined as A(H) = 〈H; Pol(H)〉.

Fact (Bulatov, Jeavons, Krokhin ’05 + L, Tesson ’09)

The (computational and descriptive) complexity of CSP(H) is
completely determined by the properties of A(H).

BJK+LT prove that specific properties of A(H) that are necessary
(and conjecture that they are sufficient) for:

CSP(H) to be in P,

CSP(H) to be in NL & definable in Linear Datalog,

CSP(H) to be in L & definable in Symmetric Datalog.
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Algebra

The Five Types (in Conservative Algebras)

Consider the problem CSP(H + lists); its associated algebra is
conservative, denote it by A.
Let X = {0, 1} be an arbitrary 2-element subset of H.
The set X can be assigned (in A) one of five types:
By Post’41, there exist only five possibilities for the set
{f (x1, . . . , xn, 0, 1) | f = g|{0,1}, g ∈ Pol(H + lists)}:

1 essentially unary op’s s(x1, . . . , xn) = t(xi ) unary

2 all linear Boolean op’s
∑

aixi + a0 (mod 2) affine

3 all possible Boolean operations Boolean

4 all monotone Boolean operations lattice

5 all op’s of the form min(x1, . . . , xn) and 0,1 semilattice



Introduction Preliminaries Main Result Special Features

Algebra

Ordering of Types
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Algebra

Types and Conjectures
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Algebra

Types and Conjectures
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Algebra

Types and Conjectures
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Algebra

Types and Conjectures
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Algebra

Some Classification Results

Schaefer ’78 – each Boolean CSP(H) (aka generalised Sat) is
in P or NP-complete;

Allender et al. ’09 + L, Tesson ’09 –
each Boolean CSP(H) is in AC0 or else complete for one of
the following classes: NP, P, NL, ⊕L, L.
Also classification wrt definability in FO and (fragments of)
Datalog;

Bulatov ’03 – algebraic characterisation of list CSPs in P
( = omitting the unary type);

Barto, Kozik ’09 – algebraic characterisation of CSPs
definable in Datalog ( = omitting the unary and affine types).
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Statement of Main Result

Bi-arc graphs

(Feder, Hell, Huang) a graph H is bi-arc iff H×K2 is the
complement of a circular arc graph:

bi-arc means: vertices are arcs, and vertices are adjacent if the
corresponding arcs intersect.

Ex: odd cycles and the 6-cycle are NOT bi-arc graphs.

a

b
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Statement of Main Result

Statement of Main Result

Full fine-grained classification of CSP(H + lists) for graphs.

Theorem

Let H be a graph. Then the following holds.

If H is not bi-arc then CSP(H + lists) is NP-complete and
¬CSP(H + lists) is not definable in Datalog;

if H is bi-arc, but not in class L (def later),
then CSP(H + lists) is NL-complete. Also, ¬CSP(H + lists)
is definable in linear, but not in symmetric, Datalog;

If H is in L then CSP(H + lists) is in L and ¬CSP(H + lists)
is definable in Symmetric Datalog.

Everything matches the algebraic conjectures.
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Sketch of Proof

Proof: Step 1

Definition

A 3-ary operation M : H3 → H is a majority operation if it satisfies
M(x , x , y) = M(x , y , x) = M(y , x , x) = x for all x ∈ H.

Our starting point is the following dichotomy result:

Theorem (Feder, Hell, Huang, 1999)

Let H be a graph. Then t.f.a.e.:

1 H + lists admits a majority operation;

2 H is a bi-arc graph.

If this condition is satisfied then CSP(H + lists) is in P, otherwise
it is NP-complete.
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Sketch of Proof

Proof: Step 2

From FHH: every bi-arc graph admits a (conservative) majority
operation.

Theorem (Dalmau, Krokhin, 2008)

If H is invariant under a majority operation then ¬CSP(H) is
expressible in linear Datalog; in particular CSP(H) is in NL.

