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1 Which Crisis ?

• 2007-2009 Subprime (Credit) Crisis?

• 2010-20xy Government Bond – Euro Crisis?

• Other?
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• “In banking, a result is right if and only if it is profitable.”

- CHRIS ROGERS, SPA conference, Japan, September 6, 2010

• ABACUS 2700-AC1: a Goldman-Sachs’ synthetic CDO:

“What if we created a thing, which has no purpose, which is absolutely conceptual, and
highly theoretical and which nobody knows how to price?”

- FABRICE TOURRE, The Financial Times, January 29, 2007
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2 Of Finance and Alchemy

• “The world of finance is the only one in which people still believe in the possibility of
turning iron into gold”. - P.E., 1999

• The financial alchemist’s SORCEROR’S STONE:
- asset-backed securities, like synthetic CDOs,
- for example ABACUS 2700-AC1.

• “ So by financial alchemy, assets can be transmuted from garbage to gold - and
therefore, requires less capital."

- BRAITHWAITE, The Financial Times, October 25, 2011
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STEFAN BANACH ALFRED TARSKI

Theorem (Banach and Tarski [1924])
Given any two bounded sets A and B in the three-dimensional space R3, each having non-
empty interior, one can partition A into finitely many (at least five) disjoint parts and rearrange
them by rigid motions (translation, rotation) to form B.
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Version 1

Given a three-dimensional solid ball (of gold, say), then it is possible to cut this ball in finitely
many pieces and reassemble these to form two solid balls, each identical in size to the first one.

Version 2

Any solid, a pea, say, can be partitioned into a finite number of pieces, then reassembled to
form another solid of any specified shape, say the sun. For this reason, the Banach-Tarski
Theorem is often referred to as “The Pea and the Sun Paradox”.

Correct Interpretation

AXIOM OF CHOICE and NON-MEASURABILITY
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3 To diversify . . . or not?

AN EXAMPLE

• OPRISK: The risk of losses resulting from inadequate or failed internal processes,
people and systems, or external events. Included is legal risk, excluded are strate-
gic/business and reputational risk.

• Under the New Basel Capital Accord (Basel II/III) banks are required to set aside capital
for the specific purpose of offsetting OpRisk.
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OpRisk Pillar 1: Loss Distribution Approach (LDA)

• Operational losses Li ,j are separately modeled in eight business lines (rows) and by
seven risk types (columns) in the 56-cell Basel matrix.

• Marginal risks may have very different distributions.

• Pillar 1 in LDA based on VaR1 year
0.999 , i.e., a 1 in 1000 year event.
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RT1 ... RTj ... RT7

BL1 → VaR1
...

...
BLi Li ,j → VaRi
...

...
BL8 → VaR8

• As indicated in Basel II – add (comonotonicity): VaR+ =
∑8

i=1 VaRi .

• Diversify: VaRreported = (1− δ)VaR+, 0 < δ < 1 (often δ ∈ [0.1, 0.3]).

• Is this a reliable estimate of the total Value-at-Risk?
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Risk measures

• A risk measure ρ(X ): Risk capital required for holding the position X .

• Axiomatics: coherent/convex risk measures.

• Examples:

– Value-at-Risk: VaRα(X ):

P(X > VaRα(X )) = 1− α.

∗ Nice properties for elliptical models (MVN).

∗ Problems with non-convexity for heavy-tailed or very skewed risks or
special dependence.
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– Expected shortfall: ESα(X ):

ESα(X ) =
1

1− α

1∫
α

VaRu(X )du

= E(X |X > VaRα(X )) for FX continuous.

∗ Needs E|X | <∞ (X ∈ L1).

∗ Has convexity property: always admits diversification.
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Theorem (Delbaen [2009])
Let E be a vector space which is rearrangement
invariant and solid, and ρ : E → R be a convex
risk measure, then E ⊆ L1.

FREDDY DELBAEN

E : vector space of random variables defined on (Ω,F ,P).

• Rearrangement invariant: If X
d
= Y and X ∈ E , then also Y ∈ E .

• Solid: If |Y | ≤ |X | and X ∈ E , then also Y ∈ E .
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. . . in English

• There are no non-trivial, nice (i.e. subadditive or coherent) risk measures on the space
of infinite mean risks.

