Optimal Execution in a General One-Sided Limit-Order Book

Steven E. Shreve
Department of Mathematical Sciences
Carnegie Mellon University shreve@andrew.cmu.edu

Joint work with
Silivu Predoiu
Gennady Shaikhet

Based on article in
SIAM J. Financial Math 2, 183 (2011)
http://epubs.siam.org/sifin/

Problem

- Agent must purchase \bar{X} shares of a stock by time T.

Problem

- Agent must purchase \bar{X} shares of a stock by time T.
- Purchases take place from a limit-order sell book of general shape.

Problem

- Agent must purchase \bar{X} shares of a stock by time T.
- Purchases take place from a limit-order sell book of general shape.
- Order-book exhibits resilience, i.e., price impact of purchases is temporary.

Problem

- Agent must purchase \bar{X} shares of a stock by time T.
- Purchases take place from a limit-order sell book of general shape.
- Order-book exhibits resilience, i.e., price impact of purchases is temporary.
- Purchasing takes place in continuous time, and can be at a rate, as well as in lumps.

Problem

- Agent must purchase \bar{X} shares of a stock by time T.
- Purchases take place from a limit-order sell book of general shape.
- Order-book exhibits resilience, i.e., price impact of purchases is temporary.
- Purchasing takes place in continuous time, and can be at a rate, as well as in lumps.
- Objective: Minimize total cost of purchase.

Solution

- Make an initial lump purchase at time zero.

Purchase lumps and rate

Solution

- Make an initial lump purchase at time zero.
- Between time zero and an intermediate time t_{0}, purchase at a rate matching the order book resilience. Price for these purchases is constant over time.

Purchase lumps and rate

Solution

- Make an initial lump purchase at time zero.
- Between time zero and an intermediate time t_{0}, purchase at a rate matching the order book resilience. Price for these purchases is constant over time.
- At time t_{0}, make another lump purchase.

Purchase lumps and rate

Solution

- Make an initial lump purchase at time zero.
- Between time zero and an intermediate time t_{0}, purchase at a rate matching the order book resilience. Price for these purchases is constant over time.
- At time t_{0}, make another lump purchase.
- Between time t_{0} and time T, purchase at a higher rate matching the order book resilience. Price for these purchases is constant over time.

Purchase lumps and rate

Solution

- Make an initial lump purchase at time zero.
- Between time zero and an intermediate time t_{0}, purchase at a rate matching the order book resilience. Price for these purchases is constant over time.
- At time t_{0}, make another lump purchase.
- Between time t_{0} and time T, purchase at a higher rate matching the order book resilience. Price for these purchases is constant over time.
- At time T, make a final lump purchase.

Purchase lumps and rate

Partial history

- Bertsimas \& Lo (1998). Trade on discrete-time grid with permanent linear price impact. To minimize expected cost of execution, divide order into equal pieces.

Partial history

- Bertsimas \& Lo (1998). Trade on discrete-time grid with permanent linear price impact. To minimize expected cost of execution, divide order into equal pieces.
- Almgren \& Chris (2001). Trade on discrete-time grid with linear permanent and temporary price impacts. Take variance of cost of execution into account and develop an efficient frontier of trading strategies.

Partial history

- Bertsimas \& Lo (1998). Trade on discrete-time grid with permanent linear price impact. To minimize expected cost of execution, divide order into equal pieces.
- Almgren \& Chris (2001). Trade on discrete-time grid with linear permanent and temporary price impacts. Take variance of cost of execution into account and develop an efficient frontier of trading strategies.
- Obizhaeva \& Wang (2005). Trade on discrete-time grid. Limit-order book has block shape and hence price impact is linear. Permanent and temporary price impact. To minimize cost of execution, all purchases except first and last should be the same size.

Partial history

- Bertsimas \& Lo (1998). Trade on discrete-time grid with permanent linear price impact. To minimize expected cost of execution, divide order into equal pieces.
- Almgren \& Chris (2001). Trade on discrete-time grid with linear permanent and temporary price impacts. Take variance of cost of execution into account and develop an efficient frontier of trading strategies.
- Obizhaeva \& Wang (2005). Trade on discrete-time grid. Limit-order book has block shape and hence price impact is linear. Permanent and temporary price impact. To minimize cost of execution, all purchases except first and last should be the same size.
- Alfonsi, Fruth and Schied (2010). Same as Obizhaeva \& Wang, except more general shape of limit-order book.

Setting of this talk

- Trading takes place in continuous time.

