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Problem

I Agent must purchase X shares of a stock by time T .

I Purchases take place from a limit-order sell book of general
shape.

I Order-book exhibits resilience, i.e., price impact of purchases
is temporary.

I Purchasing takes place in continuous time, and can be at a
rate, as well as in lumps.

I Objective: Minimize total cost of purchase.
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Solution

I Make an initial lump purchase at time zero.

0

Purchase lumps and rate
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Solution

I Make an initial lump purchase at time zero.

I Between time zero and an intermediate time t0, purchase at a
rate matching the order book resilience. Price for these
purchases is constant over time.

I At time t0, make another lump purchase.

I Between time t0 and time T , purchase at a higher rate
matching the order book resilience. Price for these purchases
is constant over time.

I At time T , make a final lump purchase.

0 t0 T

Purchase lumps and rate
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Partial history

I Bertsimas & Lo (1998). Trade on discrete-time grid with
permanent linear price impact. To minimize expected cost of
execution, divide order into equal pieces.

I Almgren & Chris (2001). Trade on discrete-time grid with
linear permanent and temporary price impacts. Take variance
of cost of execution into account and develop an efficient
frontier of trading strategies.

I Obizhaeva & Wang (2005). Trade on discrete-time grid.
Limit-order book has block shape and hence price impact is
linear. Permanent and temporary price impact. To minimize
cost of execution, all purchases except first and last should be
the same size.

I Alfonsi, Fruth and Schied (2010). Same as Obizhaeva &
Wang, except more general shape of limit-order book.
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Setting of this talk

I Trading takes place in continuous time.

I Immediate price impact depends on the order book shape. No
restrictions are placed on the order book shape.

I Order book has resilience, with no permanent price impact.

I Purchasing at a constant rate is the continuous-time analogue
of the results of the earlier papers.

I For order book shapes that fall outside the class studied
previously, the optimal strategy can exhibit an intermediate
lump purchase.
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The model
I At — Continuous nonnegative martingale. Ask price in the

absence of our agent. E max0≤t≤T At <∞.

I µ — Infinite σ-finite measure on [0,∞). The shadow order
book to the right of A(t).

I Xt , 0 ≤ t ≤ T — Cumulative purchases by our agent up to
time t. X0− = 0, X (T ) = X , Xt is nondecreasing and
right-continuous.

I h(x) — Resilience function. Defined on [0,∞) with h(0) = 0.
h is strictly increasing and locally Lipschitz.

I Et , 0 ≤ t ≤ T — Residual effect process. This is the quantity
of orders missing from the order book because of the
combined effect of agent’s purchases and book’s resilience:

Et = Xt −
∫ t

0
h(Es) ds, 0 ≤ t ≤ T .

I Dt , 0 ≤ t ≤ T — Price displacement due to the combined
effect of agent’s purchases and book’s resilience.
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Price displacement

Figure: Shadow limit order book at time t.

I The shaded area shows the orders in the book. This is the
actual limit order book.

I The white area Et shows orders missing from the shadow
book.

I The current ask price is At + Dt .
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Formula for price displacement

I F (x) , µ
(
[0, x)

)
— The left-continuous cumulative

distribution function for the shadow order book.

I ψ(y) , sup{x ≥ 0|F (x) < y} — Left-continuous inverse of F .

I Dt , ψ(Et), 0 ≤ t ≤ T .
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Cost of execution
Suppose for the moment that At ≡ 0 and no purchases have been
made prior to the present time.

I The cost of purchasing all the shares available at prices in
[0, x) is

ϕ(x) ,
∫

[0,x)
ξ dF (ξ).

I The cost of purchasing y shares is

Φ(y) , ϕ
(
ψ(y)

)
+
[
y − F

(
ψ(y)

)]
ψ(y).

Suppose only that At ≡ 0. Recall that ∆Xt = ∆Et .

I Then the cost of the purchasing strategy Xt , 0 ≤ t ≤ T , is

C (X ) =

∫ T

0
Dt dX c

t +
∑

0≤t≤T

[
Φ(Et)− Φ(Et−)

]
.

31 / 76



Cost of execution
Suppose for the moment that At ≡ 0 and no purchases have been
made prior to the present time.