• Diversification is beneficial with ESα which requires E|X | <∞:

ESα(X + Y ) ≤ ESα(X ) + ESα(Y )

This is well known, but asserted and put in a wider context by Delbaen’s Theorem.
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• VaR does not require a moment condition, so for very heavy tailed risks (e.g. no first
moment), often diversification may not be possible.

• Suppose X and Y are i.i.d. risks with d.f. F , such that

1− F (x) ∼ x−δL(x), (x →∞)

where δ ∈ (0, 1) and L is slowly varying at∞: limx→∞
L(tx)
L(x) = 1, t > 0.

- For α sufficiently close to 1,

VaRα(X + Y ) > VaRα(X ) + VaRα(Y ).

- So diversification arguments become questionable.
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Recent related work and comments

• Aggregation of dependent risks: Embrechts et al. [2009] and Degen et al. [2010].

• In multivariate regular variation setting: Embrechts and Mainik [2012].

• Superadditivity with normal margins and special dependence structure: Examples in
McNeil et al. [2005] and Ibragimov and Walden [2007].

• The realm of econometrics, see Daníelsson [2011], Section 4.4. (Caveat emptor: intro-
duction has some inconsistencies).
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4 A tale of tails

FINANCIAL TIMES, APRIL 24, 2009

OF COUPLES AND COPULAS by SAM JONES

In the autumn of 1987, the man who would
become the world’s most influential actuary
landed in Canada on a flight from China.
He could apply the broken hearts maths to bro-
ken companies. Li, it seemed, had found the
final piece of a risk management jigsaw that
banks had been slowly piecing together since
quants arrived on Wall Street.

Why did no one notice the formula’s Achilles
heel? JOHNNY CASH AND JUNE CARTER
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Pricing CDO tranches

Recipe for disaster: The formula that killed Wall Street
by FELIX SALMON, 23RD FEBRUARY 2009,

WIRED MAGAZINE

• Φ2 : Bivariate standard normal cdf with correlation γ.

• Φ−1: quantile function of standard normal.

• FA(1), FB(1): default probability of companies A, B within 1 year.
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Theorem (Sibuya [1960])
Suppose (X , Y ) is a random vector following a bivariate
normal distribution with correlation coefficient γ ∈ [−1, 1).
Then X and Y are asymptotically independent.

In other words,

lim
t→∞

P(X > t |Y > t) = 0

So regardless of how high a correlation γ we choose, if
we go far enough in the tails, extreme events occur fairly
independently. MASAAKI SIBUYA
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Some personal recollections

- 28 March 1999

- Columbia-JAFEE Conference on the Mathematics of Finance
Columbia University, New York.

- 10:00-10:45 P. EMBRECHTS (ETH, Zurich):

Insurance Analytics: Actuarial Tools in Financial Risk-Management

Why relevant?

1. Paper: P. Embrechts, A. McNeil, D. Straumann (1999) Correlation and Dependence in
Risk Management: Properties and Pitfalls. Preprint RiskLab/ETH Zurich.

2. Coffee break: discussion with David Li.
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Summary

• Joint tail dependence is a copula property, whatever the marginals are.

• Under asymptotic independence joint extremes are very rare.

Digging deeper. . .

• Literature on multivariate regular variation: Laurens de Haan, Sid Resnick, . . .

• Recall X ∼ FX is regularly varying with tail index δ ≥ 0 if

1− FX (x) = x−δL(x), x > 0
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Multivariate Regular Variation

• DEFINITION: (X , Y ) ∼ F is multivariate regularly varying on E = [0,∞]2 \ {(0, 0)} if
∃ b(t) ↑ ∞ as t →∞ and a Radon measure ν 6= 0 such that

tP
(

(X , Y )
b(t)

∈ ·
)

v→ ν(·) (t →∞).

Write (X , Y ) ∈ MRV (b, ν).

• (X , Y ) ∼ F with Gaussian copula, correlation γ < 1 and Pareto(1) margins:
Sibuya’s Theorem (asymptotic independence) + Regular Variation⇒

tP
(

(X , Y )
t

∈ ([0, x ]× [0, y ])c
)
→

1
x

+
1
y

=: ν(([0, x ]× [0, y ])c ) x > 0, y > 0.
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• For any x > 0, y > 0 and any γ < 1,

tP(X > tx , Y > ty ) = o(1) (t →∞).

