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Abstract. We discuss various recent results related to the inverse problem of
determining a unitary connection from its parallel transport along geodesics.

1. Introduction

Let (M, g) be a compact oriented Riemannian manifold with smooth boundary,
and let SM = {(x, v) ∈ TM ; |v| = 1} be the unit tangent bundle with canonical
projection π : SM →M . The geodesics going from ∂M into M can be parametrized
by the set ∂+(SM) = {(x, v) ∈ SM ; x ∈ ∂M, 〈v, ν〉 ≤ 0} where ν is the outer unit
normal vector to ∂M . For any (x, v) ∈ SM we let t 7→ γ(t, x, v) be the geodesic
starting from x in direction v. We assume that (M, g) is nontrapping, which means
that the time τ(x, v) when the geodesic γ(t, x, v) exitsM is finite for each (x, v) ∈ SM .
The scattering relation α = αg : ∂+(SM) → ∂−(SM) maps a starting point and
direction of a geodesic to the end point and direction, where ∂−(SM) = {(x, v) ∈
SM ; x ∈ ∂M, 〈v, ν〉 ≥ 0}.

Suppose now that E → M is a Hermitian vector bundle of rank n over M and ∇
is a unitary connection on E. Associated with ∇ there is the following additional
piece of scattering data: given (x, v) ∈ ∂+(SM), let P (x, v) = P∇(x, v) : E(x) →
E(π ◦ α(x, v)) denote the parallel transport along the geodesic γ(t, x, v). This map
is a linear isometry and the main inverse problem we wish to discuss here is the
following:

Question. Does P determine ∇?

The first observation is that the problem has a natural gauge equivalence. Let ψ
be a gauge transformation, that is, a smooth section of the bundle of automorphisms
AutE. The set of all these sections naturally forms a group (known as the gauge
group) which acts on the space of unitary connections by the rule

(ψ∗∇)s := ψ∇(ψ−1s)

where s is any smooth section of E. If in addition ψ|∂M = Id, then it is a simple
exercise to check that

P∇ = Pψ∗∇.

Thus we can rephrase the question above more precisely as follows:

Question I. (Manifolds with boundary) Let ∇1 and ∇2 be two unitary connections
with P∇1 = P∇2 . Does there exist a gauge transformation ψ with ψ|∂M = Id and
ψ∗∇1 = ∇2?

1



2 G.P. PATERNAIN

There is a version of this question which makes sense also for closed manifolds,
that is, ∂M = ∅. Let γ : [0, T ] →M be a closed geodesic and let P∇(γ) : E(γ(0)) →
E(γ(0)) be the parallel transport along γ.

Question II. (Closed manifolds) Let ∇1 and ∇2 be two unitary connections and
suppose there is a connection∇ gauge equivalent to∇1 such that that P∇(γ) = P∇2(γ)
for every closed geodesic γ. Are ∇1 and ∇2 gauge equivalent?

A connection ∇ is said to be transparent if P∇(γ) = Id for all closed geodesics
γ. Understanding the set of transparent connections modulo gauge is an important
special case of Question II.

To make further progress on Questions I and II we need to impose some conditions
on the manifold (M, g).

In the case of manifolds with boundary a typical hypothesis is that of simplicity.
A compact Riemannian manifold with boundary is said to be simple if for any point
x ∈M the exponential map expx is a diffeomorphism onto M , and if the boundary is
strictly convex. The notion of simplicity arises naturally in the context of the bound-
ary rigidity problem [26]. For the case of closed manifolds there are two reasonable
disjoint options. One is to assume that (M, g) is a Zoll manifold, i.e., a Riemannian
manifold all of whose geodesics are closed, but we shall not really discuss this case in
any detail here. The other is to assume that the geodesic flow is Anosov. Recall that
the geodesic flow φt is Anosov if there is a continuous splitting TSM = E0⊕Eu⊕Es,
where E0 is the flow direction, and there are constants C > 0 and 0 < ρ < 1 < η
such that for all t > 0 we have

‖dφ−t|Eu‖ ≤ C η−t and ‖dφt|Es‖ ≤ C ρt.

It is very well known that the geodesic flow of a closed negatively curved Riemannian
manifold is a contact Anosov flow [17]. The Anosov property automatically implies
that the manifold is free of conjugate points [18, 1, 22]. Simple manifolds are also
free of conjugate points (this follows directly from the definition) and both conditions
(simplicity and Anosov) are open conditions on the metric. It is remarkable that
similar results exist in both situations.

It is easy to see from the definition that a simple manifold must be diffeomorphic
to a ball in Rn. Therefore any bundle over such M is necessarily trivial. For most of
this paper we shall consider Questions I and II only for the case of trivial bundles;
this will make the presentation clearer without removing substantial content.

Question I arises naturally when considering the hyperbolic Dirichlet-to-Neumann
map associated to the Schrödinger equation with a connection. It was shown in
[11] that when the metric is Euclidean, the scattering data for a connection can be
determined from the hyperbolic Dirichlet-to-Neumann map. A similar result holds
true on simple Riemannian manifolds: a combination of the methods in [11] and [45]
shows that the hyperbolic Dirichlet-to-Neumann map for a connection determines the
scattering data P∇. For Calderón-type problems with connections we refer the reader
to the survey article [13] in this volume.
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2. Elementary background on connections

Consider the trivial bundle M ×Cn. For us a connection A will be a complex n×n
matrix whose entries are smooth 1-forms on M . Another way to think of A is to
regard it as a smooth map A : TM → Cn×n which is linear in v ∈ TxM for each
x ∈M .

Very often in physics and geometry one considers unitary or Hermitian connections.
This means that the range of A is restricted to skew-Hermitian matrices. In other
words, if we denote by u(n) the Lie algebra of the unitary group U(n), we have a
smooth map A : TM → u(n) which is linear in the velocities. There is yet another
equivalent way to phrase this. The connection A induces a covariant derivative dA
on sections s ∈ C∞(M,Cn) by setting dAs = ds + As. Then A being Hermitian or
unitary is equivalent to requiring compatibility with the standard Hermitian inner
product of Cn in the sense that

d〈s1, s2〉 = 〈dAs1, s2〉+ 〈s1, dAs2〉

for any pair of functions s1, s2.
Given two unitary connections A and B we shall say that A and B are gauge

equivalent if there exists a smooth map u : M → U(n) such that

(1) B = u−1du+ u−1Au.

It is an easy exercise to check that this definition coincides with the one given in the
previous section if we set ψ = u−1.

The curvature of the connection is the 2-form FA with values in u(n) given by

FA := dA+ A ∧ A.

If A and B are related by (1) then:

FB = u−1 FA u.

Given a smooth curve γ : [a, b] → M , the parallel transport along γ is obtained by
solving the linear differential equation in Cn:

(2)

{
ṡ+ A(γ(t), γ̇(t))s = 0,
s(a) = w ∈ Cn.

The isometry PA(γ) : Cn → Cn is defined as PA(γ)(w) := s(b). We may also consider
the fundamental unitary matrix solution U : [a, b] → U(n) of (2). It solves

(3)

{
U̇ + A(γ(t), γ̇(t))U = 0,
U(a) = Id.

Clearly PA(γ)(w) = U(b)w.
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3. The transport equation and the attenuated ray transform

Consider now the case of a compact simple Riemannian manifold. We would like
to pack the information provided by (3) along every geodesic into one PDE in SM .
For this we consider the vector field X associated with the geodesic flow φt and we
look at the unique solution UA : SM → U(n) of

(4)

{
X(UA) + A(x, v)UA = 0, (x, v) ∈ SM
UA|∂+(SM) = Id.

The scattering data of the connection A is now the map CA : ∂−(SM) → U(n) defined
as CA := UA|∂−(SM).

We can now rephrase Question I as follows:

Question I. (Manifolds with boundary) Let A and B be two unitary connections
with CA = CB. Does there exist a smooth map U : M → U(n) with U |∂M = Id and
B = U−1dU + U−1AU?

Suppose CA = CB and define U := UA(UB)−1 : SM → U(n). One easily checks
that U satisfies: {

XU + AU − UB = 0,
U |∂(SM) = Id.

If we show that U is in fact smooth and it only depends on the base point x ∈
M we would have an answer to Question I, since the equation above reduces to
dU +AU −UB = 0 and U |∂M = Id which is exactly gauge equivalence. Showing that
U only depends of x is not an easy task and it often is the crux of the matter in these
type of problems. To tackle this issue we will rephrase the problem in terms of an
attenuated ray transform.

Consider W := U − Id : SM → Cn×n, where as before Cn×n stands for the set of
all n× n complex matrices. Clearly W satisfies

XW + AW −WB = B − A,(5)

W |∂(SM) = 0.(6)

We introduce a new connection Â on the trivial bundle M×Cn×n as follows: given a
matrix R ∈ Cn×n we define Â(R) := AR−RB. One easily checks that Â is Hermitian
if A and B are. Then equations (5) and (6) are of the form:{

Xu+ Au = −f,
u|∂(SM) = 0.

where A is a unitary connection, f : SM → CN is a smooth function linear in the
velocities, u : SM → CN is a function that we would like to prove smooth and
only dependent on x ∈ M and N = n × n. As we will see shortly this amounts
to understanding which functions f linear in the velocities are in the kernel of the
attanuated ray transform of the connection A.
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First recall that in the scalar case, the attenuated ray transform Iaf of a function
f ∈ C∞(SM,C) with attenuation coefficient a ∈ C∞(SM,C) can be defined as the
integral

Iaf(x, v) :=

∫ τ(x,v)

0

f(φt(x, v))exp

[∫ t

0

a(φs(x, v)) ds

]
dt, (x, v) ∈ ∂+(SM).

Alternatively, we may set Iaf := u|∂+(SM) where u is the unique solution of the
transport equation

Xu+ au = −f in SM, u|∂−(SM) = 0.

The last definition generalizes without difficulty to the case of connections. Assume
that A is a unitary connection and let f ∈ C∞(SM,Cn) be a vector valued function.
Consider the following transport equation for u : SM → Cn,

Xu+ Au = −f in SM, u|∂−(SM) = 0.

On a fixed geodesic the transport equation becomes a linear ODE with zero initial
condition, and therefore this equation has a unique solution u = uf .

Definition 3.1. The attenuated ray transform of f ∈ C∞(SM,Cn) is given by

IAf := uf |∂+(SM).

We note that IA acting on sums of 0-forms and 1-forms always has a nontrivial
kernel, since

IA(dp+ Ap) = 0 for any p ∈ C∞(M,Cn) with p|∂M = 0.

Thus from the ray transform IAf one only expects to recover f up to an element
having this form.

The transform IA also has an integral representation. Consider the unique matrix
solution UA : SM → U(n) from above. Then it is easy to check that

IAf(x, v) =

∫ τ(x,v)

0

U−1
A (φt(x, v))f(φt(x, v)) dt.

