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OBJECTIVES

1. Develop a stochastic model that captures the most important features of the

evolution of asset spot prices.

2. Estimate efficiently and dynamically the parameters of the proposed model.

3. Extend modelling framework and estimation algorithm to multivariate data se-

ries. Consider application to asset allocation problem.
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Overview

• Financial model parameters change over time. Markov-switching

models are deemed to be able to incorporate dynamics of business

cycles and volatility regimes.

• Either the mean or variance level, or both may exhibit differences

amongst regimes.

• Financial time series data possess some memories (or dependencies),

i.e., current values are not necessarily independent from past observed

values.

• The usual Markov assumption is inadequate. Weak Markov model or

the so-called higher-order HMM offers more flexibility.
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What are hidden Markov models (HMMs)?

These refer to models with states and measurements in a discrete set

(state space) and discrete/continuous time.

HMM theory addresses two important problems:

Estimation – signal filtering, model parameter identification, state esti-

mation, signal smoothing and signal prediction.

Filtered estimates are estimates at time k of Xk based on processing

past and present measurements {y1, y2, . . . , yk}. Smoothed estimates are

estimates at time k of Xk based on processing past, present, and future

measurements {y1, . . . , yk, . . . , ym} with m > k. Forecast/predicted esti-

mates are estimates at time k + h of Xk based on processing past and

present measurements {y1, . . . , yk}.

Control - selection of actions which effect the signal-generating system

in such a way as to achieve certain control objectives.
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ILLUSTRATION: X
k
(k=1, 2, …) - a message 

sequence of 0’s and 1’s. Binary signal X (a Markov 
chain) is transmitted on a noisy communications 
channel. When signal is detected at receiver, we get 
some result Y

k
.

Consequence: X
k
is a Markov chain hidden in noise. 

F igure 1: M arkov Chain
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Figure 2: Noise
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Figure 3: Noisy Observations Y(k)
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Aim: Develop optimal estimation algorithms for 

HMMs to remove the random noise in the “best”

possible way.
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HMM in financial modelling

In Electrical Engineering: Charge Q(t), at time t at a fixed point in an

electrical circuit is of interest. However, due to error in measurement of

Q(s) (s < t), it cannot really be measured but rather just a noisy version

of it.

The objective is to filter the noise out of our observations.

In Finance: Do financial data, interest rates, asset price processes, ex-

change rates, commodity prices, etc contain information about latent

variables? If so, how might their behaviour in general and in particular

their dynamics be estimated?
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HMM and MARKOV SWITCHING MODELS (MSM)HMM and MARKOV SWITCHING MODELS (MSM)

RATIONALE FOR MSM:RATIONALE FOR MSM:

�� Market may switch between, say, a Market may switch between, say, a ““quietquiet”” (stable low volatility) (stable low volatility) 

and a and a ““turbulentturbulent”” (unstable high volatility).(unstable high volatility).

--incorporates incorporates stochastic volatilitystochastic volatility in a simple wayin a simple way

�� Provides more flexibility to financial models Provides more flexibility to financial models 

-produces a mixture of distributions allowing kurtosis 
or skewness different from a single Gaussian 

distribution. 

Density of mixtures of 2 Gaussian distributions with yt|st=1~N(0,1), yt|st
=2~N(4,2), and P(st = 1)=0.8

Density of mixtures of 2 Gaussian distributions with 

yt|st=1~N(0,1), yt|st =2~N(2,8), and P(st = 1)=0.6
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A process with A process with regimeregime--switching switching 

behaviour.behaviour.

Source: Rogers, J. (1992) The currency substitution hypothesis and 
relatively money demand in Mexico and Canada, Journal of Money, Credit 

and Banking 24(3), 300-318.

The monthly log ratio of peso value of dollar-denominated 

bank accounts in Mexico to the peso value of the peso-

denominated bank accounts, 1978-85
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Some previous works on (usual)
Markov-switching models

� Quandt (1958) and Goldfield & Quandt (1973)
Early works showing idea of regime-switching model

� Hamilton (1989)
Markov-switching methods in modelling nonstationary time series

� Hundreds of papers have been written highlighting regime-switching
models in recent years. Applications to option pricing, FX rate market,
commodity markets, bond pricing, etc. See Nieh, et al. (2010)

Dynamic optimal estimation of parameters
� Continual, recursively self-updating estimates for various types of mod-
els with HMM-driven parameters. These are advanced in
Elliott, et al (1995), Elliott & van der Hoek (2003), Elliott, et al. (2003),
Mamon, et al. (2007), Erlwein & Mamon (2009), Erlwein, et al. (2011),
amongst others

9



The weak hidden Markov model (WHMM)

I WHMM enhances HMM’s power and sophistication.

