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Interval Graphs

An interval graph H

H admits a representation by real intervals Iv (for v ∈ V (H))

v ∼ w ⇐⇒ Iv ∩ Iw 6= ∅
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Interval Graphs

Ordering characterization
H is an interval graph

⇐⇒

V (H) can be linearly ordered by < so that for u < v < w

u ∼ w =⇒ u ∼ v

Dotted edge cannot be absent

wu v
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Interval Graphs

Forbidden structure characterization
H is an interval graph

⇐⇒

H has no induced C(>3) and no asteroidal triple

Lekkerkerker-Boland 1962

Asteroidal triple
any two joined by a path avoiding the neighbours of the third
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Interval Graphs

Forbidden structure characterization
H is an interval graph

⇐⇒

H has no induced C(>3) and no asteroidal triple

Lekkerkerker-Boland 1962

Clique structure characterization
H is an interval graph

⇐⇒

the maxcliques of H can be linearly ordered so that each vertex
lies in a consecutive set

Fulkerson-Gross 1965
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Interval Graphs

O(m + n) algorithms

Booth-Lueker 1976
Korte-Mohring 1989
Habib-McConnell-Paul-Viennot 2000
Corneil-Olariu-Stewart 2010 LexBFS x 6

The second algorithm has been subsequently made certifying
Kratsch et al 2001
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Proper Interval Graphs

Representable by a proper family (v 6= w =⇒ Iv 6⊂ Iw )

Orderable so that u < v < w , u ∼ w =⇒ u ∼ v ∼ w

wu v

No induced C(>3), net, tent, or claw Wegner 1967

O(m + n) certifying algorithm 3x LexBFS Corneil 2004 and H+Huang 2005
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Chordal Graphs

Representable by subtrees Tv of a tree T

Orderable so that u < v < w , u ∼ w , u ∼ v =⇒ v ∼ w

wu v

No induced C(>3)

O(m + n) certifying algorithm 1x LexBFS Booth-Lueker1976
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Circular Arc Graphs

Representable by arcs Av on a circle C

O(m + n) algorithm McConnell2003
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Digraphs

?
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Digraphs

Interval digraphs - representable by pairs Iv , Jv

v → w ⇐⇒ Iv ∩ Jw 6= ∅
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Digraphs

Not nice!

Structural characterization not known
Recognition polynomial but best algorithm is O(n2m7)

Mueller 1997
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Observation

Interval graphs are reflexive (have all loops)
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Irreflexive Graphs

?
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Irreflexive Graphs

Bigraphs (with red and blue vertices)
Each edge joins a red vertex and a blue vertex

Equivalently, we can think of the edges as directed (red→ blue)

Interval bigraph H

Representable by real intervals Iv (for v ∈ V (H))

r ∼ b ⇐⇒ Ir ∩ Ib 6= ∅

(r is red, b is blue)
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Interval Bigraphs
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Interval Bigraphs

As before
No structural characterization
Recognition algorithm only high degree polynomial
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Proper Interval Bigraphs

Representable by inclusion-free families

No induced C(>4), bi-net, bi-tent, or bi-claw
O(m + n) certifying recognition algorithm

H+Huang 2005
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Homomorphisms

Given digraphs G and H

A homomorphism f : G→ H is a mapping f : V (G)→ V (H)
such that xy ∈ E(G) =⇒ f (x)f (y) ∈ E(H)

Undirected graphs are viewed as symmetric digraphs
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Homomorphism Problems

Given a fixed digraph H

Does an input digraph G admit a homomorphism to H?

Example: H = Kt

Does an input graph G admit a t-colouring?

Pavol Hell, Simon Fraser University Homomorphism Dichotomies and Graph Classes



Homomorphism Problems

Given a fixed digraph H

Does an input digraph G admit a homomorphism to H?

Example: H = Kt

Does an input graph G admit a t-colouring?

Pavol Hell, Simon Fraser University Homomorphism Dichotomies and Graph Classes



Constraint Satisfaction Problems

CSP with fixed template H

H with V (H) and relations R1(H), . . . , Rk (H)

Does an input G admit a homomorphism to H?

