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2009).  This is is a critical problem, because the brain operates (and malfunctions) at multiple, interacting 
spatial scales (Churchland and Sejnowski 1988; Manning et al 2009).  Intuition suggests a straightforward 
approach: combine many models of individual neurons to simulate population activity.  Researchers have 
successfully employed this “brute force” approach in a variety of settings (Murakami et al 2002; Traub et al 
2005a; Markram 2006; Izhikevich and Edelman 2008) including as models of epilepsy (Traub et al 2005b; 
Dyhrfjeld-Johnsen et al 2007).  Although intuitively simple, the resulting models become extraordinarily 
complex.  For example, as the number of neurons increases, so does the number of unknown parameters.  In 
addition, the appropriate synaptic connectivity to employ in these models remains largely unknown.  Finally, 
how to transform the results of these models into observed macroscale activity (recorded clinically in the 
ECoG) is not clear.  Common procedures include computing average intracellular currents (Murakami et al 
2002), transmembrane ionic currents (Traub et al 2005a), or the mean network firing rate (Izhikevich and 
Edelman 2008).  An alternative approach to this issue, and the approach we employ here, is to combine 
multiscale models of seizure activity.  Briefly, we combine (in biophysically meaningful ways) microscale 
models of individual neurons with a macroscale model of neural population activity.  This combined approach 
allows us to concentrate on some specific biophysical aspects of the problem while abstracting others.

3.a.6. Beyond hand-tuning of computational models.  Computational models of neural activity often rely 
on researchers’ “expert judgment” to hand-tune model parameters and produce results qualitatively 
consistent with observed neural activity (Prinz et al 2003; Van Geit et al 2008). Recently, more sophisticated 
approaches have been employed to estimate model parameters directly from data (Huys et al 2006; Van Geit 
et al 2008; Schiff and Sauer 2008; Huys and Paninski 2009; Ullah and Schiff 2009).  We propose to 
implement and develop techniques for rigorous parameter estimation of multiscale models from 
corresponding multiscale data that will significantly improve the hand-tuning procedure in common use.

3.b  Overview of innovation.  We propose to pursue three primary innovations.  First, we will collect 
multiscale in vivo data from a population of human subjects.  Second, we will characterize these data - with 
particular focus on rhythmic activity and multiscale interactions - using sophisticated data analysis tools.  
Third, we will develop a biophysical, multiscale model constrained in rigorous ways by the in vivo data.  The 
culmination of these innovations will result in novel strategies to test seizure therapies in silico.

3.b.1  Innovation:  multiscale data collection.   We will collect brain voltage data from three spatial scales.  
The macroscale data consist of ECoG 
recordings from two-dimensional subdural 
electrode arrays, as well as linear arrays of 
electrodes penetrating the brain (grid/strips 
and depth electrodes respectively, Ad-tech 
Medical, Racine, WI).  These macroscale 
electrodes are placed, for purely clinical 
reasons, in order to confirm the hypothesized 

location of seizure onset and its relation to essential cortex, thus directing surgical treatment.  Synchronously 
recorded data have also been obtained from one of three different microelectrode array configurations 
including the Neuroport Array (Fig 1A), laminar microelectrode arrays (Fig 1B), or microwire bundles (Fig 1C). 
The design of these devices permits sampling of either micro/mesoscale neuronal activity in cortical grey 
matter under grids and strips, or insertion through the hollow core of depth macroelectrodes to sample deep 
brain structures.  The mesoscale data consist of local field potentials (LFP) acquired from low bandwidth 
sampling from the microelectrodes.  The microscale data consist of multi-unit neuronal action potential 
generation and single identifiable action potentials (described in more detail in 3.c.1).