I Drawbacks: (i) Enlargement of the number of states (ii) Parame-

ter estimation becomes more involved.

I Some works on WHMM: Siu, et al. (2005), Ching, et al. (2007),

Siu, et al. (2009)

– research developing modelling frameworks for risk management,

computation of credit ratings and valuation of derivatives. They do not,

however, deal with estimation applied to data.
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This work
I proposes a model that captures regime-switching and memory of asset

price data (both univariate and multivariate);

I develops recursive estimates for model parameters via adaptive filters

of MC state and auxiliary processes; and

I includes an empirical implementation using Russell 3000 data focusing

on asset allocation problem.

REMARKS:
� The state of MC represents the state of the economy.

� The state of MC is hidden in the observation process (log-returns

of spot price process).
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MODEL FORMULATION & DESCRIPTION

Underlying processes are defined on (Ω,F , P ).

The usual HMM case

xk is a homogeneous MC with finite state in discrete time (k = 0, 1, 2, . . .).

State space of x is {e1, e2, . . . , en} ∈ <N ,

where ei = (0, . . . ,0,1,0, . . . ,0)> , > is the transpose of a vector.

Regular/usual MC satisfies

P (xk+1 = xk+1|x0 = x0,x1 = x1, . . . ,xk−1 = xk−1,xk = xk)

= P (xk+1 = xk+1|xk = xk).

It has semi-martingale representation

xk+1 = Πxk + vk+1 ,

where Π is a transition matrix and vk+1 is a martingale increment.
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Description of WHMM

The process x is a weak (hidden) MC of order n, n ≥ 1, if its value at

present time k depends on its value in the previous n times steps, i.e.,

P (xk+1 = xk+1|x0 = x0,x1 = x1, . . . ,xk−1 = xk−1,xk = xk)

= P (xk+1 = xk+1|xk−n+1 = xk−n+1, . . . ,xk−1 = xk−1,xk = xk).

Note: When n = 1, the regular MC is recovered.

Remark: To simplify the discussion, we focus on a weak MC of order 2

so that

P (xk+1 = xk+1|x0 = x0,x1 = x1, . . . ,xk−1 = xk−1,xk = xk)

= P (xk+1 = xk+1|xk−1 = xk−1,xk = xk).
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Write almv := P (xk+1 = el|xk = em,xk−1 = ev) ,

where v,m, l ∈ {1,2, . . . , N}. The associated N ×N2 transition matrix is

A =


a111 a112 . . . a11N . . . a1N1 . . . a1NN
a211 a212 . . . a21N . . . a2N1 . . . a2NN

. . . . . .
aN11 aN12 . . . aN1N . . . aNN1 . . . aNNN

 .

yk := log-return of asset prices.

x is not observed directly from financial market.

There exists a function h with values in a finite set s.t.

yk+1 = h(xk, zk+1) = f(xk) + σ(xk)zk+1, k ≥ 1 ,

where {zk}k≥1 is a sequence of IID standard normal RVs independent of

x.

14



Assume there are vectors f = (f1, f2, . . . , fN)> and

σ = (σ1, σ2, . . . , σN)>.

Mean of yk = f(xk) = 〈f ,xk〉
Volatility of yk= σ(xk) = 〈σ,xk〉 and σi > 0 for every 1 ≤ i ≤ N .

Fk := complete filtration generated by x

Yk := complete filtration generated by y and

Hk := Fk ∨ Yk complete filtration generated by x and y.

Main idea of constructing filtering equations for WHMM:

Embed the 2nd-order MC into a 1st-order MC and then apply ordinary

methods.

Define a mapping α by: α
(
er
es

)
= ers, for 1 ≤ r, s ≤ N , where ers is a

unit vector in RN2
with 1 in its ((r − 1)N + s)th position.
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Transforming WHMM into a regular HMM

The mapping α groups 2 time steps of x to form a new 1st-order MC.〈
α
(

xk
xk−1

)
, ers

〉
= 〈xk, er〉〈xk−1, es〉 ≡ identification of x at current and pre-

vious time steps with the canonical basis of RN2
.