Setting of this talk

- Trading takes place in continuous time.
- Immediate price impact depends on the order book shape. No restrictions are placed on the order book shape.

Setting of this talk

- Trading takes place in continuous time.
- Immediate price impact depends on the order book shape. No restrictions are placed on the order book shape.
- Order book has resilience, with no permanent price impact.

Setting of this talk

- Trading takes place in continuous time.
- Immediate price impact depends on the order book shape. No restrictions are placed on the order book shape.
- Order book has resilience, with no permanent price impact.
- Purchasing at a constant rate is the continuous-time analogue of the results of the earlier papers.

Setting of this talk

- Trading takes place in continuous time.
- Immediate price impact depends on the order book shape. No restrictions are placed on the order book shape.
- Order book has resilience, with no permanent price impact.
- Purchasing at a constant rate is the continuous-time analogue of the results of the earlier papers.
- For order book shapes that fall outside the class studied previously, the optimal strategy can exhibit an intermediate lump purchase.

The model

- A_{t} - Continuous nonnegative martingale. Ask price in the absence of our agent. $\mathbb{E} \max _{0 \leq t \leq T} A_{t}<\infty$.

The model

- A_{t} - Continuous nonnegative martingale. Ask price in the absence of our agent. $\mathbb{E} \max _{0 \leq t \leq T} A_{t}<\infty$.
- μ - Infinite σ-finite measure on $[0, \infty)$. The shadow order book to the right of $A(t)$.

The model

- A_{t} - Continuous nonnegative martingale. Ask price in the absence of our agent. $\mathbb{E} \max _{0 \leq t \leq T} A_{t}<\infty$.
- μ - Infinite σ-finite measure on $[0, \infty)$. The shadow order book to the right of $A(t)$.
- $X_{t}, 0 \leq t \leq T$ - Cumulative purchases by our agent up to time $t . X_{0-}=0, X(T)=\bar{X}, X_{t}$ is nondecreasing and right-continuous.

The model

- A_{t} - Continuous nonnegative martingale. Ask price in the absence of our agent. $\mathbb{E} \max _{0 \leq t \leq T} A_{t}<\infty$.
- μ - Infinite σ-finite measure on $[0, \infty)$. The shadow order book to the right of $A(t)$.
- $X_{t}, 0 \leq t \leq T$ - Cumulative purchases by our agent up to time $t . X_{0-}=0, X(T)=\bar{X}, X_{t}$ is nondecreasing and right-continuous.
- $h(x)$ - Resilience function. Defined on $[0, \infty)$ with $h(0)=0$. h is strictly increasing and locally Lipschitz.

The model

- A_{t} - Continuous nonnegative martingale. Ask price in the absence of our agent. $\mathbb{E} \max _{0 \leq t \leq T} A_{t}<\infty$.
- μ - Infinite σ-finite measure on $[0, \infty)$. The shadow order book to the right of $A(t)$.
- $X_{t}, 0 \leq t \leq T$ - Cumulative purchases by our agent up to time $t . X_{0-}=0, X(T)=\bar{X}, X_{t}$ is nondecreasing and right-continuous.
- $h(x)$ - Resilience function. Defined on $[0, \infty)$ with $h(0)=0$. h is strictly increasing and locally Lipschitz.
- $E_{t}, 0 \leq t \leq T$ - Residual effect process. This is the quantity of orders missing from the order book because of the combined effect of agent's purchases and book's resilience:

$$
E_{t}=X_{t}-\int_{0}^{t} h\left(E_{s}\right) d s, \quad 0 \leq t \leq T
$$

The model

- A_{t} - Continuous nonnegative martingale. Ask price in the absence of our agent. $\mathbb{E} \max _{0 \leq t \leq T} A_{t}<\infty$.
- μ - Infinite σ-finite measure on $[0, \infty)$. The shadow order book to the right of $A(t)$.
- $X_{t}, 0 \leq t \leq T$ - Cumulative purchases by our agent up to time $t . X_{0-}=0, X(T)=\bar{X}, X_{t}$ is nondecreasing and right-continuous.
- $h(x)$ - Resilience function. Defined on $[0, \infty)$ with $h(0)=0$. h is strictly increasing and locally Lipschitz.
- $E_{t}, 0 \leq t \leq T$ - Residual effect process. This is the quantity of orders missing from the order book because of the combined effect of agent's purchases and book's resilience:

$$
E_{t}=X_{t}-\int_{0}^{t} h\left(E_{s}\right) d s, \quad 0 \leq t \leq T
$$

- $D_{t}, 0 \leq t \leq T$ - Price displacement due to the combined effect of agent's purchases and book's resilience.

