Unified Credit-Equity Modeling: From Single-Name to Multi-Name

Vadim Linetsky Northwestern University

Joint work with: Rafael Mendoza-Arriaga UT Austin

Supported by NSF DMS-0802720 and CMMI-1030486

イロト 不得 トイヨト イヨト

Outline

- Single-name unified credit-equity modeling: literature review
- From single name to multi-name: a class of multi-name defaultable stock models with stock price-dependent jumps, stock return correlations, and default correlations

イロン イロン イヨン イヨン 三日

From Structural to Reduced-Form

- **Structural models:** all corporate securities (debt, equity, CB) and derivatives (stock options, credit derivatives) are contingent claims on the value of the firm.
- Drawback: not directly observable.
- **Reduced-form credit models:** take **default intensity** as the fundamental variable.
- Equity derivatives models: take positive stock price as the fundamental variable.
- Disconnect between equity and credit models.

・ロト ・四ト ・ヨト ・ヨト

Single-Name Credit-Equity Modeling – CB Origins

- Disconnect is particularly acute for convertible bonds (CB).
- Reduced-form **unified credit-equity models** originated in CB literature (Davis-Lischka (2002), etc.)
- **Defaultable stock** is the fundamental state variable. Stock price evolves as diffusion. A **doubly-stochastic Poisson process with intensity a decreasing function of the stock price** is running in the background. When it jumps, the **firm defaults on its debt, and its stock price drops to zero (jump-to-default).**
- The defaultable stock framework was originally primarily confined to the CB valuation literature.

イロン イヨン イヨン イヨン 三日

Single-Name Unified Credit-Equity Modeling

- Linetsky (2006) "Pricing Equity Derivatives subject to Bankruptcy", Math Fin:
 - 1) An **OTM put** has an embedded **credit derivative** (pays strike if the stock drops to zero)
 - 2) OTM puts can be used to gauge market implied default probability.
 - 3) Positive probability of jump to default substantially contributes to the implied volatility skew.
 - 4) Solved a jump-to-default extended Black-Scholes model with default intensity a negative power of the stock price.

イロン イヨン イヨン イヨン 三日

Example

• GM price on 02.22.2006 was \$21.19.

• Historical Vol. of GM stock price over the previous 12 months $\approx 46\%$

3

イロト イヨト イヨト イヨト

Implied Vol. Skew for GM Jan 2007 Puts on 2.22.2006

 Total outstanding notional for Jan 07 and Jan 08 Puts with strikes \$2.50-\$10 was 130 million shares.

3

<ロ> (日) (日) (日) (日) (日)

Single-Name Credit-Equity Modeling with Diffusions

- Carr & Linetsky (2006) Fin & Stoch solved jump-to-default extended CEV (JDCEV) with the CEV volatility and the default intensity an affine function of the CEV variance.
- Carr & Madan (2010) *SIAM J of Fin Math* estimated **jump-to-default extended local volatility diffusions** from CDS and stock options data
- Carr & Wu (2010) *J of Fin Econometrics* introduced and estimated jump-to-default extended Heston SV model
- Bayraktar & Yang (2011) *Math Fin* introduced and estimated more general jump-to-default extended SV model

イロン イヨン イヨン イヨン 三日

Single-Name Credit-Equity Modeling with Jumps

- Mendoza-Arriaga, Carr & Linetsky (2010) *Math Fin* introduced **pure jump** and **jump-diffusion models with jump-to-default**
- Levy measure with the leverage effect (more frequent arrival of larger jumps as the stock price falls)
- Constructed by time changes of jump-to-default extended diffusions (JDCEV) by Levy subordinators

イロト 不得 トイヨト イヨト

From Single Name to Multi-Name

- Mendoza-Arriaga & Linetsky "Constructing Markov Processes with Dependent Jumps by Multivariate Subordination: Applications to Multi-name Credit-Equity modeling"
- A class of multi-name defaultable stock models with stock price-dependent jumps, stock return correlations, and default correlations