Under P , the weak Markov chain x has semi-martingale representation

α
(

xk
xk−1

)
= Πα

(
xk−1
xk−2

)
+ vk ,

where {vk}k≥1 is a sequence of RN2
-martingale increments and Π is an

N2 ×N2 matrix that can be constructed from A.
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Converting WHMM into HMM: 2-state case

Consider a 2-state, 2nd-order MC.

I α
(

xk
xk−1

)
corresponds to a 4-state, 1st-order MC.

I 4 states: (1,1), (1,2), (2,1) and (2,2).

Mapping produces α(1,1) =state 1, α(1,2) =state 2,

α(2,1) =state 3 and α(2,2) =state 4.

I Π can be constructed from matrix A.

Π =


π11 π12 π13 π14
π21 π22 π23 π24
π31 π32 π33 π34
π41 π42 π43 π44

 =


a111 a112 0 0

0 0 a121 a122
a211 a212 0 0

0 0 a221 a222

 ,
where arst = P (xk = r,xk−1 = s |xk−1 = s ,xk−2 = t) .

Note: It is not possible, for instance, to make the transition

(1,1) ⇐ (2,1) [i.e., going to state 1 from state 3] in 2 steps; hence

π13 = 0. Thus, there are structural zeros for some entries of Π matrix.
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Change of Reference Probability Measure

By Kolmogorov’s Extension Theorem, ∃ P̄ , an ideal measure, under which
observed data are independent (calculations are easier to perform).

Under P̄ ,
(i) {yk}k≥1 := sequence of N(0,1) IID RVs and independent from xk,
and
(ii) {xk}k≥0:= weak MC s.t. semi-martingale representation holds &
Ē[vk|Fk] = 0.

Write φ(z) := pdf of a standard normal RV z. To construct P from
P̄ , define processes λl and Λk by

λl =
φ(σ(xl−1)−1(yl − f(xl−1)))

σ(xl−1)φ(yl)
, and Λk =

k∏
l=1

λl, k ≥ 1, Λ0 = 1 .

Set dP
dP̄

∣∣∣∣∣
Hk

= Λk. Calculations are performed under P̄ and use Bayes’ thm

for conditional expectations to relate P̄ and P .
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Implementation of HMM filtering technique
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pk:= conditional distribution of α
(

xk
xk−1

)
given Yk under P.

pk =
(
p11
k , . . . , p

ij
k , . . . , p

NN
k

)>
, 1 ≤ i, j ≤ N is a RN2

vector and

p
ij
k = P (xk = ei,xk−1 = ej|Yk) = E

[〈
α
(

xk
xk−1

)
, eij

〉∣∣∣Yk].
Write qk := Ē

[
Λkα

(
xk

xk−1

)∣∣∣Yk] .
Since

N∑
i,j=1

〈
α
(

xk
xk−1

)
, eij

〉
= 1,

〈qk, 1〉 = Ē
[
Λk
〈
α
(

xk
xk−1

)
, 1
〉∣∣∣Yk] = Ē[Λk|Yk] .

Note that by Bayes’ theorem pk = E
[
α
(

xk
xk−1

)∣∣∣Yk] =
Ē
[
Λkα

(
xk

xk−1

)∣∣∣Yk]
Ē[Λk|Yk]

.

Consequently, pk =
qk
〈qk, 1〉

.
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Recursive filter for the process qk: Let Bk be the N2 × N2 diagonal

matrix at time k formulated as

Bk =



b1k . . .
b1k . . .

bNk . . .
bNk


,

where

bik =
φ(σ−1

i (yk − fi))

σiφ(yk)
.

A recursive expression for qk is

qk = BkΠqk−1 .

Recursive filters for 4 other processes related to the MC are also derived.
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(i) Jrstk ≡ no. of jumps from state (et, es) to (es, er) up to time k,

Jrstk =
k∑
l=2

〈xl, er〉〈xl−1, es〉〈xl−2, et〉.

(ii) Orsk ≡, the occupation, or amt. of time spent up to time k, of the

weak Markov chain x in state (er, es),

Orsk =
k∑
l=2

〈xl−1, er〉〈xl−2, es〉.