G has corresponding relations R1(G), . . . , Rk (G)
Homomorphisms preserve all relations
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Dichotomy Conjecture

Feder - Vardi, 1993, conjectured for any template H
The CSP problem for H is polynomial or is NP-complete

True for two-element templates Schaeffer 1978

True for three-element templates Bulatov 2001
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Dichotomy for Graphs versus Digraphs

If H is an undirected graph

The homomorphism problem for H is polynomial if H is bipartite
or contains a loop; otherwise it is NP-complete

H+Nešetřil 1990

If H is a digraph

If dichotomy holds for all digraph templates H then the
dichotomy conjecture holds for all CSP

Feder+Vardi 1993
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List Homomorphism Problems

Given a fixed digraph H

Each vertex x of the input digraph G has a list L(x) ⊆ V (H)

Is there a homomorphism f : G→ H for which all f (x) ∈ L(x)?
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List Homomorphism Problems

Fixed graph H
Processors and connections
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List Homomorphism Problems
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List Homomorphism Problems
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List Homomorphism Problems
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List Homomorphism Dichotomy to Reflexive Graphs

For a reflexive graph H

If H is an interval graph, then the problem for H is polynomial

Otherwise the problem is NP-complete

Feder+H 1998

If inputs are restricted to have connected lists
If H is a chordal graph, then the problem for H is polynomial
Otherwise the problem is NP-complete

Feder+H 1998
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Focus on Bigraphs

List homomorphisms to a bigraph H

If H is a circular arc graph, then the problem is polynomial
Otherwise the problem is NP-complete

Feder+H+Huang 1999

Relation to interval bigraphs

A bipartite graph H is an interval bigraph if and only if
H is a circular arc graph, and
there exists a representation in which no two arcs cover
the circle

H+Huang 2004
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Co-Circular-Arc Bigraphs

For a bigraph H

H is a circular arc graph
⇐⇒ H has no induced C>4 and no edge-asteroid
Feder+H+Huang 1999
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⇐⇒ the bipartite complement of H can be two-edge-coloured
so that there is no monochromatic 2K2
H+Huang 2004

O(n2) algorithm
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List Homomorphisms / Conservative CSP’s

Dichotomy
Every list CSP is polynomial or NP-complete

Bulatov 2003
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Focus on Reflexive Digraphs

List homomorphisms to a reflexive digraph H

If H is an adjusted interval digraph, the problem is polynomial

Feder+H+Huang+Rafiey 2010
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Conjecture
Otherwise it is NP-complete

Verified in important basic cases (trees, tournaments, etc)
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Adjusted Interval Digraphs

An ordering characterization

H is an adjusted interval digraph if and only if V (H) can be
linearly ordered by < so that for u < v and u′ > v ′

u → u′ and v → v ′ =⇒ u → v ′

v’u

v u’

A structural characterization
H is an adjusted interval digraph if and only if it has no
invertible pair

O(m2) algorithm
Feder+H+Huang+Rafiey 2010

Pavol Hell, Simon Fraser University Homomorphism Dichotomies and Graph Classes



Adjusted Interval Digraphs

An ordering characterization

H is an adjusted interval digraph if and only if V (H) can be
linearly ordered by < so that for u < v and u′ > v ′

u → u′ and v → v ′ =⇒ u → v ′

v’u

v u’

A structural characterization
H is an adjusted interval digraph if and only if it has no
invertible pair

O(m2) algorithm
Feder+H+Huang+Rafiey 2010Pavol Hell, Simon Fraser University Homomorphism Dichotomies and Graph Classes



Invertible Pairs

C4 is not an adjusted interval digraph
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Invertible Pairs

C4 is not an adjusted interval digraph
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Invertible Pairs

Invertible pair u, v
v
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Revisit Co-Circular-Arc Bigraphs

For a bigraph H

H is a circular arc graph
⇐⇒ the red and the blue vertices can be linearly ordered by <
so that for r < r ′ and b > b′

r ∼ b and r ′ ∼ b′ =⇒ r ∼ b′

b’r

r’ b

⇐⇒ H has no invertible pair
H+Rafiey 2008
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⇐⇒ H has no invertible pair
H+Rafiey 2008
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Dichotomy for General Graphs

List homomorphisms to a graph H

If H is a bi-arc graph, then the problem is polynomial
Otherwise the problem is NP-complete

Feder+H+Huang 2004
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Bi-arc graphs

Generalizes both previous cases
A reflexive H is a bi-arc graph⇐⇒ it is an interval graph
An irreflexive H is a bi-arc graph⇐⇒ H is bipartite and H
is a circular arc graph

The structure of bi-arc graphs

H is a bi-arc graph if and only if the complement of Bip(H) is a
circular arc graph

Feder+H+Huang 2004

This is the equivalent definition of bi-arc graphs used in the
earlier talk by Benoit Larose
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Dichotomy for General Digraphs

List homomorphisms to a digraph H

If H is an DAT-free digraph, then the problem is polynomial
Otherwise the problem is NP-complete

H+Rafiey 2011

A digraph asteroidal triple (DAT) is a (somewhat technical)
directed analogue of an asteroidal triple

The presence of a DAT can be detected in polynomial time

Is there a geometric representation? (ordering
characterization?)
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New Graph Classes

In addition to interval graphs

Co-circular-arc bigraphs
Bi-arc graphs
Adjusted interval digraphs
DAT-free digraphs
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Minimum Cost Homomorphism Problems