We are now in a position to state the next main question:

Question III. (Kernel of IA) Let (M, g) be a compact simple Riemannian manifold
and let A be a unitary connection. Assume that f : SM → Cn is a smooth function
of the form F (x) + αj(x)v

j, where F : M → Cn is a smooth function and α is a
Cn-valued 1-form. If IA(f) = 0, is it true that F = 0 and α = dAp = dp+Ap, where
p : M → Cn is a smooth function with p|∂M = 0?

As explained above a positive answer to Question III gives a positive answer to
Question I. The next recent result provides a full answer to Question III in the two-
dimensional case:

Theorem 3.2. [35] Let M be a compact simple surface. Assume that f : SM → Cn is
a smooth function of the form F (x)+αj(x)v

j, where F : M → Cn is a smooth function
and α is a Cn-valued 1-form. Let also A : TM → u(n) be a unitary connection. If
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IA(f) = 0, then F = 0 and α = dAp, where p : M → Cn is a smooth function with
p|∂M = 0.

Let us explicitly state the positive answer to Question I in the case of surfaces:

Theorem 3.3. [35] Assume M is a compact simple surface and let A and B be two
unitary connections. Then CA = CB implies that there exists a smooth U : M → U(n)
such that U |∂M = Id and B = U−1dU + U−1AU .

We will provide a sketch of the proof of Theorem 3.2 in the next section, but first
we survey some prior results on this topic.

In the case of Euclidean space with the Euclidean metric the attenuated ray trans-
form is the basis of the medical imaging technology of SPECT and has been exten-
sively studied, see [12] for a review. We remark that in connection with injectivity
results for ray transforms, there is great interest in reconstruction procedures and in-
version formulas. For the attenuated ray transform in R2 with Euclidean metric and
scalar attenuation function, an explicit inversion formula was proved by R. Novikov
[28]. A related formula also including 1-form attenuations appears in [3], inversion
formulas for matrix attenuations in Euclidean space are given in [10, 29], and the case
of hyperbolic space H2 is considered in [2].

In our general geometric setting an essential contribution is made in the paper [39]
in which it is was shown that the attenuated ray transform is injective in the scalar
case with a ∈ C∞(M,C) for simple two dimensional manifolds. This paper also
contains the proof of existence of holomorphic integrating factors of a for arbitrary
simple surfaces; a result that extends to the case when a is a 1-form and that will be
crucial in the proof of Theorem 3.2.

Various versions of Theorem 3.3 have been proved in the literature. Sharafutdinov
[42] proves the theorem assuming that the connections are C1 close to another con-
nection with small curvature (but in any dimension). In the case of domains in the
Euclidean plane the theorem was proved by Finch and Uhlmann [11] assuming that
the connections have small curvature and by G. Eskin [10] in general. R. Novikov
[29] considers the case of connections which are not compactly supported (but with
suitable decay conditions at infinity) and establishes local uniqueness of the trivial
connection and gives examples in which global uniqueness fails (existence of “ghosts”).
His examples are based on a remarkable connection between the Bogomolny equation
in Minkowski (2 + 1)-space and the scattering data associated with the transport
equation considered above. As it is explained in [47] (see also [9, Section 8.2.1]), cer-
tain soliton solutions A have the property that when restricted to space-like planes
the scattering data is trivial. In this way one obtains connections in R2 with the
property of having trivial scattering data but which are not gauge equivalent to the
trivial connection. Of course these pairs are not compactly supported in R2 but they
have a suitable decay at infinity. Motivated by this L. Mason obtained a full clas-
sification of U(n) transparent connections for the round metric on S2 (unpublished)
using methods from twistor theory as in [23].
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4. Sketch of proof of Theorem 3.2

Let (M, g) be a compact oriented two dimensional Riemannian manifold with
smooth boundary ∂M . As before SM will denote the unit circle bundle which is
a compact 3-manifold with boundary given by ∂(SM) = {(x, v) ∈ SM : x ∈ ∂M}.
Since M is assumed oriented there is a circle action on the fibers of SM with infini-
tesimal generator V called the vertical vector field. It is possible to complete the pair
X,V to a global frame of T (SM) by considering the vector field X⊥ := [X,V ]. There
are two additional structure equations given by X = [V,X⊥] and [X,X⊥] = −KV
where K is the Gaussian curvature of the surface. Using this frame we can define a
Riemannian metric on SM by declaring {X,X⊥, V } to be an orthonormal basis and
the volume form of this metric will be denoted by dΣ3. The fact that {X,X⊥, V } are
orthonormal together with the commutator formulas implies that the Lie derivative
of dΣ3 along the three vector fields vanishes.

Given functions u, v : SM → Cn we consider the inner product

(u, v) =

∫
SM

〈u, v〉Cn dΣ3.

SinceX,X⊥, V are volume preserving we have (V u, v) = −(u, V v) for u, v ∈ C∞(SM,Cn),
and if additionally u|∂(SM) = 0 or v|∂(SM) = 0 then also (Xu, v) = −(u,Xv) and
(X⊥u, v) = −(u,X⊥v).

The space L2(SM,Cn) decomposes orthogonally as a direct sum

L2(SM,Cn) =
⊕
k∈Z

Hk

where Hk is the eigenspace of −iV corresponding to the eigenvalue k. A function
u ∈ L2(SM,Cn) has a Fourier series expansion

u =
∞∑

k=−∞

uk,

where uk ∈ Hk. Let Ωk = C∞(SM,Cn) ∩Hk.
An important ingredient is the fibrewise Hilbert transform H. This can be intro-

duced in various ways (cf. [38, 39]), but perhaps the most informative approach is to
indicate that it acts fibrewise and for uk ∈ Ωk,

H(uk) = −sgn(k) iuk

where we use the convention sgn(0) = 0. Moreover, H(u) =
∑

kH(uk). Observe that

(Id + iH)u = u0 + 2
∞∑
k=1

uk,

(Id− iH)u = u0 + 2
−1∑

k=−∞

uk.
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Definition 4.1. A function u : SM → Cn is said to be holomorphic if (Id− iH)u =
u0. Equivalently, u is holomorphic if uk = 0 for all k < 0. Similarly, u is said to be
antiholomorphic if (Id + iH)u = u0 which is equivalent to saying that uk = 0 for all
k > 0.

As in previous works the following commutator formula of Pestov-Uhlmann [38]
will come into play :

(7) [H, X]u = X⊥u0 + (X⊥u)0, u ∈ C∞(SM,Cn).

We will give a proof of this formula later on in Lemma 6.7 below.
It is easy to extend this bracket relation so that it includes a connection A. We often

think of A as a function restricted to SM . We also think of A as acting on smooth
functions u ∈ C∞(SM,Cn) by multiplication. Note that V (A) is a new function on
SM which can be identified with the restriction of − ? A to SM , so we will simply
write V (A) = − ? A. Here ? denotes the Hodge star operator of the metric g. Then
we have:

Lemma 4.2. For any smooth function u we have

[H, X + A]u = (X⊥ + ?A)(u0) + {(X⊥ + ?A)(u)}0.

The proof makes use of a regularity result from [35, Proposition 5.2].

Proposition 4.3. Let f : SM → Cn be smooth with IA(f) = 0. Then uf : SM → Cn

is smooth.

The next proposition from [35, Theorem 4.1] will provide the holomorphic integrat-
ing factors in the scalar case.

Proposition 4.4. Let (M, g) be a simple two-dimensional manifold and f ∈ C∞(SM,C).
The following conditions are equivalent.

(a) There exist a holomorphic w ∈ C∞(SM,C) and antiholomorphic w̃ ∈ C∞(SM,C)
such that Xw = Xw̃ = −f .

(b) f(x, v) = F (x) + αj(x)v
j where F is a smooth function on M and α is a

1-form.

The existence of holomorphic and antiholomorphic solutions for the case α = 0 was
first proved in [39], but here we will need the case in which F = 0, but α is non-zero.

Another key ingredient is an energy identity or a “Pestov type identity”, which
generalizes the standard Pestov identity [40] to the case where a connection is present.
There are several predecessors for this formula [46, 42] and its use for simple surfaces
is in the spirit of [44, 6]. Recall that the curvature FA of the connection A is defined
as FA = dA+ A ∧ A and ?FA is a function ?FA : M → u(n).

Lemma 4.5 (Energy identity). If u : SM → Cn is a smooth function such that
u|∂(SM) = 0, then

‖(X + A)V u‖2 − (K V u, V u) − (?FAu, V u) = ‖V (X + A)(u)‖2 − ‖(X + A)u‖2.
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Remark 4.6. The same Energy identity holds true for closed surfaces.

To use the Energy identity we need to control the signs of various terms. The first
easy observation is the following:

Lemma 4.7. Assume (X + A)u = F (x) + αj(x)v
j, where F : M → Cn is a smooth

function and α is a Cn-valued 1-form. Then

‖V (X + A)u‖2 − ‖(X + A)u‖2 = −‖F‖2 ≤ 0.

Proof. It suffices to note the identities:

‖V (X + A)u‖2 = ‖V α‖2 = ‖α‖2,

‖F + α‖2 = ‖α‖2 + ‖F‖2.

�

Next we have the following lemma due to the absence of conjugate points on simple
surfaces (compare with [6, Theorem 4.4]):

Lemma 4.8. Let M be a compact simple surface. If u : SM → Cn is a smooth
function such that u|∂(SM) = 0, then

‖(X + A)V u‖2 − (K V u, V u) ≥ 0.

Proof. Consider a smooth function a : SM → R which solves the Riccati equation
X(a) + a2 +K = 0. These exist by the absence of conjugate points (cf. for example
[41, Theorem 6.2.1] or proof of Lemma 4.1 in [44]). Set for simplicity ψ = V (u).
Clearly ψ|∂(SM) = 0.

Let us compute using that A is skew-Hermitian:

|(X + A)(ψ)− aψ|2Cn

= |(X + A)(ψ)|2Cn − 2<〈(X + A)(ψ), aψ〉Cn + a2|ψ|2Cn

= |(X + A)(ψ)|2Cn − 2a<〈X(ψ), ψ〉Cn + a2|ψ|2Cn .

Using the Riccati equation we have

X(a|ψ|2) = (−a2 −K)|ψ|2 + 2a<〈X(ψ), ψ〉Cn

thus
|(X + A)(ψ)− aψ|2Cn = |(X + A)(ψ)|2Cn −K|ψ|2Cn −X(a|ψ|2Cn).

Integrating this equality with respect to dΣ3 and using that ψ vanishes on ∂(SM) we
obtain

‖(X + A)(ψ)‖2 − (K ψ,ψ) = ‖(X + A)(ψ)− aψ‖2 ≥ 0.

�
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We now show:

Theorem 4.9. Let f : SM → Cn be a smooth function. Suppose u : SM → Cn

satisfies {
Xu+ Au = −f,
u|∂(SM) = 0.

Then if fk = 0 for all k ≤ −2 and i ? FA(x) is a negative definite Hermitian matrix
for all x ∈M , the function u must be holomorphic. Moreover, if fk = 0 for all k ≥ 2
and i ? FA(x) is a positive definite Hermitian matrix for all x ∈ M , the function u
must be antiholomorphic.