(iii) Ork ≡ occupation, or amt. of time spent up to time k, of the weak

Markov chain x in state er,

Ork =
k∑
l=1

〈xl−1, er〉.

(iv) T rk(g) ≡ level sum for state er,

T rk(g) =
k∑
l=1

g(yl)〈xl−1, er〉.

and g is a function of form g(y) = y or g(y) = y2.
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For any Y-adapted process X, write X̂k := E[X|Yk] and γ(X)k := Ē[ΛkX|Yk]
for the filter of X. From Bayes’ theorem,

Ĵrstk =
Ē[ΛkJ

rst
k |Yk]

Ē[Λk|Yk]
=
Ē[ΛkJ

rst
k |Yk]

〈qk, 1〉
.

Rather than estimating quantities Jrstk , Orsk , Ork and T rk(g) directly, recur-
sive forms can be found for related product-quantities:

Jrstk α
(

xk
xk−1

)
, Orsk α

(
xk

xk−1

)
, Orkα

(
xk

xk−1

)
and T rk(g)α

(
xk

xk−1

)
.

Relating vector and scalar quantities of interest

〈
γ
(
Jrstα

(
xk

xk−1

))
k
, 1
〉

= Ē
[
ΛkJ

rst
k

〈
α
(

xk
xk−1

)
, 1
〉∣∣∣Yk] and so

〈
γ
(
Jrstα

(
xk

xk−1

))
k
, 1
〉

= Ē
[
ΛkJ

rst
k

∣∣∣Yk] = γ(Jrst)k .
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Recursive filters for vector processes

Let Vr,1 ≤ r ≤ N be an N2 × N2 matrix such that the ((i − 1)N + r)th

column of Vr is eir for i = 1 . . . N and zero elsewhere. If B is the diagonal

matrix defined in Eq.(), then

γ

(
Jrstα

(
xk+1

xk

))
k+1

= Bk+1Πγ
(
Jrstα

(
xk

xk−1

))
k

+ brk+1πrst〈qk, est〉ers,

γ

(
Orsα

(
xk+1

xk

))
k+1

= Bk+1Πγ
(
Orsα

(
xk

xk−1

))
k

+ Bk+1Πers〈qk, ers〉,

γ

(
Orα

(
xk+1

xk

))
k+1

= Bk+1Πγ
(
Orα

(
xk

xk−1

))
k

+ VrBk+1Πqk,

γ

(
T r(g)α

(
xk+1

xk

))
k+1

= Bk+1Πγ
(
T r(g)α

(
xk

xk−1

))
k

+ g(yk+1)VrBk+1Πqk.
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We employ the Expectation-Maximisation (EM) algorithm (Dempster,

Laird & Rubin, 1977) to find the parameters.

If {ârst, f̂r, σ̂r} determines the model then EM estimates are

ârst =
Ĵrstk

Ôstk
=
γ(Jrst)k
γ(Ost)k

, ∀ pairs (r, s), r 6= s ,

f̂r =
T̂ rk
Ôrk

=
γ(T r(y))k
γ(Or)k

,

σ̂2
r =

T̂ rk(y2)− 2f̂rT̂ rk(y) + f̂2
r Ô

r
k

Ôrk
, and σ̂r =

√
σ̂2
r .
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Implementation procedure

I Initialise fr and σr, r = 1, . . . , N . Initial value for non-zero entries in Π

is 1/N .

I Data is processed in batches of 10 observation points constituting

one complete algorithm step or pass. At the end of each step, new esti-

mates for f , σ and A are computed. We reconstruct A to get Π.

I New estimates are used iteratively to give updated values of the param-

eters. Frequency of parameter updating depends on nature of observa-

tion data. A moving window of 10 weekly data points in this multi-pass

procedure appears sufficient for our asset allocation application.
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WHMM: The Multivariate Case

Let yk = (y1
k , y

2
k , . . . , y

d
k) be a d−dim process. Each y

g
k, 1 ≤ g ≤ d has

dynamics

y
g
k+1 = fg(xk) + σg(xk)zgk+1.

{zgk} is a sequence of N(0,1) IID RVs and independent from x. Functions
fg and σg are determined by
fg = (fg1, f

g
2, . . . , f

g
N)> and

σg = (σg1, σ
g
2, . . . , σ

g
N)>, respectively.