Price displacement

Figure: Shadow limit order book at time t.

- The shaded area shows the orders in the book. This is the actual limit order book.
- The white area E_{t} shows orders missing from the shadow book.
- The current ask price is $A_{t}+D_{t}$.

Formula for price displacement

- $F(x) \triangleq \mu([0, x))$ - The left-continuous cumulative distribution function for the shadow order book.

Formula for price displacement

- $F(x) \triangleq \mu([0, x))$ - The left-continuous cumulative distribution function for the shadow order book.
- $\psi(y) \triangleq \sup \{x \geq 0 \mid F(x)<y\}$ - Left-continuous inverse of F.

Formula for price displacement

- $F(x) \triangleq \mu([0, x))$ - The left-continuous cumulative distribution function for the shadow order book.
- $\psi(y) \triangleq \sup \{x \geq 0 \mid F(x)<y\}$ - Left-continuous inverse of F.
- $D_{t} \triangleq \psi\left(E_{t}\right), 0 \leq t \leq T$.

Cost of execution

Suppose for the moment that $A_{t} \equiv 0$ and no purchases have been made prior to the present time.

- The cost of purchasing all the shares available at prices in $[0, x)$ is

$$
\varphi(x) \triangleq \int_{[0, x)} \xi d F(\xi)
$$

- The cost of purchasing y shares is

$$
\Phi(y) \triangleq \varphi(\psi(y))+[y-F(\psi(y))] \psi(y)
$$

Cost of execution

Suppose for the moment that $A_{t} \equiv 0$ and no purchases have been made prior to the present time.

- The cost of purchasing all the shares available at prices in $[0, x)$ is

$$
\varphi(x) \triangleq \int_{[0, x)} \xi d F(\xi)
$$

- The cost of purchasing y shares is

$$
\Phi(y) \triangleq \varphi(\psi(y))+[y-F(\psi(y))] \psi(y)
$$

Suppose only that $A_{t} \equiv 0$. Recall that $\Delta X_{t}=\Delta E_{t}$.

- Then the cost of the purchasing strategy $X_{t}, 0 \leq t \leq T$, is

$$
C(X)=\int_{0}^{T} D_{t} d X_{t}^{c}+\sum_{0 \leq t \leq T}\left[\Phi\left(E_{t}\right)-\Phi\left(E_{t-}\right)\right]
$$

Cost of execution (continued)

On the previous page, when we assume that $A_{t} \equiv 0$, we have the cost of execution

$$
C(X)=\int_{0}^{T} D_{t} d X_{t}^{c}+\sum_{0 \leq t \leq T}\left[\Phi\left(E_{t}\right)-\Phi\left(E_{t-}\right)\right]
$$

Cost of execution (continued)

On the previous page, when we assume that $A_{t} \equiv 0$, we have the cost of execution

$$
C(X)=\int_{0}^{T} D_{t} d X_{t}^{c}+\sum_{0 \leq t \leq T}\left[\Phi\left(E_{t}\right)-\Phi\left(E_{t-}\right)\right]
$$

If we do not assume that $A_{t} \equiv 0$, then the cost of execution is

$$
\begin{aligned}
C(X) & \left.=\int_{0}^{T}\left(A_{t}+D_{t}\right) d X_{t}^{c}+\sum_{0 \leq t \leq T}\left[A_{t} \Delta X_{t}+\Phi\left(E_{t}\right)-\Phi\left(E_{t-}\right)\right)\right] \\
& =\int_{0}^{T} D_{t} d X_{t}^{c}+\sum_{0 \leq t \leq T}\left[\Phi\left(E_{t}\right)-\Phi\left(E_{t-}\right)\right]+\int_{[0, T]} A_{t} d X_{t}
\end{aligned}
$$

Cost simplification

Using integration by parts, we write the term containing A_{t} in the cost as

$$
\int_{[0 . T]} A_{t} d X_{t}=A_{T} X_{T}-A_{0} X_{0-}-\int_{0}^{T} X_{t} d A_{t}
$$

Cost simplification

Using integration by parts, we write the term containing A_{t} in the cost as

$$
\begin{aligned}
\int_{[0 . T]} A_{t} d X_{t} & =A_{T} X_{T}-A_{0} X_{0-}-\int_{0}^{T} X_{t} d A_{t} \\
& =A_{T} \bar{X}-\int_{0}^{T} X_{t} d A_{t}
\end{aligned}
$$

Cost simplification

Using integration by parts, we write the term containing A_{t} in the cost as

$$
\begin{aligned}
\int_{[0 . T]} A_{t} d X_{t} & =A_{T} X_{T}-A_{0} X_{0-}-\int_{0}^{T} X_{t} d A_{t} \\
& =A_{T} \bar{X}-\int_{0}^{T} X_{t} d A_{t}
\end{aligned}
$$

Therefore,

$$
\mathbb{E} \int_{[0, T]} A_{t} d X_{t}=A_{0} \bar{X}
$$

does not depend on the trading strategy $X_{t}, 0 \leq t \leq T$.

