Homomorphism Dichotomies and Graph Classes

Pavol Hell, Simon Fraser University

Fields Institute, July 13, 2011

Joint work with

Principal co-authors

- Tomás Feder
- Jing Huang
- Arash Rafiey

An interval graph H

H admits a *representation* by real intervals I_v (for $v \in V(H)$)

$$v \sim w \Longleftrightarrow \mathit{I}_v \cap \mathit{I}_w \neq \emptyset$$

An interval graph H

H admits a *representation* by real intervals I_v (for $v \in V(H)$)

$$v \sim w \iff I_v \cap I_w \neq \emptyset$$

Example

Ordering characterization

H is an interval graph

$$\iff$$

V(H) can be linearly ordered by < so that for u < v < w

$$u \sim w \implies u \sim v$$

Dotted edge cannot be absent

Forbidden structure characterization

H is an interval graph

H has no induced $C_{(>3)}$ and no asteroidal triple

Lekkerkerker-Boland 1962

Forbidden structure characterization

H is an interval graph

H has no induced $C_{(>3)}$ and no asteroidal triple

Lekkerkerker-Boland 1962

Asteroidal triple

any two joined by a path avoiding the neighbours of the third

Forbidden structure characterization

H is an interval graph

H has no induced $C_{(>3)}$ and no asteroidal triple

Lekkerkerker-Boland 1962

Clique structure characterization

H is an interval graph

the maxcliques of *H* can be linearly ordered so that each vertex lies in a consecutive set

O(m+n) algorithms

- Booth-Lueker 1976
- Korte-Mohring 1989
- Habib-McConnell-Paul-Viennot 2000
- Corneil-Olariu-Stewart 2010 LexBFS x 6

O(m+n) algorithms

- Booth-Lueker 1976
- Korte-Mohring 1989
- Habib-McConnell-Paul-Viennot 2000
- Corneil-Olariu-Stewart 2010 LexBFS x 6

The second algorithm has been subsequently made certifying

Kratsch et al 2001

Proper Interval Graphs

Representable by a proper family $(v \neq w \implies l_v \not\subset l_w)$

Proper Interval Graphs

Representable by a proper family $(v \neq w \implies l_v \not\subset l_w)$

• Orderable so that $u < v < w, u \sim w \implies u \sim v \sim w$

- No induced $C_{(>3)}$, net, tent, or claw wegner 1967
- O(m+n) certifying algorithm 3x LexBFS Corneil 2004 and H+Huang 2005

Proper Interval Graphs

Representable by a proper family $(v \neq w \implies l_v \not\subset l_w)$

• Orderable so that $u < v < w, u \sim w \implies u \sim v \sim w$

- No induced $C_{(>3)}$, net, tent, or claw wegner 1967
- O(m+n) certifying algorithm 3x LexBFS Corneil 2004 and H+Huang 2005

Chordal Graphs

Representable by subtrees T_{ν} of a tree T

Chordal Graphs

Representable by subtrees T_{ν} of a tree T

• Orderable so that $u < v < w, u \sim w, u \sim v \implies v \sim w$

- No induced C_(>3)
- O(m+n) certifying algorithm 1x LexBFS Booth-Lueker1976

Circular Arc Graphs

Representable by arcs A_{ν} on a circle C

• O(m+n) algorithm McConnell2003

'

Interval digraphs - representable by pairs I_V , J_V

$$v \to w \Longleftrightarrow I_v \cap J_w \neq \emptyset$$

Interval digraphs - representable by pairs
$$I_{V}, J_{V}$$

$$V \to W \Longleftrightarrow I_{V} \cap J_{W} \neq \emptyset$$

$$\frac{\underline{I_{a}}}{J_{a}} \underbrace{\frac{\underline{J_{c}}}{I_{b}}}_{C} \underbrace{I_{c}}_{C}$$

Not nice!

Not nice!

- Structural characterization not known
- Recognition polynomial but best algorithm is $O(n^2m^7)$

Mueller 1997

Observation

?