Specifically, fg(xk) = 〈fg,xk〉 and σ
g
k(xk) = 〈σg,xk〉 .

The relevant Girsanov density in changing from P to P̄ is

Λk =
d∏

g=1

k∏
l=1

λ
g
l , k ≥ 1, Λ0 = 1,

whereλgl =
φ(σg(xl−1)−1(ygl − f

g(xl−1)))

σg(xl−1)φ(ygl )
.
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The EM estimates in the multivariate case

ârst =
Ĵrstk

Ôstk
=
γ(Jrst)k
γ(Ost)k

, ∀ pairs (r, s), r 6= s ,

f̂gr =
T̂ rk
Ôrk

=
γ(T r(yg))k
γ(Or)k

,

σ̂gr =

√√√√T̂ r((yg)2)k − 2f̂gr T̂ r((yg))k + f̂2
r Ô

r
k

Ôrk
.

Standard errors for parameter estimates can be obtained from Fisher

Information matrix I (negative expectation of the second derivative of

log-likelihood functions for each parameter). MLEs are asymptotically

normally distributed with variance I−1.
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Forecasting indices

I We apply our filtering results to weekly datasets of stock indices: Rus-

sell 3000 growth and value indices [June 1995 to December 2010 (783

data points each dataset)]. Russell 3000 represents 98% of the investable

US equity market.

I h-step ahead forecast of the price/index level:

E[Sk+h|Yk] = Sk

N∑
i,j=1

〈Πh−1pk, eij〉 exp
(
fi +

σ2
i

2

)
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Goodness of fit: Error measures for one-step ahead forecasts

under 1-, 2- and 3-state WHMM set-ups

1-state WHMM 2-state WHMM 3-state WHMM
APE value 0.020 0.016 0.028
MAE value 38.610 36.958 50.556
RMSE value 54.394 51.480 66.867
APE growth 0.023 0.018 0.030
MAE growth 42.889 39.209 54.477
RMSE growth 64.280 61.486 76.577

Error analysis (along with the Akaike information criterion, AIC =

−2 log(θ) + 2s, log(θ)=likelihood function and s =no. of parameters)

confirms support for the two-state WHMM.
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A switching investment strategy (2-state WHMM)

I An investor chooses between two investments to diversify his risk.

Growth and value stocks tend to perform well at different times of eco-

nomic cycle. Switching between two classes at appropriate times may

add value. This strategy utilises forecasted risk-adjusted returns of the

indices as signals to switch investments between Russell 3000 growth and

Russell 3000 value indices.

I Dataset is divided into 15 subintervals (containing roughly one-year

data). Assume a starting investment of $100. Full amount is invested in

the index with higher forecasted risk-adjusted return at the beginning of

each interval. Transaction cost (fixed percentage of total investment) is

subtracted from total investment.
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I Overall performance of switching strategy is compared with pure in-

vestment strategy on basis of log-return of terminal wealth. We consider

differences of log-returns:

XRG
i = log

SWi

100
− log

RGi
100

and XRV
i = log

SWi

100
− log

RVi
100

.

Performance comparison between WHMM- and HMM-based

switching strategies with varying transaction costs (1bp=0.01%)

Transaction Cost 5 bps 20 bps 50 bps 70 bps
WHMM HMM WHMM HMM WHMM HMM WHMM HMM

Mean (XRG) % 3.911 -0.690 3.516 -0.928 2.726 -1.406 2.1980 -1.726
Std (XRG) % 2.410 6.714 2.470 6.588 2.709 6.360 2.940 6.226
Mean (XRV ) % 11.239 -9.529 10.845 -9.768 10.055 -10.246 9.527 -10.565
Std (XRV ) % 18.470 15.855 18.286 16.005 17.929 16.312 17.700 16.523

I On average, log-returns from switching strategy are higher than those

from pure index investment. However, high SDs indicate high risk in

switching strategy.
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A mixed investment strategy (2-state WHMM)

I Investor determines optimal weights of each asset to allocate between

growth and value stocks based on estimated parameters and state of

WHMM.

I Mean-variance problem: This involves solving the optimal w = (wg, wv)

which maximises the function

MV (w) = νE[wgy
RG
k+1 + wvy

RV
k+1|Yk]−Var[wgy

RG
k+1 + wvy

RV
k+1|Yk],

and ν is a nonnegative risk aversion factor.