Cost simplification

Using integration by parts, we write the term containing A_{t} in the cost as

$$
\begin{aligned}
\int_{[0 . T]} A_{t} d X_{t} & =A_{T} X_{T}-A_{0} X_{0-}-\int_{0}^{T} X_{t} d A_{t} \\
& =A_{T} \bar{X}-\int_{0}^{T} X_{t} d A_{t}
\end{aligned}
$$

Therefore,

$$
\mathbb{E} \int_{[0, T]} A_{t} d X_{t}=A_{0} \bar{X}
$$

does not depend on the trading strategy $X_{t}, 0 \leq t \leq T$. We assume without loss of generality that $A_{t} \equiv 0$.

Cost simplification (continued)

Under the assumption that $A_{t} \equiv 0$,

Cost simplification (continued)

Under the assumption that $A_{t} \equiv 0$,

- The cost of using trading strategy $X_{t}, 0 \leq t \leq T$, is

$$
C(X)=\int_{0}^{T} D_{t} d X_{t}^{c}+\sum_{0 \leq t \leq T}\left[\Phi\left(E_{t}\right)-\Phi\left(E_{t-}\right)\right]
$$

Cost simplification (continued)

Under the assumption that $A_{t} \equiv 0$,

- The cost of using trading strategy $X_{t}, 0 \leq t \leq T$, is

$$
C(X)=\int_{0}^{T} D_{t} d X_{t}^{c}+\sum_{0 \leq t \leq T}\left[\Phi\left(E_{t}\right)-\Phi\left(E_{t-}\right)\right]
$$

- The search for an optimal trading strategy can be restricted to deterministic strategies.

Cost simplification (continued)

Theorem
The cost of using trading strategy $X_{t}, 0 \leq t \leq T$,

$$
C(X)=\int_{0}^{T} D_{t} d X_{t}^{c}+\sum_{0 \leq t \leq T}\left[\Phi\left(E_{t}\right)-\Phi\left(E_{t-}\right)\right]
$$

is equal to

$$
C(X)=\Phi\left(E_{T}\right)+\int_{0}^{T} D_{t} h\left(E_{t}\right) d t
$$

Step One of the Proof: $\partial \Phi(y)=[\psi(y), \psi(y+)]$

Step One of the Proof: $\partial \Phi(y)=[\psi(y), \psi(y+)]$

Consider the special case that F has a positive density f, i.e., $F(x)=\int_{0}^{x} f(\xi) d \xi$.

Step One of the Proof: $\partial \Phi(y)=[\psi(y), \psi(y+)]$

Consider the special case that F has a positive density f, i.e., $F(x)=\int_{0}^{x} f(\xi) d \xi$. Then F is strictly increasing and ψ is its true inverse and is continuous, i.e.,

$$
F(\psi(y))=y
$$

Step One of the Proof: $\partial \Phi(y)=[\psi(y), \psi(y+)]$

Consider the special case that F has a positive density f, i.e., $F(x)=\int_{0}^{x} f(\xi) d \xi$. Then F is strictly increasing and ψ is its true inverse and is continuous, i.e.,

$$
F(\psi(y))=y, \quad f(\psi(y)) \psi^{\prime}(y)=1
$$

Step One of the Proof: $\partial \Phi(y)=[\psi(y), \psi(y+)]$

Consider the special case that F has a positive density f, i.e., $F(x)=\int_{0}^{x} f(\xi) d \xi$. Then F is strictly increasing and ψ is its true inverse and is continuous, i.e.,

$$
F(\psi(y))=y, \quad f(\psi(y)) \psi^{\prime}(y)=1, \quad \psi(y+)=\psi(y)
$$

Step One of the Proof: $\partial \Phi(y)=[\psi(y), \psi(y+)]$

Consider the special case that F has a positive density f, i.e., $F(x)=\int_{0}^{x} f(\xi) d \xi$. Then F is strictly increasing and ψ is its true inverse and is continuous, i.e.,

$$
F(\psi(y))=y, \quad f(\psi(y)) \psi^{\prime}(y)=1, \quad \psi(y+)=\psi(y)
$$

Furthermore,

$$
\varphi(x)=\int_{[0, x)} \xi d F(\xi)=\int_{0}^{x} \xi f(\xi) d \xi, \quad \varphi^{\prime}(x)=x f(x)
$$