3.b.2  Innovation:  multiscale data analysis.  To characterize the multiscale data, we will go beyond visual 
inspection of the time series - the typical clinical analysis of seizure voltage data.  Instead, we will develop 
sophisticated data analysis routines, focusing on the neural rhythms of seizure and multiscale interactions.  
For the latter, we will concentrate initially on coherence measures.  We will examine the “field-field” 
coherence between simultaneously recorded LFP and ECoG activity, thus connecting the “field” activity at the 
macro- and mesoscales.  To examine interactions between the microscale and meso/macroscale, we will 
employ the “spike-field” coherence measure (Jarvis and Mitra 2001).  We propose to address a confound in 
this measure (namely, that changes in neural firing rate appear as changes in interscale coupling) and 
thereby develop innovative mathematical tools to characterize multiscale neural interactions, of immediate 
use to the general neuroscience community.

Fig 1.  Microelectrode array systems•Why do seizures stop?

critical transition occurs (Fig. 2d). This is true not only for simple
models22, but also for highly elaborate and relatively realistic models
of spatially complex systems23.

Increased variance in the pattern of fluctuations is another possible
consequence of critical slowing down as a critical transition is
approached24 (Fig. 1). Again, this can be formally shown25 (Box 3),
as well as intuitively understood: as the eigenvalue approaches zero,
the impacts of shocks do not decay, and their accumulating effect
increases the variance of the state variable. In principle, critical slow-
ing down could reduce the ability of the system to track the fluctua-
tions, and thereby produce an opposite effect on the variance26,27.
However, analyses of models show that an increase in the variance
usually arises and may be detected well before a critical transition
occurs24 (Fig. 2).

In summary, the phenomenon of critical slowing down leads to
three possible early-warning signals in the dynamics of a system
approaching a bifurcation: slower recovery from perturbations,
increased autocorrelation and increased variance.
Skewness and flickering before transitions. In addition to autocor-
relation and variance, the asymmetry of fluctuations may increase

before a catastrophic bifurcation28. This does not result from critical
slowing down. Instead, the explanation is that in catastrophic bifur-
cations such as fold bifurcations (Box 1), an unstable equilibrium
that marks the border of the basin of attraction approaches the
attractor from one side (Box 1). In the vicinity of this unstable point,
rates of change are lower (reflected in a less steep slope in the stability
landscapes). As a result, the system will tend to stay in the vicinity of
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Figure 1 | Some characteristic changes in non-equilibrium dynamics as a
system approaches a catastrophic bifurcation (such as F1 or F2, Box 1).
a, b, c, Far from the bifurcation point (a), resilience is large in two respects:
the basin of attraction is large and the rate of recovery from perturbations is
relatively high. If such a system is stochastically forced, the resulting
dynamics are characterized by low correlation between the states at
subsequent time intervals (b, c). d–f, When the system is closer to the
transition point (d), resilience decreases in two senses: the basin of attraction
shrinks and the rate of recovery from small perturbations is lower. As a
consequence of this slowing down, the system has a longer memory for
perturbations, and its dynamics in a stochastic environment are
characterized by a larger s.d. and a stronger correlation between subsequent
states (e, f). Plots produced from a stochastically forced differential
equation15 representing a harvested population:
dX/dt5X(12X/K)2 c(X2/(X21 1)), where X is population density, K is
the carrying capacity (set to 10) and c is the maximum harvest rate (set to 1
for high resilience and 2.6 for low resilience).