イロト 不得 トイヨト イヨト

Model Architecture

• Joint risk-neutral dynamics of stock prices S_t^i of *n* firms under the EMM \mathbb{Q} :

$$S_t^i = \mathbf{1}_{\{t < \tau_i\}} e^{\rho_i t} X_{\mathcal{T}_t^i}^i \equiv \begin{cases} e^{\rho_i t} X_{\mathcal{T}_t^i}^i, & t < \tau_i \\ 0, & t \ge \tau_i \end{cases}$$

- Ingredients:
 - X_t^i : *n* independent 1D diffusions, such as JDCEV diffusions

 - τ_i: default times of firm i
 - ρ_i : parameters to ensure that discounted stock prices are martingales

イロン イロン イヨン イヨン 三日

Ingredients: n 1D Diffusions X^i

• Xⁱ are n 1D diffusions:

$$dX_t^i = [\mu_i + k_i(X_t^i)]X_t^i dt + \sigma_i(X_t^i)X_t^i dB_t^i.$$

• Local volatilities $\sigma_i(x)$. For JDCEV:

$$\sigma_i(x)=a_ix^{\beta_i},$$

where $a_i > 0$ are the volatility scale parameters and $\beta_i < 0$ are the volatility elasticity parameters.

• Killing rates $k_i(x)$ enter the drift to compensate for jump-to-default. For JDCEV:

$$k_i(x) = b_i + c_i \sigma_i^2(x) = b_i + c_i a_i^2 x^{2\beta_i},$$

 $b_i \geq 0, \ c_i \geq 0.$

- Constant parameters μ_i .
- Initial stock prices $X_0^i = S_0^i > 0$.

Ingredients: n-dimensional Subordinator

- An *n*-dimensional subordinator *T_t* is a Lévy process in ℝⁿ₊ increasing in each of its coordinates. Let π_t(ds) = ℚ(*T_t* ∈ ds) denote its transition function.
- The Laplace transform:

$$\mathbb{E}[e^{-\langle \mathbf{u},\mathcal{T}_t
angle}] = \int_{\mathbb{R}^n_+} e^{-\langle \mathbf{u},\mathbf{s}
angle} \pi_t(d\mathbf{s}) = e^{-t\phi(\mathbf{u})}.$$

• The Laplace exponent:

$$\phi(\mathbf{u}) = \langle \gamma, \mathbf{u}
angle + \int_{\mathbb{R}^n_+} (1 - e^{-\langle \mathbf{u}, \mathbf{s}
angle})
u(d\mathbf{s}),$$

 $\gamma \in \mathbb{R}^n_+$ is the drift vector with non-negative coordinates and the Lévy measure ν on $\mathbb{R}^n_+ \setminus \{0\}$ satisfies

$$\int_{\mathbb{R}^n_+\setminus\{0\}} (\|\mathbf{s}\|\wedge 1)
u(d\mathbf{s}) < \infty.$$

<ロ> <四> <四> <四> <三</p>

Example: Linear Factor Model

• Linear transformations of *m* independent 1D subordinators S_t^a :

$$\mathcal{T}_t^i = \sum_{a=1}^m A_{i,a} \mathcal{S}_t^a, \quad i = 1, ..., n.$$

Each S^a contributes to each T^i with the factor loading $A_{i,a} \ge 0$. • Important three-parameter family of 1D Lévy measures:

$$\nu(ds) = Cs^{-\alpha - 1}e^{-\eta s}ds$$

with C > 0, $\eta \ge 0$, and $\alpha < 1$.

- α ∈ (0, 1): tempered stable, α = 1/2: inverse Gaussian, α = 0: Gamma, α < 0: compound Poisson with gamma distributed jump sizes (exponential when α = −1).
- The Laplace exponent: $\phi(u) = -C\Gamma(-\alpha)((u+\eta)^{\alpha} \eta^{\alpha}), \ \alpha \neq 0, \ \phi(u) = C\ln(1+u/\eta), \ \alpha = 0.$

Ingredients: Default Times τ_i

Define

$$\zeta_i := \inf\{t \ge 0 : \int_0^t k_i(X_u^i) du \ge E_i\},$$

where E_i are *n* independent exponential r.v. with unit mean and independent of X^i and \mathcal{T}^i .