Bigraphs (with red and blue vertices)

Each edge joins a red vertex and a blue vertex

Bigraphs (with red and blue vertices)

Each edge joins a red vertex and a blue vertex

Equivalently, we can think of the edges as directed (red \rightarrow blue)

Bigraphs (with red and blue vertices)

Each edge joins a red vertex and a blue vertex

Equivalently, we can think of the edges as directed (red → blue)

Interval bigraph H

Representable by real intervals I_v (for $v \in V(H)$)

Bigraphs (with red and blue vertices)

Each edge joins a red vertex and a blue vertex

Equivalently, we can think of the edges as directed (red → blue)

Interval bigraph H

Representable by real intervals I_v (for $v \in V(H)$)

$$r \sim b \iff I_r \cap I_b \neq \emptyset$$

(r is red, b is blue)

Interval Bigraphs

Interval Bigraphs

As before

- No structural characterization
- Recognition algorithm only high degree polynomial

Proper Interval Bigraphs

Representable by inclusion-free families

Proper Interval Bigraphs

Representable by inclusion-free families

- No induced $C_{(>4)}$, bi-net, bi-tent, or bi-claw
- O(m+n) certifying recognition algorithm

H+Huang 2005

Homomorphisms

Given digraphs G and H

A homomorphism $f: G \to H$ is a mapping $f: V(G) \to V(H)$ such that $xy \in E(G) \implies f(x)f(y) \in E(H)$

Homomorphisms

Given digraphs G and H

A homomorphism $f: G \to H$ is a mapping $f: V(G) \to V(H)$ such that $xy \in E(G) \implies f(x)f(y) \in E(H)$

Undirected graphs are viewed as symmetric digraphs

Homomorphism Problems

Given a fixed digraph H

Does an input digraph G admit a homomorphism to H?

Homomorphism Problems

Given a fixed digraph H

Does an input digraph *G* admit a homomorphism to *H*?

Example: $H = K_t$

Does an input graph G admit a t-colouring?

CSP with fixed template H

H with V(H) and relations $R_1(H), \ldots, R_k(H)$

CSP with fixed template *H*

H with V(H) and relations $R_1(H), \ldots, R_k(H)$ Does an input G admit a homomorphism to H?

CSP with fixed template H

H with V(H) and relations $R_1(H), \ldots, R_k(H)$ Does an input G admit a homomorphism to H?

G has corresponding relations $R_1(G), \ldots, R_k(G)$

CSP with fixed template H

H with V(H) and relations $R_1(H), \ldots, R_k(H)$ Does an input G admit a homomorphism to H?

G has corresponding relations $R_1(G), \ldots, R_k(G)$ Homomorphisms preserve all relations

Dichotomy Conjecture

Feder - Vardi, 1993, conjectured for any template H

The CSP problem for *H* is polynomial or is NP-complete

Dichotomy Conjecture

Feder - Vardi, 1993, conjectured for any template H

The CSP problem for *H* is polynomial or is NP-complete

True for two-element templates Schaeffer 1978

Dichotomy Conjecture

Feder - Vardi, 1993, conjectured for any template H

The CSP problem for *H* is polynomial or is NP-complete

True for two-element templates Schaeffer 1978
True for three-element templates Bulatov 2001

Dichotomy for Graphs versus Digraphs

If H is an undirected graph

The homomorphism problem for H is polynomial if H is bipartite or contains a loop; otherwise it is NP-complete

H+Nešetřil 1990

Dichotomy for Graphs versus Digraphs

If H is an undirected graph

The homomorphism problem for H is polynomial if H is bipartite or contains a loop; otherwise it is NP-complete

H+Nešetřil 1990

If H is a digraph

If dichotomy holds for all digraph templates H then the dichotomy conjecture holds for all CSP

Feder+Vardi 1993

Given a fixed digraph H

Each vertex x of the input digraph G has a list $L(x) \subseteq V(H)$

Given a fixed digraph H

Each vertex x of the input digraph G has a list $L(x) \subseteq V(H)$ Is there a homomorphism $f: G \to H$ for which all $f(x) \in L(x)$?