I The optimal weight wg is given by

wg =


v(〈fRG,x̂k〉−〈fRV ,x̂k〉)+2〈σRV ,x̂k〉2

2(〈σRG,x̂k〉2+〈σRV ,x̂k〉2)
when −2〈σRV , x̂k〉2 < v(〈fRG, x̂k〉 − 〈fRV , x̂k〉)
< 2〈σRG, x̂k〉2

1 when v(〈fRG, x̂k〉 − 〈fRV , x̂k〉) > 2〈σRG, x̂k〉2
0 when v(〈fRG, x̂k〉 − 〈fRV , x̂k〉) < −2〈σRV , x̂k〉2

,

and wv = 1 − wg. Proof is similar to the HMM case given in Erlwein, et

al. (2011).
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Evolution of optimal weights for Russell 3000 growth index in the

WHMM-based mixed strategy with varying ν’s
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Performance comparison between WHMM- and HMM-based

mixed strategies with varying transaction costs and v = 0.08
Transaction Cost 5 bps 20 bps 50 bps 70 bps

WHMM HMM WHMM HMM WHMM HMM WHMM HMM
Mean (XRG) % 4.561 2.929 3.575 1.869 1.599 -0.256 0.279 -1.677
Std (XRG) % 10.664 11.887 10.309 11.540 9.709 10.965 9.404 10.680
Mean (XRV ) % -2.768 -5.911 -3.754 -6.971 -5.729 -9.096 -7.050 -10.516
Std (XRV ) % 8.510 7.608 8.985 8.191 10.017 9.430 10.754 10.295

I SDs of return differences, std(XRG) and std(XRV ), are lower than

those from switching strategy.

I Mean(XRG) and Mean(XRV ) decrease as transaction cost increases.

I WHMM-based mixed strategy produces higher values in both mean

and SD compared to HMM-based mixed strategy. WHMM setting cer-

tainly carries more opportunities to explore tradeoff between expected

return and risk, which means higher risk may lead to higher return.

35



Evolution of terminal wealth under different strategies
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EVALUATING PORTFOLIO PERFORMANCE

I We evaluate portfolio performance via a benchmark. Entire Russell
3000 index is a natural benchmark. Comparison of 4 portfolios with the
benchmark is made using 3 measures on returns.

I Sharpe ratio (SR) - characterises how well asset return compensates
investors for risk taken. The higher the SR the higher the return with
same level of risk.

SR =
E[Rportfolio −Rriskfree]√
Var(Rportfolio −Rriskfree)

,

I Jensen’s alpha (αJ) - measures abnormal return of a portfolio over
expected return.

αJ = Rportfolio − [Rriskfree − βportfolio(Rbenchmark −Rriskfree)].

I Treynor and Black’s appraisal ratio (AR) - examines returns relative
to a risky benchmark.

AR =
E[Rportfolio −Rbenchmark]√
Var(Rportfolio −Rbenchmark)

.
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SUMMARY OF RESULTS
Switching Mixed Pure Russell Pure Russell Pure Russell

Period strategy strategy 3000 value 3000 growth 3000 index
Mean 0.0741 0.0495 0.0435 0.0521 0.0499
Std 0.1976 0.1890 0.1577 0.2168 0.1906
Mean/Std 0.3751 0.2622 0.2755 0.2405 0.2618
Sharpe ratio statistics for five investment strategies using 15 intervals. Switching &

mixed strategies outperform benchmark in 11 and 6 intervals, respectively out of 15.

Switching Mixed Pure Russell Pure Russell
Period Strategy Strategy 3000 Value 3000 Growth

(×10−4) (×10−4) (×10−4) (×10−4)
Mean 5.8977 -0.0722 0.5987 -1.4289
Std 7.3348 1.0969 9.6750 10.3850
Mean/Std 0.8041 -0.0658 0.0619 -0.1376
Jensen’s alpha statistics for four investment strategies using 15 intervals. 11 and 5

positive α’s out of 15 for switching and mixed strategies, respectively.