• The time of default of the *i*th firm is defined by applying the time change \mathcal{T}^i :

$$\tau_i := \inf\{t \ge 0 : \mathcal{T}_t^i \ge \zeta_i\}.$$

At the time of default of the *i*th firm, its stock price jumps to zero and stays at zero for all subsequent times.

イロン イロン イヨン イヨン

Ingredients: Martingale Conditions

- Each single-name stock price Sⁱ with the dividends reinvested and discounted at the risk-free interest rate is a non-negative martingale under Q if and only if:
- (i) μ_i in the drift of X^i satisfies

$$\int_{[1,\infty)} e^{\mu_i s} \nu_i(ds) < \infty,$$

where u_i is the Lévy measure of the one-dimensional subordinator \mathcal{T}^i

• (ii) the constant ρ_i is:

$$\rho_i=\mathbf{r}-\mathbf{q}_i+\phi_i(-\mu_i),$$

where $\phi_i(u)$ is the Laplace exponent of \mathcal{T}^i , $\phi_i(u) = \phi(0, ..., 0, u, 0, ..., 0)$ (*u* is in the *i*th place), $r \ge 0$ is the risk-free interest rate, and $q_i \ge 0$ is the dividend yield of the *i*th stock.

• Then each

$$e^{-(r-q_i)t}S_t^i = e^{\phi_i(-\mu_i)t}\mathbf{1}_{\{t<\tau_i\}}X_{\mathcal{T}_t^i}^i$$

is a non-negative martingale under \mathbb{Q} .

イロン イロン イヨン イヨン 三日

Solution Strategy

• We are interested in pricing claims with payoffs on *n* firms:

$$e^{-rt}\mathbb{E}[f(S_t^1,...,S_t^n)].$$

- This includes both multi-name equity derivatives (e.g., basket options) and credit (e.g., *N*th-to-default).
- Each of the *n* firms may default by time *t*. For each stock either $S_t^i > 0$ or $S_t^i = 0$.
- By combinatorics (inclusion-exclusion principle type calculation), the expectation can be decomposed into expectations of the form

$$\mathbb{E}[\mathbf{1}_{\{\tau_{\Xi}>t\}}f_{\Xi}(S_{t}^{i_{1}},...,S_{t}^{i_{k}})] = \mathbb{E}[\mathbf{1}_{\{\tau_{\Xi}>t\}}f_{\Xi}(e^{\rho_{i_{1}}t}X^{i_{1}}(\mathcal{T}_{t}^{i_{1}}),...,e^{\rho_{i_{k}}t}X^{i_{k}}(\mathcal{T}_{t}^{i_{k}})],$$

where $\Xi = \{i_1, ..., i_k\}$ is a subset of k firms, $1 \le k \le n$, τ_{Ξ} is the time of the first default in the subset, and f_{Ξ} is constructed from the payoff f.

Semigroup Structure

- The process (X^{i₁}(T^{i₁}_t), ..., X^{i_k}(T^{i_k}_t)) killed at the first time of default τ_Ξ is a k-dimensional, m-symmetric Markov process on ℝ^k₊ with lifetime τ_Ξ and the symmetry measure m given by the product measure of k speed measures of the underlying diffusions Xⁱ.
- Its transition semigroup, infinitesimal generator, and their spectral representation in $L^2(\mathbb{R}^k_+, m)$ can be fully characterized.
- Rich mathematical structure involves:
- 1) a multivariate extension of Phillip's Theorem on subordination of operator semigroups to multivariate subordination of multi-parameter semigroups in Banach spaces (Baeumer et al. (2008)),
- 2) a multivariate extension of the result by Okura (2002) on subordinate symmetric Markov processes and Dirichlet forms,
- 3) the Spectral Theorem for commuting families of self-adjoint operators in Hilbert spaces.