Step One of the Proof: $\partial \Phi(y)=[\psi(y), \psi(y+)]$

Consider the special case that F has a positive density f, i.e., $F(x)=\int_{0}^{x} f(\xi) d \xi$. Then F is strictly increasing and ψ is its true inverse and is continuous, i.e.,

$$
F(\psi(y))=y, \quad f(\psi(y)) \psi^{\prime}(y)=1, \quad \psi(y+)=\psi(y)
$$

Furthermore,

$$
\varphi(x)=\int_{[0, x)} \xi d F(\xi)=\int_{0}^{x} \xi f(\xi) d \xi, \quad \varphi^{\prime}(x)=x f(x)
$$

In this case,

$$
\Phi(y) \triangleq \varphi(\psi(y))+[y-F(\psi(y))]=\varphi(\psi(y))
$$

Step One of the Proof: $\partial \Phi(y)=[\psi(y), \psi(y+)]$

Consider the special case that F has a positive density f, i.e., $F(x)=\int_{0}^{x} f(\xi) d \xi$. Then F is strictly increasing and ψ is its true inverse and is continuous, i.e.,

$$
F(\psi(y))=y, \quad f(\psi(y)) \psi^{\prime}(y)=1, \quad \psi(y+)=\psi(y)
$$

Furthermore,

$$
\varphi(x)=\int_{[0, x)} \xi d F(\xi)=\int_{0}^{x} \xi f(\xi) d \xi, \quad \varphi^{\prime}(x)=x f(x)
$$

In this case,

$$
\Phi(y) \triangleq \varphi(\psi(y))+[y-F(\psi(y))]=\varphi(\psi(y))
$$

and

$$
\Phi^{\prime}(y)=\varphi^{\prime}(\psi(y)) \psi^{\prime}(y)=\psi(y) f(\psi(y)) \psi^{\prime}(y)=\psi(y) .
$$

Step Two of the Proof: Chain Rule

$$
\Phi\left(E_{T}\right)=\int_{0}^{T} D^{-} \Phi\left(E_{t}\right) d E_{t}^{c}+\sum_{0 \leq t \leq T}\left[\Phi\left(E_{t}\right)-\Phi\left(E_{t-}\right)\right]
$$

Step Two of the Proof: Chain Rule

$$
\begin{aligned}
\Phi\left(E_{T}\right) & =\int_{0}^{T} D^{-} \Phi\left(E_{t}\right) d E_{t}^{c}+\sum_{0 \leq t \leq T}\left[\Phi\left(E_{t}\right)-\Phi\left(E_{t-}\right)\right] \\
& =\int_{0}^{T} \psi\left(E_{t}\right) d E_{t}^{c}+\sum_{0 \leq t \leq T}\left[\Phi\left(E_{t}\right)-\Phi\left(E_{t-}\right)\right]
\end{aligned}
$$

Step Two of the Proof: Chain Rule

$$
\begin{aligned}
\Phi\left(E_{T}\right) & =\int_{0}^{T} D^{-} \Phi\left(E_{t}\right) d E_{t}^{c}+\sum_{0 \leq t \leq T}\left[\Phi\left(E_{t}\right)-\Phi\left(E_{t-}\right)\right] \\
& =\int_{0}^{T} \psi\left(E_{t}\right) d E_{t}^{c}+\sum_{0 \leq t \leq T}\left[\Phi\left(E_{t}\right)-\Phi\left(E_{t-}\right)\right] \\
& =\int_{0}^{T} D_{t} d E_{t}^{c}+\sum_{0 \leq t \leq T}\left[\Phi\left(E_{t}\right)-\Phi\left(E_{t-}\right)\right]
\end{aligned}
$$