As in the earlier talk by Arash Rafiey
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Minimize the overall cost
Each decision (map x ∈ V (G) to u ∈ V (H)) has a given cost
c(x , v)
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Minimum Cost Homomorphism Problems

The nice graph classes identified

If H is a reflexive graph, then the problem is polynomial for
proper interval graphs, else NP-complete

If H is a bigraph, then the problem is polynomial for proper
interval bigraphs, else NP-complete
If H is a reflexive digraph, then the problem is polynomial
for proper adjusted interval digraphs, else NP-complete
If H is a digraph, then the problem is polynomial for proper
monotone interval digraphs, and a simple extension of this
class, else NP-complete

"Monotone" means left(Iv ) < left(Iw ) ⇐⇒ left(Jv ) < left(Jw )
"Proper" means left(Iv ) < left(Iw ) ⇐⇒ right(Iv ) < right(Iw )
(and similarly for the J’s)
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New Graph Classes

In addition to interval graphs and proper interval graphs and
bigraphs

Co-circular-arc bigraphs
Bi-arc graphs
Adjusted interval digraphs
DAT-free digraphs
Proper adjusted interval digraphs
Proper monotone interval digraphs
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Structural Characterizations

Forbidden for proper interval graphs

Forbidden for proper interval bigraphs
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Ordering Characterizations

Reflexive graph H
H is a proper interval graph
⇐⇒ it has an ordering without

wu v

Bigraph H
H is a proper interval bigraph
⇐⇒ it has two orderings (red and blue vertices separately)
without

b’r

r’ b
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Ordering Characterizations

Digraph H
H is a proper monotone interval digraph
⇐⇒ it has an ordering without

v’u

v u’

(Or a reflexive H being a proper adjusted interval digraph)

Obstruction: a symmetrically invertible pair

b’

a b’

b a’

a a’

b
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Structural Characterizations

Reflexive digraph H
H is a proper adjusted interval digraph
⇐⇒ it has no symmetrically invertible pair

General digraph H
H is a proper monotone interval digraph
⇐⇒ it has no symmetrically invertible pair and no induced
directed cycle of length greater than one

H+Rafiey 2010
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Obstructions

Current

Reflexive interval graphs: induced C(>3) and asteroidal
triples
Co-circular arc bigraphs: induced C(>4) and
edge-asteroids
Adjusted interval digraphs: invertible pairs
Reflexive proper interval graphs: induced C(>3), net, tent,
and claw
Proper interval bigraphs: induced C(>4), bi-net, bi-tent, and
bi-claw
Adjusted proper interval digraphs: symmetrically invertible
pairs
Monotone proper interval digraphs: induced directed C(>1)

and symmetrically invertible pairs
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Obstructions

Unified
Reflexive interval graphs: induced C(>3) and asteroidal
triples
Co-circular arc bigraphs: invertible pairs
Adjusted interval digraphs: invertible pairs
Reflexive proper interval graphs: symmetrically invertible
pairs
Proper interval bigraphs: induced C(>4), bi-net, bi-tent, and
bi-claw
Adjusted proper interval digraphs: symmetrically invertible
pairs
Monotone proper interval digraphs: induced directed C(>1)
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Illustration

Reflexive claw is not a proper interval graph
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Obstructions

Unified
Reflexive interval graphs: invertible pairs
Co-circular arc bigraphs: invertible pairs
Adjusted interval digraphs: invertible pairs
Reflexive proper interval graphs: symmetrically invertible
pairs
Proper interval bigraphs: symmetrically invertible pairs
Adjusted proper interval digraphs: symmetrically invertible
pairs
Monotone proper interval digraphs: induced directed C(>1)

and symmetrically invertible pairs
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Revisiting Interval Graphs

Forbidden structures
H is an interval graph if and only if

1 H has no induced C(>3) and no asteroidal triples,
2 the maxcliques of H can be ordered so that each vertex

belongs to a consecutive set

, or
3 H has no invertible pair

1 = Lekkerkerker-Boland, 2 = Fulkerson-Gross, 3 = New
1 =⇒ 2 =⇒ 3 =⇒ 1
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Taking Stock

Classes with best potential
Co-circular-arc bigraphs and adjusted interval digraphs

We are looking at these, and similar ones

Ali Ershadi
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Chronological Interval Digraphs

A chronological interval digraph H

H admits a representation by intervals Iv (for v ∈ V (H)) in
which

v → w ⇐⇒ Iv ∩ Iw 6= ∅

and left(Iv ) ≤ left(Iw )

Structural characterization
H is a chronological interval digraph H
⇐⇒
H does not contain an induced Z or an astrological triple

O(m + n) recognition
Das+Francis+H+Huang 2011
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