Fixed graph H

Processors and connections

Input graph G

Tasks and communications

For a reflexive graph *H*

If H is an interval graph, then the problem for H is polynomial

For a reflexive graph *H*

If *H* is an interval graph, then the problem for *H* is polynomial Otherwise the problem is NP-complete

Feder+H 1998

For a reflexive graph *H*

If H is an interval graph, then the problem for H is polynomial Otherwise the problem is NP-complete

Feder+H 1998

If inputs are restricted to have connected lists

For a reflexive graph H

If H is an interval graph, then the problem for H is polynomial Otherwise the problem is NP-complete

Feder+H 1998

If inputs are restricted to have connected lists

If *H* is a chordal graph, then the problem for *H* is polynomial Otherwise the problem is NP-complete

Feder+H 1998

Focus on Bigraphs

List homomorphisms to a bigraph H

Focus on Bigraphs

List homomorphisms to a bigraph *H*

If \overline{H} is a circular arc graph, then the problem is polynomial Otherwise the problem is NP-complete

Feder+H+Huang 1999

Focus on Bigraphs

List homomorphisms to a bigraph *H*

If \overline{H} is a circular arc graph, then the problem is polynomial Otherwise the problem is NP-complete

Feder+H+Huang 1999

Relation to interval bigraphs

A bipartite graph H is an interval bigraph if and only if

- \bullet \overline{H} is a circular arc graph, and
- there exists a representation in which no two arcs cover the circle

H+Huang 2004

For a bigraph *H*

 \overline{H} is a circular arc graph

 \iff H has no induced $C_{>4}$ and no edge-asteroid

Feder+H+Huang 1999

For a bigraph H

 \overline{H} is a circular arc graph

 \iff H has no induced $C_{>4}$ and no edge-asteroid

Feder+H+Huang 1999

For a bigraph *H*

 \overline{H} is a circular arc graph

 \iff H has no induced $C_{>4}$ and no edge-asteroid

Feder+H+Huang 1999

 \iff the *bipartite* complement of H can be two-edge-coloured so that there is no monochromatic $2K_2$

H+Huang 2004

For a bigraph *H*

 \overline{H} is a circular arc graph

 \iff H has no induced $C_{>4}$ and no edge-asteroid

Feder+H+Huang 1999

 \iff the *bipartite* complement of H can be two-edge-coloured so that there is no monochromatic $2K_2$

H+Huang 2004

 $O(n^2)$ algorithm

List Homomorphisms / Conservative CSP's

List Homomorphisms / Conservative CSP's

Dichotomy

Every list CSP is polynomial or NP-complete

Bulatov 2003

Focus on Reflexive Digraphs

Focus on Reflexive Digraphs

List homomorphisms to a reflexive digraph *H*

If *H* is an adjusted interval digraph, the problem is polynomial

Feder+H+Huang+Rafiey 2010

Focus on Reflexive Digraphs

List homomorphisms to a reflexive digraph *H*

If *H* is an adjusted interval digraph, the problem is polynomial

Feder+H+Huang+Rafiey 2010

Conjecture

Otherwise it is NP-complete

Focus on Reflexive Digraphs

List homomorphisms to a reflexive digraph H

If H is an adjusted interval digraph, the problem is polynomial

Feder+H+Huang+Rafiey 2010

Conjecture

Otherwise it is NP-complete

Verified in important basic cases (trees, tournaments, etc)

Adjusted Interval Digraphs

An ordering characterization

H is an adjusted interval digraph if and only if V(H) can be linearly ordered by < so that for u < v and u' > v'

$$u \rightarrow u'$$
 and $v \rightarrow v' \implies u \rightarrow v'$

Adjusted Interval Digraphs

An ordering characterization

H is an adjusted interval digraph if and only if V(H) can be linearly ordered by < so that for u < v and u' > v'

$$u \rightarrow u'$$
 and $v \rightarrow v' \implies u \rightarrow v'$

A structural characterization

H is an adjusted interval digraph if and only if it has no invertible pair

 $O(m^2)$ algorithm

C₄ is not an adjusted interval digraph

C₄ is not an adjusted interval digraph

For reflexive digraphs

H is an adjusted interval digraph if and only if H has no invertible pair

Feder+H+Huang+Rafiey 2009

Revisit Co-Circular-Arc Bigraphs

Revisit Co-Circular-Arc Bigraphs

For a bigraph *H*

 \overline{H} is a circular arc graph

 \iff the red and the blue vertices can be linearly ordered by < so that for r < r' and b > b'