Step Two of the Proof: Chain Rule

$$
\begin{aligned}
\Phi\left(E_{T}\right) & =\int_{0}^{T} D^{-} \Phi\left(E_{t}\right) d E_{t}^{c}+\sum_{0 \leq t \leq T}\left[\Phi\left(E_{t}\right)-\Phi\left(E_{t-}\right)\right] \\
& =\int_{0}^{T} \psi\left(E_{t}\right) d E_{t}^{c}+\sum_{0 \leq t \leq T}\left[\Phi\left(E_{t}\right)-\Phi\left(E_{t-}\right)\right] \\
& =\int_{0}^{T} D_{t} d E_{t}^{c}+\sum_{0 \leq t \leq T}\left[\Phi\left(E_{t}\right)-\Phi\left(E_{t-}\right)\right]
\end{aligned}
$$

Therefore,

$$
C(X)=\int_{0}^{T} D_{t} d X_{t}^{c}+\sum_{0 \leq t \leq T}\left[\Phi\left(E_{t}\right)-\Phi\left(E_{t-}\right)\right]
$$

Step Two of the Proof: Chain Rule

$$
\begin{aligned}
\Phi\left(E_{T}\right) & =\int_{0}^{T} D^{-} \Phi\left(E_{t}\right) d E_{t}^{c}+\sum_{0 \leq t \leq T}\left[\Phi\left(E_{t}\right)-\Phi\left(E_{t-}\right)\right] \\
& =\int_{0}^{T} \psi\left(E_{t}\right) d E_{t}^{c}+\sum_{0 \leq t \leq T}\left[\Phi\left(E_{t}\right)-\Phi\left(E_{t-}\right)\right] \\
& =\int_{0}^{T} D_{t} d E_{t}^{c}+\sum_{0 \leq t \leq T}\left[\Phi\left(E_{t}\right)-\Phi\left(E_{t-}\right)\right]
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
C(X) & =\int_{0}^{T} D_{t} d X_{t}^{c}+\sum_{0 \leq t \leq T}\left[\Phi\left(E_{t}\right)-\Phi\left(E_{t-}\right)\right] \\
& =\Phi\left(E_{T}\right)+\int_{0}^{T} D_{t} d\left(X_{t}^{c}-E_{t}^{c}\right)
\end{aligned}
$$

Step Two of the Proof: Chain Rule

$$
\begin{aligned}
\Phi\left(E_{T}\right) & =\int_{0}^{T} D^{-} \Phi\left(E_{t}\right) d E_{t}^{c}+\sum_{0 \leq t \leq T}\left[\Phi\left(E_{t}\right)-\Phi\left(E_{t-}\right)\right] \\
& =\int_{0}^{T} \psi\left(E_{t}\right) d E_{t}^{c}+\sum_{0 \leq t \leq T}\left[\Phi\left(E_{t}\right)-\Phi\left(E_{t-}\right)\right] \\
& =\int_{0}^{T} D_{t} d E_{t}^{c}+\sum_{0 \leq t \leq T}\left[\Phi\left(E_{t}\right)-\Phi\left(E_{t-}\right)\right]
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
C(X) & =\int_{0}^{T} D_{t} d X_{t}^{c}+\sum_{0 \leq t \leq T}\left[\Phi\left(E_{t}\right)-\Phi\left(E_{t-}\right)\right] \\
& =\Phi\left(E_{T}\right)+\int_{0}^{T} D_{t} d\left(X_{t}^{c}-E_{t}^{c}\right) \\
& =\Phi\left(E_{T}\right)+\int_{0}^{T} D_{t} h\left(E_{t}\right) d t
\end{aligned}
$$

where the last step uses $E_{t}=X_{t}-\int_{0}^{t} h\left(E_{s}\right) d s$.

Summary

$$
C(X)=\Phi\left(E_{T}\right)+\int_{0}^{T} D_{t} h\left(E_{t}\right) d t
$$

where $X_{0-}=0, X_{T}=\bar{X}$ and

$$
\begin{aligned}
E_{t} & =X_{t}-\int_{0}^{t} h\left(E_{s}\right) d s \\
\psi(y) & \triangleq \sup \{x \geq 0 \mid F(x)<y\} \\
D_{t} & \triangleq \psi\left(E_{t}\right)
\end{aligned}
$$

Summary

$$
C(X)=\Phi\left(E_{T}\right)+\int_{0}^{T} D_{t} h\left(E_{t}\right) d t
$$

where $X_{0-}=0, X_{T}=\bar{X}$ and

$$
\begin{aligned}
E_{t} & =X_{t}-\int_{0}^{t} h\left(E_{s}\right) d s \\
\psi(y) & \triangleq \sup \{x \geq 0 \mid F(x)<y\} \\
D_{t} & \triangleq \psi\left(E_{t}\right)
\end{aligned}
$$