I The cost of purchasing all the shares available at prices in
[0, x) is

ϕ(x) ,
∫

[0,x)
ξ dF (ξ).

I The cost of purchasing y shares is

Φ(y) , ϕ
(
ψ(y)

)
+
[
y − F

(
ψ(y)

)]
ψ(y).

Suppose only that At ≡ 0. Recall that ∆Xt = ∆Et .

I Then the cost of the purchasing strategy Xt , 0 ≤ t ≤ T , is

C (X ) =

∫ T

0
Dt dX c

t +
∑

0≤t≤T

[
Φ(Et)− Φ(Et−)

]
.

32 / 76



Cost of execution (continued)

On the previous page, when we assume that At ≡ 0, we have the
cost of execution

C (X ) =

∫ T

0
Dt dX c

t +
∑

0≤t≤T

[
Φ(Et)− Φ(Et−)

]
.

If we do not assume that At ≡ 0, then the cost of execution is

C (X ) =

∫ T

0
(At + Dt) dX c

t +
∑

0≤t≤T

[
At∆Xt + Φ(Et)− Φ(Et−)

)]
=

∫ T

0
Dt dX c

t +
∑

0≤t≤T

[
Φ(Et)− Φ(Et−)

]
+

∫
[0,T ]

At dXt .
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Cost simplification

Using integration by parts, we write the term containing At in the
cost as ∫

[0.T ]
At dXt = ATXT − A0X0− −

∫ T

0
Xt dAt

= ATX −
∫ T

0
Xt dAt .

Therefore,

E
∫

[0,T ]
At dXt = A0X

does not depend on the trading strategy Xt , 0 ≤ t ≤ T .
We assume without loss of generality that At ≡ 0.
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Cost simplification (continued)

Under the assumption that At ≡ 0,

I The cost of using trading strategy Xt , 0 ≤ t ≤ T , is

C (X ) =

∫ T

0
Dt dX c

t +
∑

0≤t≤T

[
Φ(Et)− Φ(Et−)

]
;

I The search for an optimal trading strategy can be restricted
to deterministic strategies.
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Cost simplification (continued)

Theorem
The cost of using trading strategy Xt , 0 ≤ t ≤ T,

C (X ) =

∫ T

0
Dt dX c

t +
∑

0≤t≤T

[
Φ(Et)− Φ(Et−)

]
is equal to

C (X ) = Φ(ET ) +

∫ T

0
Dth(Et) dt.
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Step One of the Proof: ∂Φ(y) = [ψ(y), ψ(y+)]

Consider the special case that F has a positive density f , i.e.,
F (x) =

∫ x
0 f (ξ) dξ. Then F is strictly increasing and ψ is its true

inverse and is continuous, i.e.,

F
(
ψ(y)

)
= y , f

(
ψ(y))ψ′(y) = 1, ψ(y+) = ψ(y).

Furthermore,

ϕ(x) =

∫
[0,x)

ξ dF (ξ) =

∫ x

0
ξf (ξ) dξ, ϕ′(x) = xf (x).

In this case,

Φ(y) , ϕ
(
ψ(y)

)
+
[
y − F

(
ψ(y)

)]
= ϕ

(
ψ(y)

)
,

and

Φ′(y) = ϕ′
(
ψ(y)

)
ψ′(y) = ψ(y)f

(
ψ(y)

)
ψ′(y) = ψ(y).
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= y , f

(
ψ(y))ψ′(y) = 1, ψ(y+) = ψ(y).

Furthermore,

ϕ(x) =

∫
[0,x)

ξ dF (ξ) =

∫ x

0
ξf (ξ) dξ, ϕ′(x) = xf (x).

In this case,

Φ(y) , ϕ
(
ψ(y)

)
+
[
y − F

(
ψ(y)

)]
= ϕ

(
ψ(y)

)
,

and

Φ′(y) = ϕ′
(
ψ(y)

)
ψ′(y) = ψ(y)f

(
ψ(y)

)
ψ′(y) = ψ(y).
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Step Two of the Proof: Chain Rule

Φ(ET ) =

∫ T

0
D−Φ(Et) dE c

t +
∑

0≤t≤T

[
Φ(Et)− Φ(Et−)

]

=

∫ T

0
ψ(Et) dE c

t +
∑

0≤t≤T

[
Φ(Et)− Φ(Et−)

]
=

∫ T

0
Dt dE c

t +
∑

0≤t≤T

[
Φ(Et)− Φ(Et−)

]
.