Box 1 jCritical transitions in the fold catastrophe model

The equilibrium state of a system can respond in different ways to
changes in conditions such as exploitation pressure or temperature
rise (Box 1 Figure a, b, c). If the equilibrium curve is folded backwards
(Box 1 Figure c, d), three equilibria can exist for a given condition. The
grey dotted arrows in the plots indicate the direction in which the
systemmoves if it is not in equilibrium (that is, not on the curve). It can
be seen from these arrows that all curves represent stable equilibria,
except for the dashedmiddle section in Box 1 Figure c, d. If the system is
driven slightly away from this part of the curve, it will move further
away instead of returning. Hence, equilibria on this part of the curve are
unstable and represent the border between the basins of attraction of
the two alternative stable states on the upper and lower branches. If
the system is very close to a fold bifurcation point (for example point F1
or point F2), a tiny change in the conditionmay cause a large shift in the
lower branch (Box 1 Figure c). Also, close to such a bifurcation a small
perturbation can drive the system across the boundary between the
attraction basins (Box 1 Figure d). Thus, those bifurcation points are
tipping points at which a tiny perturbation can produce a large
transition. Small perturbations can also cause large changes in the
absence of true bifurcations, provided that the system is very sensitive
in a certain range of conditions (Box 1 Figure b). Finally, a shift in system
state may simply be caused by a sudden large external force (Box 1
Figure a). Early-warning signals tend to arise as systems approach a
bifurcation point such as in Box 1 Figure c, d, and also if systems
approach a non-catastrophic threshold such as the one shown in Box 1
Figure b.
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• Illustrate richness of data . . . 

or fail to stop?



Macroscale Data: Invasive EEG or ECoG

Multivariate, high density
~ 100 electrodes (surface & depth)
Sampling 500 Hz

Q:  How to characterize these data?
Purpose:  localize seizure focus.



10s

One electrode

Temporal scales:  rhythms
Brain chirp [Schiff et al, 2000]

Quantify:  Time-frequency spectra

H:  Rhythms slow during seizure.

Fast ~ 20 Hz

Slow ~ 2 HzIntermediate ~ 10 Hz



0.5s

Spatial scales:  coupling

Coupled?

Multiple electrodes

We employ cross correlation

Yes

Many options for
coupling measure
[Pereda et al, 2005]

Long history
[Brazier, 1972 & 1973; Gotman, 1981 & 1983; . . .] 

Repeat for all electrode pairs:

Functional network:
node
edge
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Components
Groups of electrodes connected by edges
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FIG. 2: The largest network components fracture during seizure. (a) The number of connected components increases during
the course of a seizure; points plotted in red indicate a statistically significant increase from preictal values. (b) The percentage
of nodes in the largest connected component (red, Max label), in trivial components (green, “=1” label), and in other connected
components (blue, “¿1” label). After ictal onset, nodes leave the largest component and become isolated or join other connected
components. (c) Examples of connected components during early ictal (top row), middle ictal (middle row), and late ictal
(bottom row) intervals. Each circle indicates a subdural electrode oriented to match surgical placement, and each black line
indicates an edge. The electrode colors signify components — red denotes the largest component, and white denotes single
(isolated) electrodes. During the middle seizure interval, the largest component shrinks as more non-trivial components appear
compared to the early and late ictal intervals.

representative networks appearing near ictal onset of a seizure. Circles filled with the same color indicate nodes that
belong to the same component, and red filled nodes signify the largest component. At ictal onset (I1), a majority
of nodes join the largest component which covers the entire vertical extent of the electrode grid shown here. During
the seizure (I6, middle row), the largest component shrinks to cover only the lower half of the electrode grid, and we
find more collections of nontrivial components; examine the extent of the green and blue components in the first and
second rows. Finally, at ictal termination (I10, bottom row) nodes rejoin the giant component which again dominates
the network.

C. Ictal components are more coherent than preictal components.

Creating the functional topologies requires analysis of the voltage dynamics (i.e., the ECoG data recorded at elec-
trode pairs) to define network edges. Therefore, components necessarily represent collections of nodes with correlated
dynamics. To further explore correlations of the voltage dynamics within components, we apply another coupling
measure — the coherence — to the ECoG data. We choose the coherence to examine the coupling between electrodes
focused on four distinct frequency bands: delta and theta (1−8 Hz), alpha (8−15 Hz), beta (15−25 Hz), and gamma
(25 − 45 Hz).