Set

$$
g(y) \triangleq y \psi\left(h^{-1}(y)\right)
$$

so that

$$
\left.g\left(h\left(E_{t}\right)\right)=h\left(E_{t}\right)\right) \psi\left(E_{t}\right)=h\left(E_{t}\right) D_{t}
$$

Summary

$$
C(X)=\Phi\left(E_{T}\right)+\int_{0}^{T} D_{t} h\left(E_{t}\right) d t
$$

where $X_{0-}=0, X_{T}=\bar{X}$ and

$$
\begin{aligned}
E_{t} & =X_{t}-\int_{0}^{t} h\left(E_{s}\right) d s \\
\psi(y) & \triangleq \sup \{x \geq 0 \mid F(x)<y\} \\
D_{t} & \triangleq \psi\left(E_{t}\right)
\end{aligned}
$$

Set

$$
g(y) \triangleq y \psi\left(h^{-1}(y)\right)
$$

so that

$$
\left.g\left(h\left(E_{t}\right)\right)=h\left(E_{t}\right)\right) \psi\left(E_{t}\right)=h\left(E_{t}\right) D_{t}
$$

Then

$$
C(X)=\Phi\left(E_{T}\right)+\int_{0}^{T} g\left(h\left(E_{t}\right)\right) d t
$$

Two-jump strategies

Theorem
If g is convex, then the optimal strategy does not make an intermediate lump purchase, purchasing at a constant rate on $(0, T)$.

Two-jump strategies

Theorem
If g is convex, then the optimal strategy does not make an intermediate lump purchase, purchasing at a constant rate on $(0, T)$.
Idea of the Proof: Recall that $E_{T}=X_{T}-\int_{0}^{T} h\left(E_{t}\right) d t$, so $\int_{0}^{T} h\left(E_{t}\right) d t=\bar{X}-E_{T}$.

Two-jump strategies

Theorem

If g is convex, then the optimal strategy does not make an intermediate lump purchase, purchasing at a constant rate on $(0, T)$.
Idea of the Proof: Recall that $E_{T}=X_{T}-\int_{0}^{T} h\left(E_{t}\right) d t$, so $\int_{0}^{T} h\left(E_{t}\right) d t=\bar{X}-E_{T}$. We have

$$
C(X)=\Phi\left(E_{T}\right)+T \int_{0}^{T} g\left(h\left(E_{t}\right)\right) \frac{d t}{T}
$$

Two-jump strategies

Theorem

If g is convex, then the optimal strategy does not make an intermediate lump purchase, purchasing at a constant rate on $(0, T)$.
Idea of the Proof: Recall that $E_{T}=X_{T}-\int_{0}^{T} h\left(E_{t}\right) d t$, so $\int_{0}^{T} h\left(E_{t}\right) d t=\bar{X}-E_{T}$. We have

$$
\begin{aligned}
C(X) & =\Phi\left(E_{T}\right)+T \int_{0}^{T} g\left(h\left(E_{t}\right)\right) \frac{d t}{T} \\
& \geq \Phi\left(E_{T}\right)+T g\left(\int_{0}^{T} h\left(E_{t}\right) \frac{d t}{T}\right)
\end{aligned}
$$

(Jensen)

Two-jump strategies

Theorem

If g is convex, then the optimal strategy does not make an intermediate lump purchase, purchasing at a constant rate on $(0, T)$.
Idea of the Proof: Recall that $E_{T}=X_{T}-\int_{0}^{T} h\left(E_{t}\right) d t$, so $\int_{0}^{T} h\left(E_{t}\right) d t=\bar{X}-E_{T}$. We have

$$
\begin{aligned}
C(X) & =\Phi\left(E_{T}\right)+T \int_{0}^{T} g\left(h\left(E_{t}\right)\right) \frac{d t}{T} \\
& \geq \Phi\left(E_{T}\right)+T g\left(\int_{0}^{T} h\left(E_{t}\right) \frac{d t}{T}\right) \quad \text { (Jensen) } \\
& =\Phi\left(E_{T}\right)+\operatorname{Tg}\left(\frac{\bar{X}-E_{T}}{T}\right)
\end{aligned}
$$

Two-jump strategies

Theorem

If g is convex, then the optimal strategy does not make an intermediate lump purchase, purchasing at a constant rate on $(0, T)$.
Idea of the Proof: Recall that $E_{T}=X_{T}-\int_{0}^{T} h\left(E_{t}\right) d t$, so $\int_{0}^{T} h\left(E_{t}\right) d t=\bar{X}-E_{T}$. We have

$$
\begin{aligned}
C(X) & =\Phi\left(E_{T}\right)+T \int_{0}^{T} g\left(h\left(E_{t}\right)\right) \frac{d t}{T} \\
& \geq \Phi\left(E_{T}\right)+T g\left(\int_{0}^{T} h\left(E_{t}\right) \frac{d t}{T}\right) \quad \text { (Jensen) } \\
& =\Phi\left(E_{T}\right)+T g\left(\frac{\bar{X}-E_{T}}{T}\right)
\end{aligned}
$$

and equality holds if $h\left(E_{t}\right)$ is constant on ($0, T$).