$$r \sim b$$
 and $r' \sim b' \implies r \sim b'$

Revisit Co-Circular-Arc Bigraphs

For a bigraph *H*

 \overline{H} is a circular arc graph

 \iff the red and the blue vertices can be linearly ordered by < so that for r < r' and b > b'

$$r \sim b$$
 and $r' \sim b' \implies r \sim b'$

 \iff H has no invertible pair

H+Rafiev 2008

List homomorphisms to a graph *H*

If *H* is a bi-arc graph, then the problem is polynomial Otherwise the problem is NP-complete

Feder+H+Huang 2004

List homomorphisms to a graph H

If H is a bi-arc graph, then the problem is polynomial Otherwise the problem is NP-complete

Feder+H+Huang 2004

Bi-arc graphs

Generalizes both previous cases

- A reflexive H is a bi-arc graph \iff it is an interval graph
- An irreflexive H is a bi-arc graph
 ⇔ H is bipartite and H
 is a circular arc graph

Bi-arc graphs

Generalizes both previous cases

- A reflexive H is a bi-arc graph ← it is an interval graph
- An irreflexive H is a bi-arc graph

 → H is bipartite and H
 is a circular arc graph

The structure of bi-arc graphs

H is a bi-arc graph if and only if the complement of Bip(H) is a circular arc graph

Feder+H+Huang 2004

Bi-arc graphs

Generalizes both previous cases

- A reflexive H is a bi-arc graph ← it is an interval graph
- An irreflexive H is a bi-arc graph

 → H is bipartite and H
 is a circular arc graph

The structure of bi-arc graphs

H is a bi-arc graph if and only if the complement of Bip(H) is a circular arc graph

Feder+H+Huang 2004

This is the equivalent definition of bi-arc graphs used in the earlier talk by Benoit Larose

List homomorphisms to a digraph *H*

If *H* is an DAT-free digraph, then the problem is polynomial Otherwise the problem is NP-complete

H+Rafiey 2011

List homomorphisms to a digraph *H*

If *H* is an DAT-free digraph, then the problem is polynomial Otherwise the problem is NP-complete

H+Rafiey 2011

A digraph asteroidal triple (DAT) is a (somewhat technical) directed analogue of an asteroidal triple

List homomorphisms to a digraph *H*

If *H* is an DAT-free digraph, then the problem is polynomial Otherwise the problem is NP-complete

H+Rafiey 2011

A digraph asteroidal triple (DAT) is a (somewhat technical) directed analogue of an asteroidal triple

The presence of a DAT can be detected in polynomial time

List homomorphisms to a digraph *H*

If H is an DAT-free digraph, then the problem is polynomial Otherwise the problem is NP-complete

H+Rafiey 2011

A digraph asteroidal triple (DAT) is a (somewhat technical) directed analogue of an asteroidal triple

The presence of a DAT can be detected in polynomial time

Is there a geometric representation? (ordering characterization?)

New Graph Classes

In addition to interval graphs

- Co-circular-arc bigraphs
- Bi-arc graphs
- Adjusted interval digraphs
- DAT-free digraphs

As in the earlier talk by Arash Rafiey

As in the earlier talk by Arash Rafiey

Minimize the overall cost

Each decision (map $x \in V(G)$ to $u \in V(H)$) has a given cost c(x, v)

The nice graph classes identified

 If H is a reflexive graph, then the problem is polynomial for proper interval graphs, else NP-complete

- If H is a reflexive graph, then the problem is polynomial for proper interval graphs, else NP-complete
- If H is a bigraph, then the problem is polynomial for proper interval bigraphs, else NP-complete

- If H is a reflexive graph, then the problem is polynomial for proper interval graphs, else NP-complete
- If H is a bigraph, then the problem is polynomial for proper interval bigraphs, else NP-complete
- If H is a reflexive digraph, then the problem is polynomial for proper adjusted interval digraphs, else NP-complete