Proof. Let us assume that fk = 0 for k ≤ −2 and i?FA is a negative definite Hermitian
matrix; the proof of the other claim is similar.

We need to show that (Id − iH)u only depends on x. We apply X + A to it and
use Lemma 4.2 together with (Id− iH)f = f0 + 2f−1 to derive:

(X + A)[(Id− iH)u] = −f − i(X + A)(Hu)
= −f − i(H((X + A)(u))− (X⊥ + ?A)(u0)− {(X⊥ + ?A)(u)}0)

= −(Id− iH)(f) + i(X⊥ + ?A)(u0) + i{(X⊥ + ?A)(u)}0

= −f0 − 2f−1 + i(X⊥ + ?A)(u0) + i{(X⊥ + ?A)(u)}0

= F (x) + αx(v),

where F : M → Cn and α is a Cn-valued 1-form. Now we are in good shape to
use the Energy identity from Lemma 4.5. We will apply it to v = (Id − iH)u =
u0 +2

∑−1
k=−∞ uk. We know from Lemma 4.7 that its right hand side is ≤ 0 and using

Lemma 4.8 we deduce
(?FAv, V v) ≥ 0.

But on the other hand

(?FAv, V v) = −4
−1∑

k=−∞

k(i ? FAuk, uk)

and since i ? FA is negative definite this forces uk = 0 for all k < 0.
�

We are now ready to outline the proof of Theorem 3.2.

Proof. Consider the area form ωg of the metric g. Since M is a disk there exists a
smooth 1-form ϕ such that ωg = dϕ. Given s ∈ R, consider the Hermitian connection

As := A− isϕ Id.

Clearly its curvature is given by

FAs = FA − isωgId

therefore
i ? FAs = i ? FA + sId,
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from which we see that there exists s0 > 0 such that for s > s0, i ? FAs is positive
definite and for s < −s0, i ? FAs is negative definite.

Since IA(f) = 0, Proposition 4.3 implies that there is a smooth u : SM → Cn such
that (X+A)(u) = −f and u|∂(SM) = 0 (to abbreviate the notation we write u instead
of uf ).

Let esw be an integrating factor of −isϕ. In other words w : SM → C satisfies
X(w) = iϕ. By Proposition 4.4 we know we can choose w to be holomorphic or
antiholomorphic. Observe now that us := eswu satisfies us|∂(SM) = 0 and solves

(X + As)(us) = −eswf.
Choose w to be holomorphic. Since f = F (x) +αj(x)v

j, the function eswf has the
property that its Fourier coefficients (eswf)k vanish for k ≤ −2. Choose s such that
s < −s0 so that i ? FAs is negative definite. Then Theorem 4.9 implies that us is
holomorphic and thus u = e−swus is also holomorphic.

Choosing w antiholomorphic and s > s0 we show similarly that u is antiholomor-
phic. This implies that u = u0 which together with (X+A)u = −f , gives dAu0 = −f .
If we set p = −u0 we see right away that F ≡ 0 and α = dAp as desired. �

5. Applications to tensor tomography

In this section we explain how the ideas of the previous section can be used to tackle
a well-known inverse problem which is apriori unrelated with unitary connections.

We consider the geodesic ray transform acting on symmetric m-tensor fields on M .
When the metric is Euclidean and m = 0 this transform reduces to the usual X-
ray transform obtained by integrating functions along straight lines. More generally,
given a symmetric (covariant) m-tensor field f = fi1···im dx

i1 ⊗ · · · ⊗ dxim on M we
define the corresponding function on SM by

f(x, v) = fi1···imv
i1 · · · vim .

The ray transform of f is defined by

If(x, v) =

∫ τ(x,v)

0

f(φt(x, v)) dt, (x, v) ∈ ∂+(SM),

where φt denotes the geodesic flow of the Riemannian metric g. If h is a symmetric
(m− 1)-tensor field, its inner derivative dh is a symmetric m-tensor field defined by
dh = σ∇h, where σ denotes symmetrization and ∇ is the Levi-Civita connection. A
direct calculation in local coordinates shows that

dh(x, v) = Xh(x, v),

where X as before is the geodesic vector field associated with φt. If additionally
h|∂M = 0, then one clearly has I(dh) = 0. The ray transform on symmetric m-tensors
is said to be s-injective if these are the only elements in the kernel. The terminology
arises from the fact that any tensor field f may be written uniquely as f = f s + dh,
where f s is a symmetric m-tensor with zero divergence and h is an (m − 1)-tensor
with h|∂M = 0 (cf. [40]). The tensor fields f s and dh are called respectively the
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solenoidal and potential parts of the tensor f . Saying that I is s-injective is saying
precisely that I is injective on the set of solenoidal tensors.

The next result shows that the ray transform on simple surfaces is s-injective for
tensors of any rank. This settles a long standing question in the two-dimensional case
(cf. [37] and [40, Problem 1.1.2]).

Theorem 5.1. [36] Let (M, g) be a simple surface and let m ≥ 0. If f is a smooth
symmetric m-tensor field on M which satisfies If = 0, then f = dh for some smooth
symmetric (m− 1)-tensor field h on M with h|∂M = 0. (If m = 0, then f = 0.)

It is not the objective of this article to discuss the vast literature on the tensor
tomography problem for simple manifolds. Instead we refer the reader to [40] and
to the references in [36] and we limit ourselves to supplying a proof of Theorem 5.1
based on the ideas of the previous section. The proof reduces to proving the next
result. We say that f ∈ C∞(SM,C) has degree m if fk = 0 for |k| ≥ m + 1 and
m ≥ 0 is the smallest non-negative integer with that property.

Proposition 5.2. Let (M, g) be a simple surface, and assume that u ∈ C∞(SM,C)
satisfies Xu = −f in SM with u|∂(SM) = 0. If f ∈ C∞(SM,C) has degree m ≥ 1,
then u has degree m− 1. If f has degree 0, then u = 0.

Proof of Theorem 5.1. Let f be a symmetric m-tensor field on SM and suppose that
If = 0. We write

u(x, v) :=

∫ τ(x,v)

0

f(φt(x, v)) dt, (x, v) ∈ SM.

Then u|∂(SM) = 0, and also u ∈ C∞(SM) by Proposition 4.3.
Now f has degree m, and u satisfies Xu = −f in SM with u|∂(SM) = 0. Proposition

5.2 implies that u has degree m− 1 (and u = 0 if m = 0). We let h := −u. It is not
hard to see that h gives rise to a symmetric (m− 1)-tensor still denoted by h. Since
X(h) = f , this implies that dh and f agree when restricted to SM and thus dh = f .
This proves the theorem. �

Proposition 5.2 is in turn an immediate consequence of the next two results.

Proposition 5.3. Let (M, g) be a simple surface, and assume that u ∈ C∞(SM,C)
satisfies Xu = −f in SM with u|∂(SM) = 0. If m ≥ 0 and if f ∈ C∞(SM,C) is such
that fk = 0 for k ≤ −m− 1, then uk = 0 for k ≤ −m.

Proposition 5.4. Let (M, g) be a simple surface, and assume that u ∈ C∞(SM,C)
satisfies Xu = −f in SM with u|∂(SM) = 0. If m ≥ 0 and if f ∈ C∞(SM,C) is such
that fk = 0 for k ≥ m+ 1, then uk = 0 for k ≥ m.

We will only prove Proposition 5.3, the proof of the other result being completely
analogous. We shall need the following result from [39, Proposition 5.1]:

Proposition 5.5. Let (M, g) be a simple surface and let f be a smooth holomorphic
(antiholomorphic) function on SM . Suppose u ∈ C∞(SM,C) satisfies

Xu = −f in SM, u|∂(SM) = 0.
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Then u is holomorphic (antiholomorphic) and u0 = 0.

Proof of Proposition 5.3. Suppose that u is a smooth solution of Xu = −f in SM
where fk = 0 for k ≤ −m − 1 and u|∂(SM) = 0. We choose a nonvanishing function
r ∈ Ωm and define the 1-form

A := −r−1Xr.

Then ru solves the problem

(X + A)(ru) = −rf in SM, ru|∂(SM) = 0.

Note that rf is a holomorphic function. Next we employ a holomorphic integrating
factor: by Proposition 4.4 there exists a holomorphic w ∈ C∞(SM,C) with Xw = A.
The function ewru then satisfies

X(ewru) = −ewrf in SM, ewru|∂(SM) = 0.

The right hand side ewrf is holomorphic. Now Proposition 5.5 implies that the
solution ewru is also holomorphic and (ewru)0 = 0. Looking at Fourier coefficients
shows that (ru)k = 0 for k ≤ 0, and therefore uk = 0 for k ≤ −m as required. �

Finally, let us explain the choice of r and A in the proof in more detail. Since M is
a disk we can consider global isothermal coordinates (x, y) on M such that the metric
can be written as ds2 = e2λ(dx2 + dy2) where λ is a smooth real-valued function of
(x, y). This gives coordinates (x, y, θ) on SM where θ is the angle between a unit
vector v and ∂/∂x. Then Ωm consists of all functions a(x, y)eimθ where a ∈ C∞(M,C).
We choose the specific nonvanishing function

r(x, y, θ) := eimθ.

In the (x, y, θ) coordinates the geodesic vector field X is given by:

(8) X = e−λ
(

cos θ
∂

∂x
+ sin θ

∂

∂y
+

(
−∂λ
∂x

sin θ +
∂λ

∂y
cos θ

)
∂

∂θ

)
.

The connection A = −Xr/r has the form

A = ime−λ
(
−∂λ
∂y

cos θ +
∂λ

∂x
sin θ

)
= im

(
−∂λ
∂y
dx+

∂λ

∂x
dy

)
.

Here as usual we identify A with A(x, v) where (x, v) ∈ SM . This shows that the
connection A is essentially the Levi-Civita connection of the metric g on the tensor
power bundle TM⊗m, and since (X+A)r = 0 we have that r corresponds to a section
of the pull-back bundle π∗(TM⊗m) whose covariant derivative along the geodesic
vector field vanishes (here π : SM →M is the standard projection).

A second proof of Proposition 5.4 in the same spirit may be found in [36].
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6. Closed manifolds

In this section we will discuss Question II, but before embarking into that we need
some preliminary discussion on cocycles with values in a Lie group over a flow φt.

Let N be a closed manifold and φt : N → N a smooth flow with infinitesimal
generator X. Let G be a compact Lie group; for our purposes it is enough to think
of G as a compact matrix group like U(n).

Definition 6.1. A G-valued cocycle over the flow φt is a map C : N × R → G that
satisfies

C(x, t+ s) = C(φtx, s)C(x, t)

for all x ∈ N and s, t ∈ R.

In this paper the cocycles will always be smooth. In this case C is determined by
its infinitesimal generator B : N → g given by

B(x) := − d

dt

∣∣∣∣
t=0

C(x, t).

The cocycle can be recovered from B as the unique solution to

d

dt
C(x, t) = −dRC(x,t)(B(φtx)), C(x, 0) = Id,

where Rg is right translation by g ∈ G. We will indistinctly use the word “cocycle”
for C or its infinitesimal generator B.