Two-jump strategies

Theorem

If g is convex, then the optimal strategy does not make an intermediate lump purchase, purchasing at a constant rate on $(0, T)$.
Idea of the Proof: Recall that $E_{T}=X_{T}-\int_{0}^{T} h\left(E_{t}\right) d t$, so $\int_{0}^{T} h\left(E_{t}\right) d t=\bar{X}-E_{T}$. We have

$$
\begin{aligned}
C(X) & =\Phi\left(E_{T}\right)+T \int_{0}^{T} g\left(h\left(E_{t}\right)\right) \frac{d t}{T} \\
& \geq \Phi\left(E_{T}\right)+T g\left(\int_{0}^{T} h\left(E_{t}\right) \frac{d t}{T}\right) \quad \text { (Jensen) } \\
& =\Phi\left(E_{T}\right)+T g\left(\frac{\bar{X}-E_{T}}{T}\right)
\end{aligned}
$$

and equality holds if $h\left(E_{t}\right)$ is constant on ($0, T$). Minimize the last expression over E_{T} to determine the constant.

Three-jump strategies

If g is not convex, replace g by its convex hull.

To achieve a constant purchasing rate on the graph of the convex hull that is not on the graph of g, say at 6 , purchase a while at rate 4 and a while at rate 10.324 . The switch from 4 to 10.324 creates an intermediate jump.

Example (Block order book)

Let q and ρ be a positive constants. Set

$$
F(x)=q x, \quad h(x)=\rho x .
$$

Then

$$
\psi(y)=\frac{y}{q}, \quad \Phi(y)=\frac{y^{2}}{2 q}, \quad g(y)=\frac{y^{2}}{\rho q} .
$$

Optimal strategy:

- Initial lump purchase of size $\frac{\bar{X}}{2+\rho T}$,
- Intermediate purchases at rate $\frac{\rho \bar{X}}{2+\rho T}$,
- Terminal lump purchase of size $\frac{\bar{X}}{2+\rho T}$.

Example (Modified block order book)

Figure: Density and cumulative distribution of the modified block order book

Example (Modified block order book)

Figure: Density and cumulative distribution of the modified block order book

$$
\psi(y)= \begin{cases}y, & 0 \leq y \leq a \\ y+b-a, & a<y<\infty\end{cases}
$$

Example (Modified block order book)

Figure: Density and cumulative distribution of the modified block order book

$$
\begin{aligned}
& \psi(y)= \begin{cases}y, & 0 \leq y \leq a, \\
y+b-a, & a<y<\infty\end{cases} \\
& \Phi(y)= \begin{cases}\frac{1}{2} y^{2}, & 0 \leq y \leq a \\
\frac{1}{2}\left((y+b-a)^{2}+a^{2}-b^{2}\right), & a \leq y<\infty\end{cases}
\end{aligned}
$$

Example (Modified block order book, continued)

Figure: Functions Φ and ψ for the modified block order book with parameters $a=4$ and $b=14$

Example (Modified block order book, continued)

$$
g(y)= \begin{cases}y^{2}, & 0 \leq y \leq a, \\ y^{2}+(b-a) y, & a<y<\infty .\end{cases}
$$

Figure: Function g for the modified block order book with parameters $a=4$ and $b=14$. The convex hull \widehat{g} is constructed by replacing a part $\{g(y), y \in(a, \beta)\}$ by a straight line connecting $g(a)$ and $g(\beta)$. Here $\beta=10.324$

Example (Discrete order book)

Figure: Measure and cumulative distribution function of the discrete order book

Example (Discrete order book, continued)

Figure: Functions Φ and ψ for the discrete order book

Example (Discrete order book, continued)

Figure: Function g for the discrete order book. The convex hull \widehat{g} interpolates linearly between the points $(k,(k-1) k)$ and $(k+1, k(k+1))$.