- If H is a reflexive graph, then the problem is polynomial for proper interval graphs, else NP-complete
- If H is a bigraph, then the problem is polynomial for proper interval bigraphs, else NP-complete
- If H is a reflexive digraph, then the problem is polynomial for proper adjusted interval digraphs, else NP-complete
- If H is a digraph, then the problem is polynomial for proper monotone interval digraphs, and a simple extension of this class, else NP-complete

The nice graph classes identified

- If H is a reflexive graph, then the problem is polynomial for proper interval graphs, else NP-complete
- If H is a bigraph, then the problem is polynomial for proper interval bigraphs, else NP-complete
- If H is a reflexive digraph, then the problem is polynomial for proper adjusted interval digraphs, else NP-complete
- If H is a digraph, then the problem is polynomial for proper monotone interval digraphs, and a simple extension of this class, else NP-complete

"Monotone" means $left(I_v) < left(I_w) \iff left(J_v) < left(J_w)$

- If H is a reflexive graph, then the problem is polynomial for proper interval graphs, else NP-complete
- If H is a bigraph, then the problem is polynomial for proper interval bigraphs, else NP-complete
- If H is a reflexive digraph, then the problem is polynomial for proper adjusted interval digraphs, else NP-complete
- If H is a digraph, then the problem is polynomial for proper monotone interval digraphs, and a simple extension of this class, else NP-complete

```
"Monotone" means left(I_v) < left(I_w) \iff left(J_v) < left(J_w)
"Proper" means left(I_v) < left(I_w) \iff right(I_v) < right(I_w)
(and similarly for the J's)
```


New Graph Classes

In addition to interval graphs and proper interval graphs and bigraphs

- Co-circular-arc bigraphs
- Bi-arc graphs
- Adjusted interval digraphs
- DAT-free digraphs
- Proper adjusted interval digraphs
- Proper monotone interval digraphs

Structural Characterizations

Structural Characterizations

Structural Characterizations

Reflexive graph H

H is a proper interval graph⇒ it has an ordering without

Reflexive graph H

H is a proper interval graph

 \iff it has an ordering without

Bigraph H

H is a proper interval bigraph

it has two orderings (red and blue vertices separately) without

Digraph H

H is a proper monotone interval digraph

 \iff it has an ordering without

Digraph H

H is a proper monotone interval digraph

 \iff it has an ordering without

(Or a reflexive *H* being a proper adjusted interval digraph)

Ordering Characterizations

Digraph H

H is a proper monotone interval digraph

(Or a reflexive *H* being a proper adjusted interval digraph)

Obstruction: a symmetrically invertible pair

Structural Characterizations

Reflexive digraph H

H is a proper adjusted interval digraph

 \iff it has no symmetrically invertible pair

Structural Characterizations

Reflexive digraph H

H is a proper adjusted interval digraph

it has no symmetrically invertible pair

General digraph H

H is a proper monotone interval digraph

it has no symmetrically invertible pair and no induced directed cycle of length greater than one

H+Rafiev 2010

Current

• Reflexive interval graphs: induced $C_{(>3)}$ and asteroidal triples

- Reflexive interval graphs: induced $C_{(>3)}$ and asteroidal triples
- Co-circular arc bigraphs: induced $C_{(>4)}$ and edge-asteroids

- Reflexive interval graphs: induced $C_{(>3)}$ and asteroidal triples
- Co-circular arc bigraphs: induced $C_{(>4)}$ and edge-asteroids
- Adjusted interval digraphs: invertible pairs

- Reflexive interval graphs: induced $C_{(>3)}$ and asteroidal triples
- Co-circular arc bigraphs: induced $C_{(>4)}$ and edge-asteroids
- Adjusted interval digraphs: invertible pairs
- Reflexive proper interval graphs: induced $C_{(>3)}$, net, tent, and claw

- Reflexive interval graphs: induced $C_{(>3)}$ and asteroidal triples
- Co-circular arc bigraphs: induced $C_{(>4)}$ and edge-asteroids
- Adjusted interval digraphs: invertible pairs
- Reflexive proper interval graphs: induced $C_{(>3)}$, net, tent, and claw
- Proper interval bigraphs: induced $C_{(>4)}$, bi-net, bi-tent, and bi-claw