Definition 6.2. The cocycle C is said to be cohomologically trivial if there exists a
smooth function u : N → G such that

C(x, t) = u(φtx)u(x)
−1

for all x ∈ N and t ∈ R.

Observe that the condition of being cohomologically trivial can be equivalently
expressed in terms of the infinitesimal generator B of the cocycle by saying that
there exists a smooth function u : N → G that satisfies the equation

dxu(X(x)) + dIdRu(x)(B(x)) = 0

for all x ∈ N . If G is a matrix group we can write this more succinctly as

Xu+Bu = 0

where it is understood that differentiation and multiplication is in the set of matrices.

Definition 6.3. A cocycle C is said to satisfy the periodic orbit obstruction condition
if C(x, T ) = Id whenever φTx = x.

Obviously a cohomologically trivial cocycle satisfies the periodic orbit obstruction
condition. The converse turns out to be true for transitive Anosov flows: this is one
of the celebrated Livsic theorems [19, 20, 27].



INVERSE PROBLEMS FOR CONNECTIONS 15

Theorem 6.4 (The smooth Livsic periodic data theorem). Suppose φt is a smooth
transitive Anosov flow. Let C be a smooth cocycle such that C(x, T ) = Id whenever
φTx = x. Then C is cohomologically trivial.

Given two G-valued coycles C1 and C2 we shall say that they are cohomologous (or
X-cohomologous) if there is a smooth function u : N → G such that

C1(x, t) = u(φtx)C2(x, t)u(x)
−1

for all x ∈ N and t ∈ R. Clearly if C1 and C2 are cohomologous, C1(x, T ) =
u(x)C2(x, T )u(x)−1, whenever φTx = x. An extension of the Livsic theorem due
to W. Parry [30] together with the regularity result from [27] gives the following
extension of Theorem 6.4:

Theorem 6.5 (The smooth Livsic periodic data theorem for two cocycles). Sup-
pose φt is a smooth transitive Anosov flow. Let C1 and C2 be two smooth cocycles
such that there is a Hölder continuous function u : N → G for which C1(x, T ) =
u(x)C2(x, T )u(x)−1 whenever φTx = x. Then C and D are cohomologous.

Observe that if G is a matrix group then two cocycles C1 and C2 are cohomologous
iff their infinitesimal generators B1 and B2 are related by a smooth function u : N →
G such that

Xu+B1u− uB2 = 0

or equivalently

B2 = u−1Xu+ u−1B1u.

Note the formal similarity of this equation with the one that defines gauge equivalent
connections. One could take the viewpoint that the main question raised in this paper
is to decide when it is possible to go from cohomology defined by the operator X to
cohomology defined by d in the geometric situation when X is the geodesic vector
field. Let us be a bit more precise about this.

Let (M, g) be a closed Riemannian manifold with unit tangent bundle SM and
projection π : SM → M . The geodesic flow φt acts on SM with infinitesimal
generator X.

Consider the trivial bundle M × Cn and let A stand for the set of all unitary
connections. Given A ∈ A, we have a pull-back connection π∗A on the bundle
SM × Cn and we denote by π∗A the set of all such connections.

Each connection A gives rise to a cocycle over the geodesic flow whose generator is
π∗A(X) : SM → u(n). Note that π∗A(X)(x, v) = A(x, v), in words, π∗A(X) is the
restriction of A : TM → u(n) to SM .

The cocycle C associated with this generator is nothing but parallel transport along
geodesics, so that C : SM × R → U(n) solves

d

dt
C(x, v, t) + A(φt(x, v))C(x, v, t) = 0, C(x, v, 0) = Id.

On the set π∗A we impose the equivalence relation ∼ X of being X-cohomologous
and on A we have the equivalence relation ∼ given by gauge equivalence. There is a
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natural map induced by π:

(9) A/ ∼ 7→ π∗A/ ∼ X.

Suppose now we have two connections A1 and A2 as in Question II and the ge-
odesic flow is Anosov. Then Theorem 6.5 implies that π∗A1(X) and π∗A2(X) are
cohomologous cocycles, that is, there is a smooth map u : SM → U(n) such that on
SM we have the cohomological equation

(10) A2 = u−1Xu+ u−1A1u.

This is the main dynamical input, that allows the passage from closed geodesics to
X-cohomology. What is left is the geometric problem of deciding if the map in (9) is
injective. Suppose for a moment that for some reason we can show that u(x, v) only
depends on x. Then (10) means exactly that A1 and A2 are gauge equivalent since
Xu = du. Thus understanding the dependence of u in the velocities is crucial and
this often can be achieved using Pestov type identities and/or Fourier analysis as in
the sketch of proof of Theorem 3.2 before. Let us see a good example of this in the
simplest possible case in which n = 1. Since U(1) = S1 is abelian we can reduce (10)
to the cohomologically trivial case

Xu+ Au = 0

where A = A1 − A2 and u : SM → S1. Write A = iθ, where θ is an ordinary
real-valued 1-form. Then

(11) du(X) + iθu = 0.

The function u gives rise to a real-valued closed 1-form in SM given by ϕ := du
iu

.
Since π∗ : H1(M,R) → H1(SM,R) is an isomorphism when M is different from the
2-torus, there exists a closed 1-form ω in M and a smooth function f : SM → R such
that

ϕ = π∗ω + df.

(It is easy to see that if φt is Anosov, then M cannot be a 2-torus since for example,
π1(M) must grow exponentially.) When this equality is applied to X and combined
with (11) one obtains

−θx(v)− ωx(v) = df(X(x, v)) = X(f)(x, v)

for all (x, v) ∈ SM . It is known that this implies that θ+ ω is exact and that f only
depends on x. This was proved by V. Guillemin and D. Kazhdan [14] for surfaces
of negative curvature, by C. Croke and Sharafutdinov [4] for arbitrary manifolds of
negative curvature and by N.S. Dairbekov and Sharafutdinov [5] for manifolds whose
geodesic flow is Anosov. It follows easily now that u only depends on x and hence A1

and A2 must be gauge equivalent and thus for n = 1 we have a full answer. Before
going further let us explain why if we have a smooth solution u to the cohomological
equation

Xu = θ
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where θ is a 1-form, then θ is exact and u only depends on x. We can see this for
dimM = 2 using the energy identity from Lemma 4.5 for the case A = 0. Since θ is
a 1-form, the right hand side is zero as in Lemma 4.7, thus

(12) ‖XV u‖2 − (KV u, V u) = 0.

If the flow is Anosov there are two solutions rs,u of the Riccati equation X(r) + r2 +
K = 0. These solutions are related to the stable and unstable bundles as follows:
−X⊥ + rs,uV ∈ Es,u and rs − ru never vanishes; for an account of these results we
refer to [31]. Hence using the proof of Lemma 4.8 and (12) we deduce:

XV u− rs,uV u = 0

from which it follows that (rs− ru)V u = 0 and thus V u = 0. This shows that u only
depends on x and therefore θ is exact.

Now that we have a better understanding of the abelian case n = 1, let us go
back to the general equation (10). As in Section 3 we can introduce a new unitary

connection Â on the trivial bundle M × Cn×n as follows: given a matrix R ∈ Cn×n

we define Â(R) := AR−RB. Then equation (10) is the form

Xu+ Au = 0

at the price of course, of increasing the rank of our trivial vector bundle. Note that
FÂ(R) = FAR−RFB.

This suggests that in general we should study the following problem on closed
manifolds. Given a unitary connection A on M × Cn and f : SM → Cn a smooth
function of the form F (x) + αj(x)v

j, where F : M → Cn is a smooth function and
α is a Cn-valued 1-form, describe the set of smooth solutions u : SM → Cn to the
equation

(13) Xu+ Au = −f.
Unfortunately we know very little about equation (13) in the general Anosov case.

However for closed surfaces of negative curvature we have the following fundamental
result which should be regarded as an extension of [14, Theorem 3.6].

The Fourier analysis that we set up in Section 4 works equally well in the case of
closed oriented surfaces. Given u ∈ C∞(SM,Cn), we write u =

∑
m∈Z um, where

um ∈ Ωm. We will say that u has degree N , if N is the smallest non-negative integer
such that um = 0 for all m with |m| ≥ N + 1.

Theorem 6.6. [32, Theorem 5.1] If M is a closed surface of negative curvature and
f : SM → Cn has finite degree, then any smooth solution u of Xu + Au = −f has
finite degree.

Below we shall sketch the proof of this theorem, but first we need some preliminar-
ies. As in [14] we introduce the following first order elliptic operators

η+, η− : C∞(SM,Cn) → C∞(SM,Cn)

given by
η+ := (X + iX⊥)/2, η− := (X − iX⊥)/2.
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Clearly X = η+ + η−. We have

η+ : Ωm → Ωm+1, η− : Ωm → Ωm−1, (η+)∗ = −η−.
Before going further, let us use these operators to give a short proof of the bracket
relation (7):

Lemma 6.7. The following formula holds:

[H, X]u = X⊥u0 + (X⊥u)0, u ∈ C∞(SM,Cn).

Proof. It suffices to show that

[Id + iH, X]u = iX⊥u0 + i(X⊥u)0.

Since X = η+ + η− we need to compute [Id + iH, η±], so let us find [Id + iH, η+]u,
where u =

∑
k uk. Recall that (Id + iH)u = u0 + 2

∑
k≥1 uk. We find:

(Id + iH)η+u = η+u−1 + 2
∑
k≥0

η+uk,

η+(Id + iH)u = η+u0 + 2
∑
k≥1

η+uk.

Thus
[Id + iH, η+]u = η+u−1 + η+u0.

Similarly we find
[Id + iH, η−]u = −η−u0 − η−u1.

Therefore using that iX⊥ = η+ − η− we obtain

[Id + iH, X]u = iX⊥u0 + i(X⊥u)0

as desired.
�

To deal with the equation Xu+ Au = −f , we introduce the “twisted” operators

µ+ := η+ + A1, µ− := η− + A−1.

where A = A−1 + A1, and

A1 :=
A− iV (A)

2
∈ Ω1,

A−1 :=
A+ iV (A)

2
∈ Ω−1.

Observe that this decomposition corresponds precisely with the usual decomposition
of u(n)-valued 1-forms on a surface:

Ω1(M, u(n))⊗ C = Ω1,0(M, u(n))⊕ Ω0,1(M, u(n)),

where ? = −i on Ω1,0 and ? = i on Ω0,1 (here ? is the Hodge star operator of the
metric).
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We also have

µ+ : Ωm → Ωm+1, µ− : Ωm → Ωm−1, (µ+)∗ = −µ−.
The equation Xu+ Au = −f is now µ+(u) + µ−(u) = −f .