Therefore,

C (X ) =

∫ T

0
Dt dX c

t +
∑

0≤t≤T

[
Φ(Et)− Φ(Et−)

]
= Φ(ET ) +

∫ T

0
Dtd

(
X c

t − E c
t )

= Φ(ET ) +

∫ T

0
Dth(Et) dt,

where the last step uses Et = Xt −
∫ t
0 h(Es)ds.

51 / 76



Step Two of the Proof: Chain Rule

Φ(ET ) =

∫ T

0
D−Φ(Et) dE c

t +
∑

0≤t≤T

[
Φ(Et)− Φ(Et−)

]
=

∫ T

0
ψ(Et) dE c

t +
∑

0≤t≤T

[
Φ(Et)− Φ(Et−)

]

=

∫ T

0
Dt dE c

t +
∑

0≤t≤T

[
Φ(Et)− Φ(Et−)

]
.

Therefore,

C (X ) =

∫ T

0
Dt dX c

t +
∑

0≤t≤T

[
Φ(Et)− Φ(Et−)

]
= Φ(ET ) +

∫ T

0
Dtd

(
X c

t − E c
t )

= Φ(ET ) +

∫ T

0
Dth(Et) dt,

where the last step uses Et = Xt −
∫ t
0 h(Es)ds.

52 / 76



Step Two of the Proof: Chain Rule

Φ(ET ) =

∫ T

0
D−Φ(Et) dE c

t +
∑

0≤t≤T

[
Φ(Et)− Φ(Et−)

]
=

∫ T

0
ψ(Et) dE c

t +
∑

0≤t≤T

[
Φ(Et)− Φ(Et−)

]
=

∫ T

0
Dt dE c

t +
∑

0≤t≤T

[
Φ(Et)− Φ(Et−)

]
.

Therefore,

C (X ) =

∫ T

0
Dt dX c

t +
∑

0≤t≤T

[
Φ(Et)− Φ(Et−)

]
= Φ(ET ) +

∫ T

0
Dtd

(
X c

t − E c
t )

= Φ(ET ) +

∫ T

0
Dth(Et) dt,

where the last step uses Et = Xt −
∫ t
0 h(Es)ds.

53 / 76



Step Two of the Proof: Chain Rule

Φ(ET ) =

∫ T

0
D−Φ(Et) dE c

t +
∑

0≤t≤T

[
Φ(Et)− Φ(Et−)

]
=

∫ T

0
ψ(Et) dE c

t +
∑

0≤t≤T

[
Φ(Et)− Φ(Et−)

]
=

∫ T

0
Dt dE c

t +
∑

0≤t≤T

[
Φ(Et)− Φ(Et−)

]
.

Therefore,

C (X ) =

∫ T

0
Dt dX c

t +
∑

0≤t≤T

[
Φ(Et)− Φ(Et−)

]

= Φ(ET ) +

∫ T

0
Dtd

(
X c

t − E c
t )

= Φ(ET ) +

∫ T

0
Dth(Et) dt,

where the last step uses Et = Xt −
∫ t
0 h(Es)ds.

54 / 76



Step Two of the Proof: Chain Rule

Φ(ET ) =

∫ T

0
D−Φ(Et) dE c

t +
∑

0≤t≤T

[
Φ(Et)− Φ(Et−)

]
=

∫ T

0
ψ(Et) dE c

t +
∑

0≤t≤T

[
Φ(Et)− Φ(Et−)

]
=

∫ T

0
Dt dE c

t +
∑

0≤t≤T

[
Φ(Et)− Φ(Et−)

]
.

Therefore,

C (X ) =

∫ T

0
Dt dX c

t +
∑

0≤t≤T

[
Φ(Et)− Φ(Et−)

]
= Φ(ET ) +

∫ T

0
Dtd

(
X c

t − E c
t )

= Φ(ET ) +

∫ T

0
Dth(Et) dt,

where the last step uses Et = Xt −
∫ t
0 h(Es)ds.