- Reflexive interval graphs: induced $C_{(>3)}$ and asteroidal triples
- Co-circular arc bigraphs: induced $C_{(>4)}$ and edge-asteroids
- Adjusted interval digraphs: invertible pairs
- Reflexive proper interval graphs: induced $C_{(>3)}$, net, tent, and claw
- Proper interval bigraphs: induced $C_{(>4)}$, bi-net, bi-tent, and bi-claw
- Adjusted proper interval digraphs: symmetrically invertible pairs
- Monotone proper interval digraphs: induced directed $C_{(>1)}$ and symmetrically invertible pairs

Unified

- Reflexive interval graphs: induced $C_{(>3)}$ and asteroidal triples
- Co-circular arc bigraphs: invertible pairs
- Adjusted interval digraphs: invertible pairs
- Reflexive proper interval graphs: symmetrically invertible pairs
- Proper interval bigraphs: induced $C_{(>4)}$, bi-net, bi-tent, and bi-claw
- Adjusted proper interval digraphs: symmetrically invertible pairs
- Monotone proper interval digraphs: induced directed $C_{(>1)}$ and symmetrically invertible pairs

Illustration

Reflexive claw is not a proper interval graph

Illustration

Unified

- Reflexive interval graphs: invertible pairs
- Co-circular arc bigraphs: invertible pairs
- Adjusted interval digraphs: invertible pairs
- Reflexive proper interval graphs: symmetrically invertible pairs
- Proper interval bigraphs: symmetrically invertible pairs
- Adjusted proper interval digraphs: symmetrically invertible pairs
- Monotone proper interval digraphs: induced directed $C_{(>1)}$ and symmetrically invertible pairs

Forbidden structures

H is an interval graph if and only if

- lacktriangledown H has no induced $C_{(>3)}$ and no asteroidal triples,
- 2 the maxcliques of *H* can be ordered so that each vertex belongs to a consecutive set

Forbidden structures

H is an interval graph if and only if

- **1** H has no induced $C_{(>3)}$ and no asteroidal triples,
- the maxcliques of H can be ordered so that each vertex belongs to a consecutive set, or
- H has no invertible pair

Forbidden structures

H is an interval graph if and only if

- **1** H has no induced $C_{(>3)}$ and no asteroidal triples,
- the maxcliques of H can be ordered so that each vertex belongs to a consecutive set, or
- H has no invertible pair

1 = Lekkerkerker-Boland, 2 = Fulkerson-Gross, 3 = New

Forbidden structures

H is an interval graph if and only if

- **1** H has no induced $C_{(>3)}$ and no asteroidal triples,
- the maxcliques of H can be ordered so that each vertex belongs to a consecutive set, or
- H has no invertible pair

1 = Lekkerker-Boland, 2 = Fulkerson-Gross, 3 = New

$$1 \implies 2 \implies 3 \implies 1$$

Taking Stock

Classes with best potential

Co-circular-arc bigraphs and adjusted interval digraphs

Taking Stock

Classes with best potential

Co-circular-arc bigraphs and adjusted interval digraphs

We are looking at these, and similar ones

Taking Stock

Classes with best potential

Co-circular-arc bigraphs and adjusted interval digraphs

We are looking at these, and similar ones

Ali Ershadi

Chronological Interval Digraphs

A chronological interval digraph H

H admits a representation by intervals I_v (for $v \in V(H)$) in which

$$v \to w \iff I_v \cap I_w \neq \emptyset$$

and $left(I_v) \leq left(I_w)$

Chronological Interval Digraphs

A chronological interval digraph H

H admits a representation by intervals I_v (for $v \in V(H)$) in which

$$v \to w \iff I_v \cap I_w \neq \emptyset$$

and $left(I_v) \leq left(I_w)$

Structural characterization

H is a chronological interval digraph H

 \iff

H does not contain an induced Z or an astrological triple

Chronological Interval Digraphs

A chronological interval digraph H

H admits a representation by intervals I_v (for $v \in V(H)$) in which

$$v \to w \iff l_v \cap l_w \neq \emptyset$$

and $left(I_v) \leq left(I_w)$

Structural characterization

H is a chronological interval digraph H

 \iff

H does not contain an induced Z or an astrological triple

O(m+n) recognition

Das+Francis+H+Huang 2011