Sketch of proof of Theorem 6.6. We shall use the following equality proved in [32,
Corollary 4.4]. Given u ∈ C∞(SM,Cn) we have

‖µ+u‖2 = ‖µ−u‖2 +
i

2
((K V u, u) + (?FAu, u)),

where K is the Gaussian curvature of the metric and FA is the curvature of A. This
L2 identity is a close relative of the identity in Lemma 4.5. For um ∈ Ωm we have

‖µ+um‖2 = ‖µ−um‖2 +
1

2
((i ? FA −mK Id)um, um).

Hence if K < 0, there exist a constant c > 0 and a positive integer ` such that

(14) ‖µ+um‖2 ≥ ‖µ−um‖2 + c‖um‖2

for all m ≥ `. Projecting the equation Xu+Au = −f onto Ωm-components we obtain

(15) µ+(um−1) + µ−(um+1) = −fm
for all m ∈ Z. Since f has finite degree, combining (15) and (14) we obtain

(16) ‖µ+(um+1)‖ ≥ ‖µ+(um−1)‖
for all m sufficiently large. Since the function u is smooth, µ+(um) must tend to
zero in the L2-topology as m → ∞. It follows from (16) that µ+(um) = 0 for all m
sufficiently large. However, (14) implies that µ+ is injective for m large enough and
thus um = 0 for all m large enough.

A similar argument shows that um = 0 for all m sufficiently large and negative thus
concluding that u has finite degree as desired.

�
A glance at the proof shows that we can obtain the same finiteness result under

the following weaker hypothesis: K ≤ 0 and the support of ?FA is contained in the
region where K < 0. A more careful inspection shows the following:

Corollary 6.8. Suppose that the Hermitian matrix ±i ? FA(x)−K(x) Id is positive
definite for all x ∈M and that f has degree N . Then, any solution u of Xu+Au = −f
must have degree N − 1. If N = 0, then f = 0 and u = u(x) with dAu = 0.

Let us apply these ideas to show that for closed negatively curved surfaces, the
map (9) is locally injective at flat connections. If A and B are two connections with
sufficiently small curvatures, then FÂ will be small enough so that the hypothesis of
Corollary 6.8 is satisfied. Hence the map u solving (10) depends only on x ∈M and
A and B must be gauge equivalent. Putting everything together we have shown:

Theorem 6.9. Let M be a closed negatively curved surface. There is ε > 0 such that
if A and B are two connections as in Question II with ‖FA‖C0, ‖FB‖C0 < ε, then A
and B are gauge equivalent.
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When A is the trivial connection, this theorem is essentially [32, Theorem A].
Let us see an easy example which shows that the result in the theorem fails for

n = 2 without assumptions on the smallness of the curvature. The tangent bundle
of an orientable Riemannian surface M is naturally a Hermitian line bundle. It is
certainly not trivial in general, but it carries the Levi-Civita connection which is easily
seen to be transparent. Indeed, the parallel transport along a closed geodesic γ must
fix γ̇(0) and consequently any vector orthogonal to it since the parallel transport is
an isometry and the surface is orientable. The Levi-Civita connection on T ∗M is also
transparent and thus we obtain a transparent unitary connection on TM⊕T ∗M . But
TM ⊕T ∗M has zero first Chern class and thus it is unitarily equivalent to the trivial
bundle M × C2. In this way we obtain a transparent connection on M × C2 which
in general is not equivalent to the trivial connection (it is non-flat if the Gaussian
curvature is not identically zero). Taking higher tensor powers of TM and T ∗M and
adding them we obtain more examples of transparent connections all arising from the
Levi-Civita connection. It turns out that these are not the only examples, but the
failure of the uniqueness can be fully understood at least in some important cases.
This will be the content of the next section, but before that, we would like to take
another look at Theorem 6.6 in the abelian case n = 1.

When n = 1, A = iθ and the set Ωm can be identified with the set of smooth
sections of κ⊗m, where κ is the canonical line bundle of M . In this case, well known
results on the theory of Riemann surfaces imply that µ− is surjective for m ≥ 2 (see
for example [8]) since µ− is essentially a ∂̄A-operator (we are assuming here that M
has genus ≥ 2), see equation (25) below. It follows that µ+ is injective for m ≥ 1.
Hence if f has degree N and u has finite degree and solves Xu + iθu = −f , then u
must have degree N − 1. Thus in the abelian case we have:

Theorem 6.10. Suppose that M is a closed surface of negative curvature and n = 1.
If f has degree N , then any solution u of Xu+ iθu = −f must have degree N − 1. If
N = 0, then f = 0 and u = u(x) with du+ iθu = 0.

When n ≥ 2, the operators µ+ could have non-trivial kernels for m ≥ 1, and this
precisely gives room for the existence of transparent connections.

7. Transparent connections

We start with some motivation for the constructions in this section. How can
we construct a cohomologically trivial connection on M × C2? Let us suppose that
we start with the simplest possible non-trivial u. This would be a smooth map
u : SM → SU(2) such that u = u−1 + u1. We would need A = −X(u)u−1 to be a
connection, thus its Fourier expansion should have only terms of degree ±1. Writing
X = η+ + η− we discover that A is a connection iff

η+(u1)u
∗
−1 = η−(u−1)u

∗
1 = 0.

In fact η−(u−1)u
∗
1 = 0 implies η+(u1)u

∗
−1 = 0 and vice versa. This can be seen simply

by conjugating each relation. So we need to ensure that:

(17) η−(u−1)u
∗
1 = 0.
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What does this mean? Since u is unitary we have u−1u
∗
1 = 0 from which we see that

L := Ker(u−1) = Im(u∗1) is a line subbundle of C2. Now (17) can be rewritten as

u−1η−(u∗1) = 0

so if we pick 0 6= ξ ∈ C2, then s := u∗1ξ ∈ L and the equation above says η−(s) ∈ L.
Below (cf. (22)) we will write an equation for η− in local coordinates which shows
that it is essentially a ∂̄-operator and hence equation (17) is saying that L must be
a holomorphic line bundle. But there is an ample supply of these: it is equivalent
to providing a meromorphic function on M . Now we can ask, given a holomorphic
line bundle L can we find a function u : SM → SU(2) such that u = u−1 + u1 and
Ker(u−1) = L? We will see below that this is indeed the case, but here is one way
to think about it. Given the line bundle L consider the unique map f : M → su(2)
with det f = 1 (so that it hits the unit sphere in su(2)) such that L is the eigenspace
of f corresponding to the eigenvalue i. The map u in local coordinates is now

u(x, θ) = cos θ Id + sin θ f(x).

Thus for every meromorphic funtion we obtain a cohomologically trivial connection.
Are these all? Not quite, there are many more in which u has higher order dependence
on velocities as we will see below.

We now provide details and we begin by giving a general classification result for
cohomologically trivial connections on any surface.

As before let M be an oriented surface with a Riemannian metric and let SM be
its unit tangent bundle. Let

A := {A : SM → u(n) : V 2(A) = −A}.
The set A is identified with the set of all unitary connections on the trivial bundle
M × Cn. Indeed, a function A satisfying V 2(A) + A = 0 extends to a function on
TM depending linearly on the velocities.

Recall from the previous section that A is said to be cohomologically trivial if
there exists a smooth u : SM → U(n) such that C(x, v, t) = u(φt(x, v))u(x, v)

−1.
Differentiating with respect to t and setting t = 0 this is equivalent to

(18) Xu+ Au = 0.

Let A0 be the set of all cohomologically trivial connections, that is, the set of all
A ∈ A such that there exists u : SM → U(n) for which (18) holds.

Given a vector field W in SM , let GW be the set of all u : SM → U(n) such that
W (u) = 0, i.e. first integrals of W . Note that GV is nothing but the group of gauge
transformations of the trivial bundle M × Cn.

We wish to understand A0/GV . Now let D be the set of all f : SM → u(n) such
that

−X⊥(f) + V X(f) = [X(f), f ]

and there is u : SM → U(n) such that f = u−1V (u). It is easy to check that GX acts
on D by f 7→ a−1f a+ a−1V (a) where a ∈ GX .

Theorem 7.1. There is a 1-1 correspondence between A0/GV and D/GX .
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Proof. Forward direction: a cohomologically trivial connection A comes with a u such
that Xu + Au = 0. If we set f := u−1V (u), then f ∈ D, i.e., f satisfies the PDE
−X⊥(f) + V X(f) = [X(f), f ]. This is a calculation, see [32, Theorem B] for details,
but for the reader’s convenience we explain the geometric origin of this equation.
Using u we may define a connection on SM gauge equivalent to π∗A by setting
B := u−1du+ u−1π∗Au, where π : SM → M is the foot-point projection. Since π∗A
is the pull-back of a connection on M , the curvature FB of B must vanish when one
of the entries is the vertical vector field V . The PDE −X⊥(f) + V X(f) = [X(f), f ]
arises by combining the two equations FB(X,V ) = FB(X⊥, V ) = 0 with B(X) = 0.

Backward direction: Given f with uf = V (u), set A := −X(u)u−1. Then A ∈ A0,
i.e. V 2(A) = −A; again this is a calculation done fully in Theorem B in [32].

Now there are two ambiguities here. Going forward, we may change u as long as
we solve Xu + Au = 0. This changes f by the action of GX . Going backwards we
may change u as long as uf = V (u), this changes A by a gauge transformation, i.e.
an element in GV .

�

Note that if the geodesic flow is transitive (i.e. there is a dense orbit) the only first
integrals are the constants and thus GX = U(n) acts simply by conjugation. If M is
closed and of negative curvature, the geodesic flow is Anosov and therefore transitive.

The fact that the PDE describing cohomologically trivial connections arises from
zero curvature conditions is an indication of the “integrable” nature of the problem
at hand. The existence of a Bäcklund transformation that we will introduce shortly
is another typical feature of integrable systems. Note that the space D/GX is in some
sense simpler and larger when the underlying geodesic flow is more complicated, i.e.
when it is transitive GX reduces to U(n).

7.1. The Bäcklund transformation. For the remainder of this section we restrict
to the case in which the structure group is SU(2). This is the simplest non-trivial
case.

Suppose there is a smooth map b : SM → SU(2) such that f := b−1V (b) solves
the PDE:

(19) −X⊥(f) + V X(f) = [X(f), f ].

Then, by Theorem 7.1, A := −X(b)b−1 defines a cohomologically trivial connection
on M and − ? A = V (A) = −bX(f)b−1 +X⊥(b)b−1.

Lemma 7.2. Let g : M → su(2) be a smooth map with det g = 1 (i.e. g2 = −Id).
Then there exists a : SM → SU(2) such that g = a−1V (a).

Proof. Let L(x) (resp. U(x)) be the eigenspace corresponding to the eigenvalue i
(resp. −i) of g(x). We have an orthogonal decomposition C2 = L(x) ⊕ U(x) for
every x ∈ M . Consider sections α ∈ Ω1,0(M,C) and β ∈ Ω1,0(M,Hom(L,U)) =
Ω1,0(M,L∗U) such that |α|2 + |β|2 = 1. Such a pair of sections always exists; for ex-

ample, we can choose a section β̃ with a finite number of isolated zeros and then choose
α̃ such that it does not vanish on the zeros of β̃. Then we set α := α̃/(|α̃|2 + |β̃|2)1/2
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and β := β̃/(|α̃|2+|β̃|2)1/2. Note that ᾱ ∈ Ω0,1(M,C) and β∗ ∈ Ω0,1(M,Hom(U,L)) =
Ω0,1(M,U∗L). Using the orthogonal decomposition we define a : SM → SU(2) by

a(x, v) =

(
α(x, v) β∗(x, v)
−β(x, v) ᾱ(x, v)

)
.