・ロト ・屈 ト ・ 三 ト ・ 三 ・ つくの

Properties of the Subordinate Process

- If the drift vector of the subordinator is zero, the process is a pure jump process taking values in R^k₊ with dependent jumps and killing.
- If the drift of the subordinator is not zero, the process is a jump-diffusion process on R^k₊ with independent diffusions, dependent jumps, and killing.

・ロト ・四ト ・ヨト ・ヨト

Explicit Solution for JDCEV

• JDCEV generator acting on $f \in C_c^2(\mathbb{R}_+)$:

$$\mathcal{G}f(x) = \frac{1}{2}a^2 x^{2+2\beta} f''(x) + (\mu + b + ca^2 x^{2\beta})xf'(x) - (b + ca^2 x^{2\beta})f(x)$$

$$=\frac{1}{s(x)}\left(\frac{f'(x)}{m(x)}\right)'-(b+ca^2x^{2\beta})f(x)$$

with scale and speed densities s(x) and m(x) (for mu + b < 0)

$$m(x) = \frac{2}{a^2} x^{2c-2-2\beta} e^{-Ax^{-2\beta}}, \quad s(x) = x^{-2c} e^{Ax^{-2\beta}}, \quad A = |\mu + b|/(a^2|\beta|),$$

 Self-adjoint extension in L²(ℝ₊, m) with Dirichlet boundary condition at zero has a purely discrete spectrum with eigenvalues and eigenfunctions (L^ν_n generalized Laguerre polynomials):

$$\mathcal{G}\varphi_n = -\lambda_n \varphi_n, \quad n = 1, 2, ...,$$

$$\lambda_n = 2|\beta(\mu+b)|(n-1) + |\mu|, \ \varphi_n(x) = A^{\frac{\nu}{2}} \sqrt{\frac{(n-1)!|\mu+b|}{\Gamma(\nu+n)}} \times L^{\nu}_{n-1}(Ax^{-2\beta}).$$

イロト イポト イヨト イヨト 二日

Multi-variate Subordination

• The eigenfunction expansion for the JDCEV semigroup in $L^2(\mathbb{R}_+, m)$:

$$\mathcal{P}_t f(x) = \sum_{n=1}^{\infty} e^{-\lambda_n t} c_n \varphi_n(x), \quad c_n = (f, \varphi_n)_m.$$

• Now let X^i be k JDCEV diffusions. The subordinate semigroup \mathcal{P}_t^{ϕ} in $L^2(\mathbb{R}^k_+, m)$, where $m(d\mathbf{x}) = m_1(dx_1)...m_k(dx_k)$ is the product measure, has the eigenfunction expansion:

$$\mathcal{P}_t^{\phi} f(\mathbf{x}) = \sum_{\mathbf{n} \in \mathbb{N}^k} e^{-\phi(\lambda_{n_1}^1, \dots, \lambda_{n_k}^k)t} c_{\mathbf{n}}^f \varphi_{\mathbf{n}}(\mathbf{x}), \quad c_{\mathbf{n}}^f = (f, \varphi_{\mathbf{n}})_m,$$

where $\mathbf{x} = (x_1, ..., x_k) \in \mathbb{R}^k_+$, $\mathbf{n} = (n_1, ..., n_k)$, $\varphi_{\mathbf{n}}(\mathbf{x}) = \varphi_{n_1}^1(x_1)...\varphi_{n_k}^k(x_k)$, λ_n^i and $\varphi_n^i(x)$ are the eigenvalues and eigenfunctions of the *i*th JDCEV, and $\phi(u_1, ..., u_k)$ is the Laplace exponent of the *k*-dimensional subordinator.

• Expansion coefficients can be calculated in closed form for equity basket options, joint survival probabilities, and Nth-to-default swaps.

Simulation

- When the number of firms is large, the curse of dimensionality makes computation of the formulas infeasible, but the modeling architecture is *highly* amenable to Monte Carlo simulation.
- To simulate the distribution of the time changed process at time t, simulate the subordinator $(\mathcal{T}_t^1, ..., \mathcal{T}_t^n)$, and sample $(X^1(\mathcal{T}_t^1), ..., X^n(\mathcal{T}_t^n))$.