55 / 76



Step Two of the Proof: Chain Rule

Φ(ET ) =

∫ T

0
D−Φ(Et) dE c

t +
∑

0≤t≤T

[
Φ(Et)− Φ(Et−)

]
=

∫ T

0
ψ(Et) dE c

t +
∑

0≤t≤T

[
Φ(Et)− Φ(Et−)

]
=

∫ T

0
Dt dE c

t +
∑

0≤t≤T

[
Φ(Et)− Φ(Et−)

]
.

Therefore,

C (X ) =

∫ T

0
Dt dX c

t +
∑

0≤t≤T

[
Φ(Et)− Φ(Et−)

]
= Φ(ET ) +

∫ T

0
Dtd

(
X c

t − E c
t )

= Φ(ET ) +

∫ T

0
Dth(Et) dt,

where the last step uses Et = Xt −
∫ t
0 h(Es)ds.

56 / 76



Summary
C (X ) = Φ(ET ) +

∫ T

0
Dth(Et) dt,

where X0− = 0, XT = X and

Et = Xt −
∫ t

0
h(Es)ds,

ψ(y) , sup{x ≥ 0|F (x) < y},
Dt , ψ(Et).

Set
g(y) , yψ

(
h−1(y)

)
so that

g
(
h(Et)

)
= h(Et))ψ(Et) = h(Et)Dt .

Then

C (X ) = Φ(ET ) +

∫ T

0
g
(
h(Et)

)
dt.
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Two-jump strategies

Theorem
If g is convex, then the optimal strategy does not make an
intermediate lump purchase, purchasing at a constant rate on
(0,T ).

Idea of the Proof: Recall that ET = XT −
∫ T
0 h(Et) dt, so∫ T

0 h(Et) dt = X − ET . We have

C (X ) = Φ(ET ) + T

∫ T

0
g
(
h(Et)

) dt

T

≥ Φ(ET ) + Tg

(∫ T

0
h(Et)

dt

T

)
(Jensen)

= Φ(ET ) + Tg

(
X − ET

T

)
,

and equality holds if h(Et) is constant on (0,T ). Minimize the last
expression over ET to determine the constant.
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Three-jump strategies
If g is not convex, replace g by its convex hull.

To achieve a constant purchasing rate on the graph of the convex
hull that is not on the graph of g , say at 6, purchase a while at
rate 4 and a while at rate 10.324. The switch from 4 to 10.324
creates an intermediate jump.
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Example (Block order book)

Let q and ρ be a positive constants. Set

F (x) = qx , h(x) = ρx .

Then

ψ(y) =
y

q
, Φ(y) =

y2

2q
, g(y) =

y2

ρq
.

Optimal strategy:

I Initial lump purchase of size X
2+ρT ,

I Intermediate purchases at rate ρX
2+ρT ,

I Terminal lump purchase of size X
2+ρT .
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Example (Modified block order book)

Figure: Density and cumulative distribution of the modified block order
book

ψ(y) =

{
y , 0 ≤ y ≤ a,
y + b − a, a < y <∞,

Φ(y) =

{
1
2y2, 0 ≤ y ≤ a,
1
2

(
(y + b − a)2 + a2 − b2

)
, a ≤ y <∞.
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Example (Modified block order book, continued)

Figure: Functions Φ and ψ for the modified block order book with
parameters a = 4 and b = 14
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Example (Modified block order book, continued)

g(y) =

{
y2, 0 ≤ y ≤ a,
y2 + (b − a)y , a < y <∞.

Figure: Function g for the modified block order book with parameters
a = 4 and b = 14. The convex hull ĝ is constructed by replacing a part
{g(y) , y ∈ (a, β)} by a straight line connecting g(a) and g(β). Here
β = 10.324
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Example (Discrete order book)

Figure: Measure and cumulative distribution function of the discrete
order book
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Example (Discrete order book, continued)

Figure: Functions Φ and ψ for the discrete order book
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Example (Discrete order book, continued)

Figure: Function g for the discrete order book. The convex hull ĝ
interpolates linearly between the points (k , (k − 1)k) and
(k + 1, k(k + 1)).
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