∃ b0(t) ↑ ∞ as t →∞ with limt→∞ t/b0(t) =∞

tP(X > b0(t)x , Y > b0(t)y ) −→ ν0((x ,∞)× (y ,∞)) (6= 0) (t →∞).
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Can we say something more?
- Coefficient of tail dependence [Ledford and Tawn, 1996].

- Hidden regular variation [Resnick, 2002].

- Tail order [Hua and Joe, 2011].

• DEFINITION: Suppose (X , Y ) ∈ MRV (b, ν). Then (X , Y ) ∼ F exhibits hidden regular
variation on E0 = (0,∞]2 if ∃ b0(t) ↑ ∞ as t → ∞ with limt→∞ b(t)/b0(t) = ∞ and a
Radon measure ν0 6= 0 such that

tP
(

(X , Y )
b0(t)

∈ ·
)

v→ ν0(·) (t →∞).

Write (X , Y ) ∈ HRV (b, b0, ν, ν0).
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• Pareto(1) margins with Gaussian copula.

• Left: measure for regular variation, Right: measure for hidden regular variation.

• Top: γ = 0.1, Bottom: γ = 0.9.
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5 Any margin . . . any correlation?

• Model Uncertainty: a correlation fallacy.

• Simulation of a two-dimensional portfolio with marginal distributions given as
F1 = LN(0, 1), F2 = LN(0, 4) and dependence:

– Correlation = 80% NO SOLUTION

– Correlation = 70% NO SOLUTION

– Correlation = 60% INFINITELY MANY SOLUTIONS

• So understand the model conditions!
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MAURICE FRÉCHET WASSILY HÖFFDING
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Theorem (Höffding [1940, 1941], Fréchet [1957])
Let (X , Y ) be a bivariate random vector with finite variances, marginal distribution functions
FX and FY and an unspecified joint distribution function F ; assume also that X and Y are
non-degenerate. The following statements hold.

1. The attainable correlations from any joint model F with the above specifications form a
closed interval

[γmin, γmax] ⊆ [−1, 1]

with −1 ≤ γmin < 0 < γmax ≤ 1.

2. The minimum correlation γmin is attained if and only if X and Y are countermonotonic;
the maximum correlation γmax if and only if X and Y are comonotonic.

3. γmin = −1 if and only if X and −Y are of the same type;
γmax = 1 if and only if X and Y are of the same type.
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• The Fréchet-Höffding Theorem holds for Pearson’s linear correlation coefficient.

• For other rank-based correlation measures like Spearman’s rho or Kendall’s tau, for any
marginal distributions γmax = 1 and γmin = −1 is attainable. BUT, Model Uncertainty
persists.

• See work by Ludger Rüschendorf and Giovanni Puccetti for further studies. Also Em-
brechts and Puccetti [2010].

• There is no unique extension of comonotonicity to d−dimensions, where X and Y are
d-dimensional random vectors. Although multiple definitions exist; see Puccetti and
Scarsini [2010].
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6 Conclusion: the Financial crisis

• Important is to understand Model Uncertainty.

• Return to a classic: Risk, Uncertainty and Profit by Knight [1921].

• The Known, the Unknown and the Unknowable [Diebold et al., 2010].

• Mathematical finance today is strong in relating today’s prices, but not so much in ex-
plaining (predicting) tomorrow’s ones (HANS BÜHLMANN).

• From a frequency oriented "if" to a severity oriented "what if".
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Dimensions of Risk Management
• Dimension 1: Scope.

– Micro: the individual firm, trading floor, client, . . .

– Macro: the more global, worldwide system, networks.

• Dimension 2: Time.

– Short: High Frequency Trading,� 1 year (or quarter).

– Medium: Solvency 2/ Basel II/III, ∼ 1 year.

– Long: Social/ life insurance,� 1 year.

• Dimension 3: Level.

– Quantitative versus Qualitative.

Going from Micro/ Medium/ Quantitative to the other combinations.
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Thank you
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