Clearly a = a−1 + a1, where

a1 =

(
α 0
−β 0

)
and

a−1 =

(
0 β∗

0 ᾱ

)
.

It is straightforward to check that ag = V (a).
�

Remark 7.3. There is an alternative proof of this lemma along the following lines.
Consider an open set U in M over which the circle fibration π : SM →M trivializes
as U × S1, where S1 = R/2πZ. In this trivialization V = ∂/∂θ and any solution to
ag = V (a) has the form aU := rU(x)(cos θ Id + sin θ g(x)), where rU : U → SU(2) is
smooth. Consider another set U ′ which trivializes π : SM →M and which intersects
U . We obtain a transition function ψUU ′ : U ∩ U ′ → S1. The functions aU can be
glued to define a global function a : SM → SU(2) as long as

rU(x)(cos θ Id + sin θ g(x)) = rU ′(x)(cos θ′ Id + sin θ′ g(x))

where θ = θ′ + ψUU ′(x) and x ∈ U ∩ U ′. Hence to have a globally defined a we need
to show the existence of smooth functions rU : U → SU(2) such that

ϕUU ′(x) := cos(ψUU ′(x))Id + cos(ψUU ′(x))g(x) = (rU(x))−1rU ′(x).

The key observation is that ϕUU ′ defines an SU(2)-cocycle in the sense of principal
bundles. Indeed, the cocycle property ϕUU”(x) = ϕUU ′(x)ϕU ′U ′′(x) follows right away
from the fact that ψUU ′ is an S1-cocycle. But an SU(2)-bundle over a surface is
trivial, thus the existence of the functions rU : U → SU(2) follows.

Note that by construction, Ker a±1 coincides with the ∓i eigenspace of g.

Now let u := ab : SM → SU(2) and let F := (ab)−1V (ab) = b−1g b+ f .

Question. When does F satisfy (19)?

If it does, then it defines (via Theorem 7.1) a new cohomologically trivial connection
given by

AF = −X(ab)(ab)−1 = −X(a)a−1 + aAa−1,

where A is the cohomologically trivial connection associated to f .
Recall that the connection A defines a covariant derivative dAg = dg + [A, g].

Lemma 7.4. F satisfies (19) if and only if

(20) − ? dAg = (dAg) g.
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Proof. Starting with F = b−1g b + f and using that A = −X(b)b−1 = bX(b−1) we
compute

X(F ) = b−1 ([A, g] +X(g)) b+X(f).

Similarly, using X⊥(b) = −(?A)b+ bX(f) we find

X⊥(F ) = b−1 ([?A, g] +X⊥(g)) b− [X(f), b−1g b] +X⊥(f).

Now we compute V X(F ); here we use that V (g) = 0. We obtain

V X(F ) = [b−1([A, g] +X(g))b, f ] + b−1 ([− ? A, g] + V X(g)) b+ V X(f).

The last term we need for (19) is:

[X(F ), F ] = b−1[[A, g]+X(g), g]b+[b−1([A, g]+X(g))b, f ]+[X(f), b−1g b]+[X(f), f ].

Since f satisfies (19) we see that F satisfies (19) if and only if

−X⊥(g) + V X(g)− 2[?A, g] = [[A, g] +X(g), g].

Since g depends only on the base point and g2 = −Id we can rewrite this as

−2 ? (dg + [A, g]) = [dg + [A, g], g] = 2(dg + [A, g]) g.

Thus F satisfies (19) if and only if

− ? dAg = (dAg) g

as claimed.
�

We will now rephrase equation (20) in terms of holomorphic line bundles. Recall
that the connection A induces a holomorphic structure on the trivial bundle M ×C2

and on the endomorphism bundle M × C2×2. We have an operator ∂̄A = (dA − i ?
dA)/2 = ∂̄ + [A−1, ·] acting on sections f : M → C2×2.

Set π := (Id − ig)/2 and π⊥ = (Id + ig)/2 so that π + π⊥ = Id. Let L(x) be as
above the eigenspace corresponding to the eigenvalue i of g(x). Note that π is the
Hermitian orthogonal projection over L(x) = Image(π(x)).

Lemma 7.5. Let g : M → su(2) be a smooth map with det g = 1. The following are
equivalent:

(1) − ? dAg = (dAg)g;
(2) L is a ∂̄A-holomorphic line bundle;
(3) π⊥∂̄Aπ = 0.

Proof. Suppose that (1) holds. Apply ? to obtain: dAg = (?dAg) g. Thus dAg − i ?
dAg = i(dAg − i ? dAg)g. In other words ∂̄Ag = i(∂̄Ag) g = −ig(∂̄Ag) (recall that
g2 = −Id). Since π = (Id − ig)/2, then ∂̄Ag = −ig(∂̄Ag) is equivalent to π⊥∂̄Aπ = 0
which is (3).

Using the condition π2 = π, we see that π⊥∂̄Aπ = 0 is equivalent to (∂̄Aπ)π = 0.
The line bundle L is holomorphic iff given a local section ξ of L, then ∂̄Aξ ∈ L. Using
that πξ = ξ we see that ∂̄Aξ ∈ L iff (∂̄Aπ)ξ = 0. Clearly, this happens iff (∂̄Aπ)π = 0
and thus (2) holds iff (3) holds.
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�

The next theorem summarises the Bäcklund transformation that we just introduced
and it follows directly from Lemmas 7.4 and 7.5 and Theorem 7.1.

Theorem 7.6. Let A be a cohomologically trivial connection and let L be a holomor-
phic line subbundle of the trivial bundle M ×C2 with respect to the complex structure
induced by A. Define a map g : M → su(2) with det g = 1 by declaring L to be its
eigenspace with eigenvalue i. Consider a : SM → SU(2) with g = a−1V (a) as given
by Lemma 7.2. Then

AF := −X(a)a−1 + aAa−1

defines a cohomologically trivial connection.

Definition 7.7. Let A be a cohomologically trivial connection. Given a map g :
M → su(2) with det g = 1 and − ? dAg = (dAg)g, let a : SM → SU(2) be any
smooth map with ag = V (a). Then the Bäcklund transformation of the connection
A with respect to the pair (g, a) is:

Bg,a(A) := −X(a)a−1 + aAa−1.

By Theorem 7.6, Bg,a(A) is a new cohomologically trivial connection.

Remark 7.8. Note that if the geodesic flow is transitive, two solutions u,w of
Xu + Au = 0 are related by u = wg where g is a constant unitary matrix, because
X(w−1u) = 0. Thus the degrees of u and w are the same. We can then talk about
the “degree” of a cohomologically trivial connection as the degree of any solution of
Xu+ Au = 0.

Remark 7.9. If we let q := aga−1, then a simple calculation shows that V (q) = 0
and dAF

q = a(dAg)a
−1. Moreover, ?dAF

q = (dAF
q)q which means that −q satisfies

(20) with respect to AF . Hence if we run the Bäcklund transformation on AF with
g′ := −q and a′ := a−1 we recover A (note that a′g′ = V (a′)). In other words
B−q,a−1(Bg,a(A)) = A. Thus the Bäcklund transformation described in Theorem 7.6
has a natural “inverse”.

If we start, for example, with the trivial connection A = 0 (which is obviously
cohomologically trivial), then a map g : M → su(2) with det g = 1 and − ? dg =
(dg)g can be identified with a meromorphic function. The connections of degree one
AF = −X(a)a−1 given by Theorem 7.6 were first found in [32] and coincide with
the ones described at the beginning of the section. In the next subsection we will
show that any cohomologically trivial connection such that the associated u has a
finite Fourier series can be built up by successive applications of the transformation
described in Theorem 7.6, provided that the geodesic flow is transitive. This will
provide a full classification of transparent SU(2)-connections over negatively curved
surfaces.
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7.2. The classification result. LetA be a transparent connection withA = −X(b)b−1

and f = b−1V (b), where b : SM → SU(2).
We first make some remarks concerning the SU(2)-structure. Let j : C2 → C2 be

the antilinear map given by

j(z1, z2) = (−z̄2, z̄1).

If we think of a matrix a ∈ SU(2) as a linear map a : C2 → C2, then ja = aj. This
implies that given b : SM → SU(2) with b =

∑
k∈Z bk, then jbk = b−kj for all k ∈ Z.

Assumption. Suppose b has a finite Fourier expansion, i.e., b =
∑k=N

k=−N bk, where
N ≥ 1. By Theorem 6.6 we know that this holds if M has negative curvature.

Let us assume also that N is the degree of b and thus both bN and b−N = −jbNj
are non-zero.

The unitary condition bb∗ = b∗b = Id implies that bNb
∗
−N = b∗−NbN = 0. These

relations imply that the rank of b−N and bN is at most one and equals one on an open
set, which, as we will see shortly, must be all of M except for perhaps a finite number
of points. But first we need some preliminaries.

Consider isothermal coordinates (x, y) on M such that the metric can be written
as ds2 = e2λ(dx2 + dy2) where λ is a smooth real-valued function of (x, y). This gives
coordinates (x, y, θ) on SM where θ is the angle between a unit vector v and ∂/∂x.
In these coordinates X is given by (8) and X⊥ by:

(21) X⊥ = −e−λ
(
− sin θ

∂

∂x
+ cos θ

∂

∂y
−

(
∂λ

∂x
cos θ +

∂λ

∂y
sin θ

)
∂

∂θ

)
.

Consider u ∈ Ωm and write it locally as u(x, y, θ) = h(x, y)eimθ. Using (8) and (21) a
straightforward calculation shows that

(22) η−(u) = e−(1+m)λ∂̄(hemλ)ei(m−1)θ,

where ∂̄ = 1
2

(
∂
∂x

+ i ∂
∂y

)
. In order to write µ− suppose that A(x, y, θ) = a(x, y) cos θ+

b(x, y) sin θ. If we also write A = Axdx + Aydy, then Ax = aeλ and Ay = beλ. Let
Az̄ := 1

2
(Ax + iAy). Using the definition of A−1 we derive

(23) A−1 =
1

2
(a+ ib)e−iθ = Az̄dz̄.

Putting this together with (22) we obtain

(24) µ−(u) = e−(1+m)λ
(
∂̄(hemλ) + Az̄he

mλ
)
ei(m−1)θ.

Note that Ωm can be identified with the set of smooth sections of the bundle
(M × M2(C)) ⊗ κ⊗m where κ is the canonical line bundle. The identification takes
u = heimθ into hemλ(dz)m (m ≥ 0) and u = he−imθ ∈ Ω−m into hemλ(dz̄)m. The
second equality in (23) should be understood using this identification.