We first consider the coherence within components for two temporal intervals, one preseizure (label “-1” in Figures
??-??) and the other during the middle portion of the seizure (label I7). In both intervals approximately the same
percentage (near 65%) of nodes participate in nontrivial components (Figure ??b), and the ictal interval tends to
possess significantly more components than the preictal interval (8 versus 6 components, respectively, see Figure ??(a)).
To compute the coherence distributions within a component, we first select a patient, seizure, and interval. Then,
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FIG. 2: The largest network components fracture during seizure. (a) The number of connected components increases during
the course of a seizure; points plotted in red indicate a statistically significant increase from preictal values. (b) The percentage
of nodes in the largest connected component (red, Max label), in trivial components (green, “=1” label), and in other connected
components (blue, “¿1” label). After ictal onset, nodes leave the largest component and become isolated or join other connected
components. (c) Examples of connected components during early ictal (top row), middle ictal (middle row), and late ictal
(bottom row) intervals. Each circle indicates a subdural electrode oriented to match surgical placement, and each black line
indicates an edge. The electrode colors signify components — red denotes the largest component, and white denotes single
(isolated) electrodes. During the middle seizure interval, the largest component shrinks as more non-trivial components appear
compared to the early and late ictal intervals.

representative networks appearing near ictal onset of a seizure. Circles filled with the same color indicate nodes that
belong to the same component, and red filled nodes signify the largest component. At ictal onset (I1), a majority
of nodes join the largest component which covers the entire vertical extent of the electrode grid shown here. During
the seizure (I6, middle row), the largest component shrinks to cover only the lower half of the electrode grid, and we
find more collections of nontrivial components; examine the extent of the green and blue components in the first and
second rows. Finally, at ictal termination (I10, bottom row) nodes rejoin the giant component which again dominates
the network.

C. Ictal components are more coherent than preictal components.

Creating the functional topologies requires analysis of the voltage dynamics (i.e., the ECoG data recorded at elec-
trode pairs) to define network edges. Therefore, components necessarily represent collections of nodes with correlated
dynamics. To further explore correlations of the voltage dynamics within components, we apply another coupling
measure — the coherence — to the ECoG data. We choose the coherence to examine the coupling between electrodes
focused on four distinct frequency bands: delta and theta (1−8 Hz), alpha (8−15 Hz), beta (15−25 Hz), and gamma
(25 − 45 Hz).

We first consider the coherence within components for two temporal intervals, one preseizure (label “-1” in Figures
??-??) and the other during the middle portion of the seizure (label I7). In both intervals approximately the same
percentage (near 65%) of nodes participate in nontrivial components (Figure ??b), and the ictal interval tends to
possess significantly more components than the preictal interval (8 versus 6 components, respectively, see Figure ??(a)).
To compute the coherence distributions within a component, we first select a patient, seizure, and interval. Then,
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FIG. 2: The largest network components fracture during seizure. (a) The number of connected components increases during
the course of a seizure; points plotted in red indicate a statistically significant increase from preictal values. (b) The percentage
of nodes in the largest connected component (red, Max label), in trivial components (green, “=1” label), and in other connected
components (blue, “¿1” label). After ictal onset, nodes leave the largest component and become isolated or join other connected
components. (c) Examples of connected components during early ictal (top row), middle ictal (middle row), and late ictal
(bottom row) intervals. Each circle indicates a subdural electrode oriented to match surgical placement, and each black line
indicates an edge. The electrode colors signify components — red denotes the largest component, and white denotes single
(isolated) electrodes. During the middle seizure interval, the largest component shrinks as more non-trivial components appear
compared to the early and late ictal intervals.

representative networks appearing near ictal onset of a seizure. Circles filled with the same color indicate nodes that
belong to the same component, and red filled nodes signify the largest component. At ictal onset (I1), a majority
of nodes join the largest component which covers the entire vertical extent of the electrode grid shown here. During
the seizure (I6, middle row), the largest component shrinks to cover only the lower half of the electrode grid, and we
find more collections of nontrivial components; examine the extent of the green and blue components in the first and
second rows. Finally, at ictal termination (I10, bottom row) nodes rejoin the giant component which again dominates
the network.