Hence list-homomorphism problem for bi-arc graphs is in NL and
expressible in linear Datalog.
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Sketch of Proof

Proof: Step 3

What now ?

from the above, the algebra associated to any bi-arc graph
omits the unary, affine and semilattice types;

if the algebra admits the lattice type, then the CSP is
NL-complete;

we sieve to find all these graphs and see what remains.
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Sketch of Proof

The class L by forbidden subgraphs

Definition (Version 1)

H is in L if it avoids as induced subgraph every of the following 12
forbidden graphs:

The 2 reflexive and 4 irreflexive bad guys ...
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Sketch of Proof

The class L by forbidden subgraphs, cont’d

... and the 6 mixed bad guys:

c

b

a

c

b

a

d

c

b

a

e

d

c

b

a

a′

b′

c′

a

b

c

a′

b′

c′

a

b

c
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Sketch of Proof

Proof: Step 4

Hopefully we have found all bad guys, i.e. no graph in L
admits the lattice type;

if this holds, conjectures predict the CSP is in symm Datalog;

unfortunately, the graphs in L are defined by a negative
condition, which is useless to prove this;

We’re in luck: this family of graphs admits a very nice
inductive definition !
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Sketch of Proof

The class L by inductive definition

first we consider only irreflexive graphs:

define the special sum of two bipartite graphs H1 and H2 as
follows: connect every vertex of one colour class of H1 to
every vertex of one colour class of H2:

H1 H2H2
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Sketch of Proof

The class L by inductive definition, cont’d

Lemma

Let H be an irreflexive graph. Tfae:

H is obtained from one-element graphs using disjoint union
and special sum;

H is bipartite, and avoids the 6-cycle and 5-path;

H ∈ L.
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Sketch of Proof

The class L by inductive definition, cont’d

A connected graph H is basic if it is an irreflexive graph in L or is
obtained from one by turning one colour class into a reflexive
clique.
The graph H1 ⊘ H2 is obtained from the disjoint union of the two
graphs by connecting every loop in H1 to every vertex in H2.

Lemma

The class L is the smallest class C of graphs such that:

1 C contains the basic graphs;

2 C is closed under disjoint union;

3 if H1 is a basic graph and H2 ∈ C then H1 ⊘ H2 ∈ C.
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Sketch of Proof

The class L

Theorem

Let H be a graph, and let A be the algebra associated to H + lists.
Then t.f.a.e.:

1 H ∈ L;

2 V(A) admits only the Boolean type;

3 V(A) is 4-permutable;

4 ¬CSP(H + lists) is expressible in symmetric Datalog.

If these conditions hold then CSP(H + lists) is in L; otherwise it is
NL-complete (and ¬CSP(H + lists) is expressible in linear
Datalog) or it is NP-complete.



Introduction Preliminaries Main Result Special Features

Sketch of Proof

FO-definable Problems CSP(H + lists)

Theorem (L, Tesson’ 09)

Every problem CSP(H) is either FO-definable or else L-hard under
FO-reductions.

Theorem

For a graph H, CSP(H + lists) is FO-definable iff the following
holds:

the loops in H form a clique,

the non-loops in H form an independent set,

the non-loops can be ordered v1 . . . vn so that
N(vi ) ⊆ N(vi+1) for all i = 1 . . . n − 1.
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Meta-problem

Meta-Problem

Theorem

Given a graph H, it can be decided in polynomial-time what
computational and descriptive complexity CSP(H + lists) has.

H is bi-arc iff H×K2 is circular arc. Circular arc graphs can
be recognised in poly-time (McConnell ’03)

The class L is defined by a finite number of forbidden induced
subgraphs, hence poly-time recognition.

Structures with FO-definable CSPs can be recognised in
poly-time (L, Loten, Tardif ’06).
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Sieve: an example

An illustration: Why the 5-path is bad:

the 5-path is a bi-arc graph, so admits a majority operation
and hence V(A) omits types 1, 2 and 5;

we produce (by pp-definability) a 2-element subalgebra with
monotone terms;

hence this divisor is of type 4.

{0,4}

x

{1,3}

{0,4}

y

{2,4}

{1,5}

0 2 4

1 53
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