Consider now a fixed vector ξ ∈ C2 such that s(x, v) := b−N(x, v)ξ ∈ C2 is not zero
identically. Clearly s can be seen as a section of (M × C2) ⊗ κ⊗−N . We may write
b−N and s in local isothermal coordinates as b−N = he−iNθ and s = eNλhξ(dz̄)N .
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Lemma 7.10. The local section e−2Nλs is ∂̄A-holomorphic.

Proof. Using the operators µ± we can write X(b) + Ab = 0 as

µ+(bk−1) + µ−(bk+1) = 0

for all k. This gives µ+(bN) = µ−(b−N) = 0. But µ−(b−N) = 0 is saying that e−2Nλs
is ∂̄A-holomorphic. Indeed, using (24), we see that µ−(b−N) = 0 implies

∂̄(he−Nλ) + Az̄he
−Nλ = 0

which in turn implies

∂̄(e−Nλhξ) + Az̄e
−Nλhξ = 0.

This equation says that e−2Nλs = e−Nλhξ(dz̄)N is ∂̄A-holomorphic.
�

The section s spans a line bundle L over M which by the previous lemma is ∂̄A-
holomorphic. The section s may have zeros, but at a zero z0, the line bundle extends
holomorphically. Indeed, in a neighbourhood of z0 we may write e−2Nλ(z)s(z) =
(z − z0)

kw(z), where w is a local holomorphic section with w(z0) 6= 0. The section
w spans a holomorphic line subbundle which coincides with the one spanned by s
off z0. Therefore L is a ∂̄A-holomorphic line bundle that contains the image of b−N
(and U = jL is an anti-holomorphic line bundle that contains the image of bN). We
summarise this in a lemma:

Lemma 7.11. The line bundle L determined by the image of b−N is ∂̄A-holomorphic.

We now wish to use the line bundle L to construct an appropriate g : M → su(2)
such that when we run the Bäcklund transformation from the previous subsection
we obtain a cohomologically trivial connection of degree ≤ N − 1. But first we need
the following lemma. Recall that a matrix-valued function f is said to be odd if
f(x, v) = −f(x,−v) and even if f(x, v) = f(x,−v).

Lemma 7.12. Assume that the geodesic flow is transitive and let b : SM → SU(2)
solve X(b) + Ab = 0. Then b is either even or odd.

Proof. Write b = bo + be where bo is odd and be is even. Since the operator (X + A)
maps even to odd and odd to even, the equation X(b) + Ab = 0 decouples as

X(bo) + Abo = 0;

X(be) + Abe = 0.

A calculation using these equations shows that X(b∗obo) = X(b∗ebe) = X(b∗obe) = 0.
Since the geodesic flow is transitive, these matrices are all constant. Moreover, since
b∗obe is odd it must be zero. On the other hand jb = bj implies that jbo = boj and
jbe = bej, which in turn implies that both bo and be cannot have rank 1. Putting all
this together, we see that either bo or be must vanish identically.

�
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Suppose that the geodesic flow is transitive. By Lemma 7.12, b = b−N + d + bN ,
where d has degree ≤ N − 2. We now seek a : SM → SU(2) of degree one such that
u := ab has degree ≤ N − 1. For this we need a1bN = a−1b−N = 0. We take a map
g : M → su(2) with det g = 1 such that its i eigenspace is L and its −i eigenspace is
U . By Lemmas 7.5 and 7.11, −?dAg = (dAg) g. The construction of a with ag = V (a)
from Lemma 7.2 is precisely such that the kernel of a−1 is L and the kernel of a1 is
U , so the needed relations to lower the degree hold.

Finally by Theorem 7.6, u gives rise to a cohomologically trivial connection−X(u)u−1.
Combining this with Theorem 6.6 we have arrived at the main result of this section:

Theorem 7.13. Let M be a closed orientable surface of negative curvature. Then any
transparent SU(2)-connection can be obtained by successive applications of Bäcklund
transformations as described in Theorem 7.6.

We finish this section with some remarks on the operators µ±. Let Γ(M,κ⊗m)
denote the space of smooth sections of the m-th tensor power of the canonical line
bundle κ. Locally its elements have the form w(z)dzm for m ≥ 0 and w(z)dz̄−m for
m ≤ 0. Given a metric g on M , there is map

ϕg : Γ(M,κ⊗m) → Ωm

given by restriction to SM . This map is a complex linear isomorphism. Let us check
what this map looks like in isothermal coordinates. An element of Γ(M,κ⊗m) is
locally of the form w(z)dzm. Consider a tangent vector ż = ẋ1 + iẋ2. It has norm
one in the metric g iff eiθ = eλż. Hence the restriction of w(z)dzm to SM is

w(z)e−mλeimθ

as indicated above. Moreover there is also a restriction map

ψg : Γ(M,κ⊗m ⊗ κ̄) → Ωm−1

which is an isomorphism. The restriction of w(z)dzm ⊗ dz̄ to SM is

w(z)e−(m+1)λei(m−1)θ,

because e−iθ = eλ ¯̇z.
Given any holomorphic bundle ξ over M , there is a ∂-operator defined on:

∂ : Γ(M, ξ) → Γ(M, ξ ⊗ κ̄).

In particular we can take ξ = κ⊗m (or κ⊗m⊗Cn). Combining this with equation (22)
we get the following commutative diagram:

Γ(M,κ⊗m)
ϕg−−−→ Ωmy∂

yη−

Γ(M,κ⊗m ⊗ κ̄)
ψg−−−→ Ωm−1

In other words:

η− = ψg ∂ ϕ
−1
g .



INVERSE PROBLEMS FOR CONNECTIONS 29

This equation exhibits explicitly the relation of η− with the metric. More generally,
if we let ∂A := ∂ + Az̄, then equation (24) shows that

(25) µ− = ψg ∂A ϕ
−1
g .

In particular we see from (25) that the injectivity and surjectivity properties of µ−
only depend on the conformal class of the metric and are the same as those of ∂A.
Also, the index of µ− may be computed using Riemann-Roch (cf. [25, Appendix C]).
If ξ = κ⊗m ⊗ Cn and g denotes the genus of M , then

index(µ−) = n(1− g) + c1(ξ) = (g− 1)n(2m− 1).

For the abelian case n = 1, it is a classical result that ∂A is surjective if g ≥ 2 and
m ≥ 2.

8. Higgs fields

Virtually everything that we have said above extends when a Higgs field is present.
For us, a Higgs field is a smooth matrix-valued function Φ : M → Cn×n. Often in
gauge theories, the structure group is U(n) and the field Φ is required to take values
in u(n). We call a Higgs field Φ : M → u(n) a skew-Hermitian Higgs field. The pairs
(A,Φ) often appear in the so-called Yang-Mills-Higgs theories. A good example of
this is the Bogomolny equation in Minkowski (2+1)-space given by dAΦ = ?FA. Here
dA stands for the covariant derivative induced on endomorphism dAΦ = dΦ + [A,Φ],
FA = dA+A∧A is the curvature of A and ? is the Hodge star operator of Minkowski
space. The Bogomolny equation appears as a reduction of the self-dual Yang-Mills
equation in (2 + 2)-space and has been object of intense study in the literature of
Solitons and Integrable Systems, see for instance [9], [21, Chapter 8], [16, Chapter 4]
and [24].

To include the Higgs field in the discussions above, we consider the following trans-
port equation for u : SM → Cn,

Xu+ Au+ Φu = −f in SM, u|∂−(SM) = 0.

As before, on a fixed geodesic the transport equation becomes a linear system of
ODEs with zero initial condition, and therefore this equation has a unique solution
u = uf .

Definition 8.1. The geodesic ray transform of f ∈ C∞(SM,Cn) with attenuation
determined by the pair (A,Φ) is given by

IA,Φf := uf |∂+(SM).

Obviously when Φ = 0, IA = IA,0. The following extension of Theorem 3.2 holds:

Theorem 8.2. [35] Let M be a compact simple surface. Assume that f : SM → Cn is
a smooth function of the form F (x)+αj(x)v

j, where F : M → Cn is a smooth function
and α is a Cn-valued 1-form. Let also A : SM → u(n) be a unitary connection and
Φ : M → u(n) a skew-Hermitian matrix function. If IA,Φ(f) = 0, then F = Φp and
α = dAp, where p : M → Cn is a smooth function with p|∂M = 0.
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The introduction of the Higgs field complicates matters from a technical point
of view: more terms appear in the Pestov identity, and these need to be carefully
controlled, we refer the reader to [35] for details.

Given a pair (A,Φ) one can also associate to it scattering data. We look at the
unique solution UA,Φ : SM → U(n) of{

X(UA,Φ) + (A(x, v) + Φ(x))UA,Φ = 0, (x, v) ∈ SM
UA,Φ|∂+(SM) = Id.

The scattering data of the pair (A,Φ) is now the map CA,Φ : ∂−(SM) → U(n) defined
as CA,Φ := UA,Φ|∂−(SM).

Using Theorem 8.2 we can derive the following result just as we have done for the
proof of Theorem 3.3.

Theorem 8.3. [35] Assume M is a compact simple surface, let A and B be two
Hermitian connections, and let Φ and Ψ be two skew-Hermitian Higgs fields. Then
CA,Φ = CB,Ψ implies that there exists a smooth U : M → U(n) such that U |∂M = Id
and B = U−1dU + U−1AU , Ψ = U−1ΦU .

A Higgs field can also be included for the case of closed manifolds. A classification
of SO(3)-transparent pairs (A,Φ) for surfaces of negative curvature may be found in
[34].

9. Arbitrary bundles

In this section we briefly discuss the case of closed surfaces and arbitrary bundles
(i.e. not necessarily trivial). We begin with some generalities.

Suppose E is a rank n Hermitian vector bundle over a closed manifold N and
φt : N → N is a smooth transitive Anosov flow.

Definition 9.1. A cocycle over φt is an action of R by bundle automorphisms which
covers φt. In other words, for each (x, t) ∈ N × R, we have a unitary map C(x, t) :
Ex → Eφtx such that C(x, t+ s) = C(φtx, s)C(x, t).

If E admits a unitary trivialization f : E → N × Cn, then

f C(x, t) f−1(x, a) = (φtx,D(x, t)a),

where D : N × R → U(n) is a cocycle as in Definition 6.1.
Let E∗ denote the dual vector bundle to E. If E carries a Hermitian metric h, we

have a conjugate isomorphism `h : E → E∗, which induces a Hermitian metric h∗ on
E∗. Given a cocycle C on E, C∗ := `hC `

−1
h is a cocycle on (E∗, h∗).

Proposition 9.2. Let E be a Hermitian vector bundle over N such that E ⊕ E∗

is a trivial vector bundle. Let C be a smooth cocycle on E such that C(x, T ) = Id
whenever φTx = x. Then E is a trivial vector bundle.