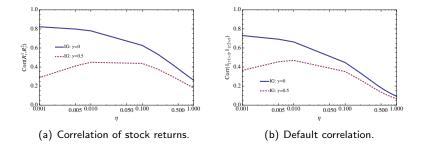


Figure: One year correlation of stock returns, $\operatorname{Corr}(R_t^1, R_t^2)$, and default correlation, $\operatorname{Corr}(\mathbf{1}_{\{\tau_1>t\}}, \mathbf{1}_{\{\tau_2>t\}})$, levels induced by different specifications of a single common subordinator \mathcal{S}_t .

The decay parameter η varies according to $\eta \in \{0.001, 0.005, 0.01, 0.1, 0.2, 0.4, 0.5, 0.6, 0.8, 1\}$.

The scale factor C is chosen such that for each specification, $\mathbb{E}[S_1] = 1.5$.

э

・ロト ・個ト ・ヨト ・ヨト

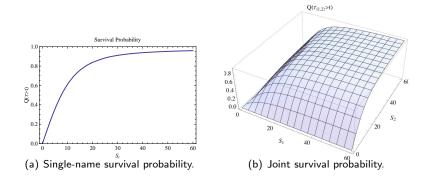


Figure: Single-name survival probability $\mathbb{Q}(\tau > t)$, joint survival probability $\mathbb{Q}(\tau_{\{1,2\}} > t)$; for t = 1 year as functions of stock prices S_0^1 and S_0^2 .

э

・ロト ・個ト ・ヨト ・ヨト

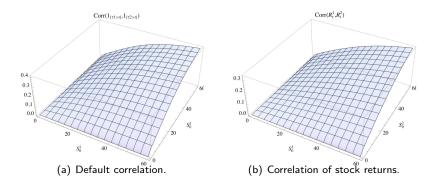


Figure: Default correlation $\operatorname{Corr}(\mathbf{1}_{\{\tau_1 > t\}}, \mathbf{1}_{\{\tau_2 > t\}})$, and correlation of stock returns $\operatorname{Corr}(R_t^1, R_t^2)$; for t = 1 year as functions of stock prices S_0^1 and S_0^2 .

・ロト ・四ト ・ヨト ・ヨト 三臣

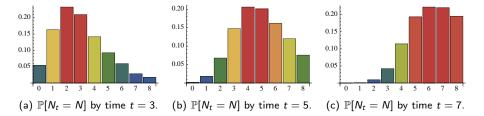


Figure: Probability of the number of defaults by time t = 3, 5, 7.

2

イロン イ団 とくほと くほとう

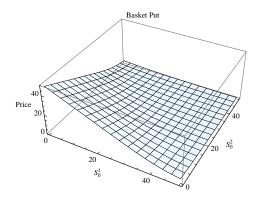


Figure: Two-name basket put prices for the range of initial stock prices S_0^1 and S_0^2 from zero to \$50 for one year time to maturity and K = 50.

э

イロン イ団 とくほと くほとう

n	$BPut(S_0^1,, S_0^d)$	Std. Error
2	6.402	0.0368
10	4.341	0.0236
20	3.574	0.0206

Table: This is the result of MC simulation for a basket put option prices using 10^5 samples. When n = 2, the price corresponds to the basket put option with $S_0^1 = S_0^2 = 25$. The exact value for this option obtained by eigenfunction expansions is BPut(25, 25) = 6.4346

<ロ> <回> <回> <回> < 回> < 回> < 回> < 回</p>

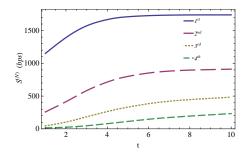


Figure: Fair Nth-to-default swap rate $S^{(N)}$ (bps) as a function of maturity time t (yrs).

・ロト ・四ト ・ヨト ・ヨト 三臣

Conclusion

- Moving from single-name to multi-name unified credit-equity modeling, one can study
 - Default correlation vs. equity correlation
 - Consistent treatment of multi-name equity derivatives and multi-name credit derivatives.

・ロト ・四ト ・ヨト ・ヨト 三国