Switching Mixed Pure Russell Pure Russell
Period Strategy Strategy 3000 Value 3000 Growth
Mean 0.1023 -0.0445 -0.0235 0.0207
Std 0.1633 0.1869 0.1926 0.1953
Mean/Std 0.6263 -0.2381 -0.1220 0.1060
AR statistics for four investment strategies using 15 intervals. Switching strategy

outperforms mixed strategy in 11 intervals.
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p-values for a one-tailed significance test on the performance results

based on Jensen’s α and AR ratios
Switching vs Switching vs Switching vs Mixed vs Mixed vs

Mixed Pure growth Pure value Pure growth Pure value
Jensen’s alpha 0.0035 0.0515 0.0174 0.3967 0.3113
Appraisal ratio 0.0149 0.0321 0.1127 0.3821 0.1791

I We note that the switching strategy has the best performance for the

period considered based on the 3 performance metrics.

I Difference in means under the performance measures between switch-

ing and mixed strategies is highly significantly. The same can be said

for the comparison between switching and pure growth strategies. The

t−test assumption was validated by the Jarque-Bera test for normality.

The SR ratio data was left out in the above hypothesis testing exercise

since the t-test assumption was not met.
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CONCLUDING REMARKS

I A weak MC modulated model for asset prices is proposed. A WHMM

is transformed into a regular HMM. General recursive filters were devel-

oped. The EM algorithm in conjunction with the change of probability

measure was applied to re-estimate model parameters.

I The h-step ahead predictions were analysed and results compared with

regular HMM. Empirical results suggest that, by involving memories, there

is a gain in using a 2-state WHMM.

I We explored applications to asset allocation problem. Future direc-

tions include other applications and addressing WHMM statistical infer-

ence problems of determining (i) optimal no. of states and (ii) optimal

order as implied by the dataset.

40



Let Π be an N2×N2 matrix, the transition probability matrix of new MC α
(

xk

xk−1

)
. It can

be reconstructed from A:

Π =



a111 . . . a11N 0 . . . 0 . . . 0 . . . 0
0 . . . 0 a121 . . . a12N . . . 0 . . . 0

. . . . . . . . . . . .
0 . . . 0 0 . . . 0 . . . a1N1 . . . a1NN

. . . . . . . . . . . .
aN11 . . . aN1N 0 . . . 0 . . . 0 . . . 0

0 . . . 0 aN21 . . . aN2N . . . 0 . . . 0
. . . . . . . . . . . .

0 . . . 0 0 . . . 0 . . . aNN1 . . . aNNN


,

where

πij =

{
almv if i = (l − 1)N +m, j = (m− 1)N + v
0 otherwise

Each nonzero element in Π represents the probability:

πij = almv = P (xk = el|xk−1 = em, xk−2 = ev),

and each zero represents an impossible transition.

Derivation of filters can be found in the paper downloadable at:

doi:10.1016/j.econmod.2010.10.002
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Recalling the EM Algorithm

The vector of parameters θ̂ = {(π̂ji), σ̂i, f̂i, 1 ≤ i, j ≤ N} determines the proposed

model.

Given: A family of probability measures {P θ, θ ∈ Θ} on some measurable space (Ω,G)

and Y ⊂ G.

Aim: Calculate the parameter θ.

1. Set m = 0 and choose θ̂0.

2. (E-Step) Set θ∗ = θ̂m and determine L(θ, θ∗) = Eθ∗
[

log dP θ

dP θ∗

∣∣∣Y] .
3. (M-Step) Find θ̂m+1 ∈ argθΘ maxL(θ, θ∗).

4. Replace m by m + 1 and repeat procedures (E and M steps) until some stopping

criterion is satisfied (e.g., |θ̂m+1 − θm| < ε for some ε > 0).

{θ̂m} produces non-decreasing likelihood values that converge to a local maximum of

the likelihood function; see, eg., Wu (1983). EM algorithm involves changing Pθ to Pθ̂
via likelihood dP

θ̂
/dPθ. Under Pθ, x is a weak MC with transition matrix A. Under Pθ̂, x

remains a weak MC with transition Â = (ârst).

Pθ̂(xk+1 = er|xk = es,xk−1 = et) = ârst; ârst ≥ 0; and
∑N

r=1 ârst = 1.
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Scatter plots of actual data and one-step ahead forecasts under 2-state WHMM for

Russell 3000 growth index level (left) and Russell 3000 value index level (right)
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