Proof. As explained above, the cocycle C on E induces a cocycle C∗ on E∗. On the
trivial vector bundle E⊕E∗ we consider the cocycle C⊕C∗. Clearly C⊕C∗(x, T ) = Id
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everytime that φTx = x. Choose a unitary trivialization f : E ⊕ E∗ → N × C2n and
write

f C ⊕ C∗(x, t) f−1(x, a) = (φtx,D(x, t)a).

By Theorem 6.4, there exists a smooth function u : N → U(2n) such that D(x, t) =
u(φtx)u

−1(x). Since φt is a transitive flow, we may choose x0 ∈ N with a dense orbit
and without loss of generality we may suppose that u(x0) = Id. Let

{e1(x0), . . . , en(x0)}
be a unitary frame at Ex0 . Write f(x0, ei(x0)) = (x0, ai), where ai ∈ C2n and let

ei(x) := f−1(x, u(x)ai).

Clearly at every x ∈ N , {e1(x), . . . , en(x)} is a smooth unitary n-frame of Ex ⊕ E∗
x.

We claim that in fact ei(x) ∈ Ex for all x ∈ N . This, of course, implies the triviality
of E. Note that

ei(φtx0) = f−1(φtx0, u(φtx0)ai) = f−1(φtx0, D(x0, t)ai) = C ⊕ C∗(x0, t)ei(x0).

But ei(x0) ∈ Ex0 , thus ei(φtx0) ∈ Eφtx0 . It follows that ei(x) ∈ Ex for a dense set of
points in N . By continuity of ei, ei(x) ∈ Ex for all x ∈ N .

�

Remark 9.3. The hypothesis of E ⊕ E∗ being trivial is not needed in Proposition
9.2. Ralf Spatzier has informed the author that it is possible to adapt the proof of
the usual Livsic periodic data theorem to show directly that E is trivial. However,
this weaker version is all that we will need below.

Let M be a closed orientable surface. In this case, complex vector bundles E over
M are classified topologically by the first Chern class c1(E) ∈ H2(M,Z) = Z. Since
c1(E

∗) = −c1(E) and c1 is additive with respect to direct sums, we see that E ⊕ E∗

is the trivial bundle and therefore we will be able to apply Proposition 9.2. In fact
we will show:

Theorem 9.4. [32] Let M be a closed orientable Riemannian surface of genus g whose
geodesic flow is Anosov. A complex vector bundle E over M admits a transparent
connection if and only if 2− 2g divides c1(E).

Proof. Suppose E admits a transparent connection. As explained above we may apply
Proposition 9.2 to deduce that π∗E is a trivial bundle and since c1(π

∗E) = π∗c1(E)
we conclude that π∗c1(E) = 0. Consider now the Gysin sequence of the unit circle
bundle π : SM →M ,

0 → H1(M,Z)
π∗→ H1(SM,Z)

0→ H0(M,Z)
×(2−2g)−→ H2(M,Z)

π∗→ H2(SM,Z) → · · · .
We see that π∗c1(E) = 0 if and only if c1(E) is in the image of the map H0(M,Z) →
H2(M,Z) given by cup product with the Euler class of the unit circle bundle. Equiv-
alently, 2− 2g must divide c1(E).

Let κ be the canonical line bundle of M . We can think of κ as the cotangent bundle
toM ; it has c1(κ) = 2g−2. The tensor powers κs of κ (positive and negative) generate
all possible line bundles with first Chern class divisible by 2−2g and they all carry the
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unitary connection induced by the Levi-Civita connection of the Riemannian metric
on M . All these connections are clearly transparent. Topologically, all complex
vector bundles over M whose first Chern class is divisible by 2 − 2g are of the form
κs⊕ ε, where ε is the trivial vector bundle. Since the trivial connection on the trivial
bundle is obviously transparent, it follows that every complex vector bundle whose
first Chern class is divisible by 2− 2g admits a transparent connection.

�

A similar argument shows that if E is a Hermitian line bundle with a transparent
connection and dimM ≥ 3, then E must be trivial and the connection is gauge
equivalent to the trivial connection.

10. Open problems

To organize the discussion we will divide the set of open questions into the two
cases: compact simple M and closed manifolds with Anosov geodesic flow.

10.1. Compact simple manifolds with boundary.

(1) The most important problem here is to decide if Theorem 8.2 (or Theorem
3.2) holds when dimM ≥ 3. This will automatically extend Theorem 8.3 to
any dimension.

(2) Of equal importance is the tensor tomography problem in dimension ≥ 3. In
other words, does Theorem 5.1 extend to any dimension? This problem is
explictly stated in [40, Problem 1.1.2] and it has been solved by Pestov and
Sharafutdinov for negatively curved manifolds [37] and then by Sharafutdinov
under a weaker curvature condition [40]. It is also known that if “ghosts” exist,
they must be regular: on a simple Riemannian manifold, every L2 solenoidal
tensor field belonging to the kernel of the ray transform is C∞ smooth [43].

(3) We have only considered unitary connections and skew-Hermitian Higgs fields,
mostly because these are the most relevant in Physics, but the problems ad-
dressed here make sense for any structure group. In particular, does Theorem
8.2 extend to the case of GL(n,C)?

(4) The proof of Theorem 3.2 uses in an essential way the existence of holomorphic
integrating factors from Proposition 4.4 for scalar 1-forms and carefully avoids
the question of existence of holomorphic integrating factors for matrix valued
1-forms. In other words, suppose A is a GL(n,C)-connection with n ≥ 2.
Does there exist a smooth fibrewise holomorphic map R : SM → GL(n,C)
such that XR + AR = 0 on SM?

(5) Are there versions of Theorems 8.2 and Theorem 8.3 when the set of geodesics
of a simple surface is replaced by another set of distinguished curves? I would
expect a positive answer for magnetic geodesics in view of the work in [7].

10.2. Closed manifolds with Anosov geodesic flow. Here, the lack of answers is
more pronounced, even for surfaces, but this is reasonable as one expects this setting
to be harder. As we have seen the appearance of ghosts (i.e. non-trivial transparent
connections) has to do with the different holomorphic structures that one can have
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on a complex vector bundle over the surface. For simple surfaces this does not appear
because there is essentially only one ∂̄A operator on a disk.

(1) Perhaps one of the most important questions for surfaces is whether in Theo-
rem 6.6 one can replace “negative curvature” by “Anosov geodesic flow”. This
question is of great interest even when A = 0 .

(2) Does Theorem 6.9 extend to higher dimensions? I would expect a positive
answer based on the Fourier analysis displayed in [15]. There is virtually
nothing known on transparent connections in dimM ≥ 3 as the next question
shows.

(3) Are there non-trivial transparent connections on M ×C2, where M is a closed
hyperbolic 3-manifold?

(4) Classify transparent U(n)-connections (and pairs) over a negatively curved
surface using the ideas displayed in Section 7 for SU(2).

(5) Let M be a surface with an Anosov geodesic flow and suppose there is a
smooth u : SM → R such that Xu = f , where f arises from a symmetric m-
tensor. Must f be potential? (The tensor tomography problem for an Anosov
surface). The proof given in this paper for simple surfaces does not extend
since we do not have the analogue of holomorphic integrating factors from
Proposition 4.4. The best result available for 2-tensors appears in [44] where
a positive answer is given assuming in addition that the surface is free of focal
points. A solution of this problem for the case of symmetric 2-tensors would
give right away infinitesimal spectral rigidity for Anosov surfaces [14].

References

[1] D.V. Anosov, On geodesic flows satisfying the condition (Y), Proc. Steklov Inst. of Math. 167
(1985) 3–24.

[2] G. Bal, Ray transforms in hyperbolic geometry, J. Math. Pures Appl. 84 (2005), 1362–1392.
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[22] R. Mañé, On a theorem of Klingenberg, Dynamical systems and bifurcation theory (Rio de

Janeiro, 1985), 319–345, Pitman Res. Notes Math. Ser., 160, Longman Sci. Tech., Harlow,
1987.

[23] L.J. Mason, Global anti-self dual Yang-Mills fields in split signature and their scattering, J.
Reine Angew. Math. 597 (2006) 105–133.

[24] L.J. Mason, N.M.J. Woodhouse, Integrability, self-duality, and twistor theory. London Math-
ematical Society Monographs. New Series, 15. Oxford Science Publications. The Clarendon
Press, Oxford University Press, New York, 1996.

[25] D. McDuff, D. Salamon, J-holomorphic curves and symplectic topology. American Mathematical
Society Colloquium Publications, 52. American Mathematical Society, Providence, RI, 2004.
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[33] G.P. Paternain, Bäcklund transformations for transparent connections, J. Reine Angew. Math.

658 (2011) 27–37.
[34] G.P. Paternain, Transparent pairs, to appear in J. Geom. Anal.
[35] G.P. Paternain, M. Salo, G. Uhlmann, The attenuated ray transform for connections and Higgs

fields, arXiv:1108.1118, to appear in Geom. Funct. Anal.
[36] G.P. Paternain, M. Salo, G. Uhlmann, Tensor tomography on surfaces, arXiv:1109.0505.
[37] L. Pestov, V.A. Sharafutdinov, Integral geometry of tensor fields on a manifold of negative

curvature, Siberian Math. J. 29 (1988), 427–441.



INVERSE PROBLEMS FOR CONNECTIONS 35

[38] L. Pestov, G. Uhlmann, Two dimensional compact simple Riemannian manifolds are boundary
distance rigid, Ann. of Math. 161 (2005) 1089–1106.

[39] M. Salo, G. Uhlmann, The attenuated ray transform on simple surfaces, J. Diff. Geom. 88
(2011) 161–187.

[40] V.A. Sharafutdinov, Integral geometry of tensor fields, Inverse and Ill-posed Problems Series.
VSP, Utrecht, 1994.

[41] V.A. Sharafutdinov, Ray Transform on Riemannian Manifolds. Eight Lectures on Integral Ge-
ometry, available at http://www.math.nsc.ru/˜ sharafutdinov/publ.html.

[42] V.A. Sharafutdinov, On an inverse problem of determining a connection on a vector bundle, J.
Inverse and Ill-Posed Problems 8 (2000) 51–88.

[43] V.A. Sharafutdinov, M. Skokan, G. Uhlmann, Regularity of ghosts in tensor tomography, J.
Geom. Anal. 15 (2005), 517–560.

[44] V.A. Sharafutdinov, G. Uhlmann, On deformation boundary rigidity and spectral rigidity of
Riemannian surfaces with no focal points, J. Diff. Geom. 56 (2000) 93–110.

[45] G. Uhlmann, The Cauchy data and the scattering relation, IMA Publications, 137, “Geometric
methods in inverse problems and PDE control” (2003) 263–288.

[46] L.B. Vertgeim, Integral geometry with a matrix weight, and a nonlinear problem of recovering
matrices, Sov. Math.-Dokl. 44 (1992) 132–135.

[47] R.S. Ward, Soliton solutions in an integrable chiral model in 2+1 dimensions, J. Math. Phys.
29 (1988) 386–389.

Department of Pure Mathematics and Mathematical Statistics, University of
Cambridge, Cambridge CB3 0WB, UK

E-mail address: g.p.paternain@dpmms.cam.ac.uk