C. Ictal components are more coherent than preictal components.

Creating the functional topologies requires analysis of the voltage dynamics (i.e., the ECoG data recorded at elec-
trode pairs) to define network edges. Therefore, components necessarily represent collections of nodes with correlated
dynamics. To further explore correlations of the voltage dynamics within components, we apply another coupling
measure — the coherence — to the ECoG data. We choose the coherence to examine the coupling between electrodes
focused on four distinct frequency bands: delta and theta (1−8 Hz), alpha (8−15 Hz), beta (15−25 Hz), and gamma
(25 − 45 Hz).

We first consider the coherence within components for two temporal intervals, one preseizure (label “-1” in Figures
??-??) and the other during the middle portion of the seizure (label I7). In both intervals approximately the same
percentage (near 65%) of nodes participate in nontrivial components (Figure ??b), and the ictal interval tends to
possess significantly more components than the preictal interval (8 versus 6 components, respectively, see Figure ??(a)).
To compute the coherence distributions within a component, we first select a patient, seizure, and interval. Then,
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FIG. 2: The largest network components fracture during seizure. (a) The number of connected components increases during
the course of a seizure; points plotted in red indicate a statistically significant increase from preictal values. (b) The percentage
of nodes in the largest connected component (red, Max label), in trivial components (green, “=1” label), and in other connected
components (blue, “¿1” label). After ictal onset, nodes leave the largest component and become isolated or join other connected
components. (c) Examples of connected components during early ictal (top row), middle ictal (middle row), and late ictal
(bottom row) intervals. Each circle indicates a subdural electrode oriented to match surgical placement, and each black line
indicates an edge. The electrode colors signify components — red denotes the largest component, and white denotes single
(isolated) electrodes. During the middle seizure interval, the largest component shrinks as more non-trivial components appear
compared to the early and late ictal intervals.

representative networks appearing near ictal onset of a seizure. Circles filled with the same color indicate nodes that
belong to the same component, and red filled nodes signify the largest component. At ictal onset (I1), a majority
of nodes join the largest component which covers the entire vertical extent of the electrode grid shown here. During
the seizure (I6, middle row), the largest component shrinks to cover only the lower half of the electrode grid, and we
find more collections of nontrivial components; examine the extent of the green and blue components in the first and
second rows. Finally, at ictal termination (I10, bottom row) nodes rejoin the giant component which again dominates
the network.

C. Ictal components are more coherent than preictal components.

Creating the functional topologies requires analysis of the voltage dynamics (i.e., the ECoG data recorded at elec-
trode pairs) to define network edges. Therefore, components necessarily represent collections of nodes with correlated
dynamics. To further explore correlations of the voltage dynamics within components, we apply another coupling
measure — the coherence — to the ECoG data. We choose the coherence to examine the coupling between electrodes
focused on four distinct frequency bands: delta and theta (1−8 Hz), alpha (8−15 Hz), beta (15−25 Hz), and gamma
(25 − 45 Hz).

We first consider the coherence within components for two temporal intervals, one preseizure (label “-1” in Figures
??-??) and the other during the middle portion of the seizure (label I7). In both intervals approximately the same
percentage (near 65%) of nodes participate in nontrivial components (Figure ??b), and the ictal interval tends to
possess significantly more components than the preictal interval (8 versus 6 components, respectively, see Figure ??(a)).
To compute the coherence distributions within a component, we first select a patient, seizure, and interval. Then,



Population Results
11 subjects, 48 seizures

# Components
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Ictal
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H:  Networks fracture then reform during the seizure.

Fractured

Reformed



Summary
• So far:

Now, consider a smaller spatial scale . . . 

Rhythms slow during seizure (ictal chirp)

Brain regions fracture during seizure
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FIG. 2: The largest network components fracture during seizure. (a) The number of connected components increases during
the course of a seizure; points plotted in red indicate a statistically significant increase from preictal values. (b) The percentage
of nodes in the largest connected component (red, Max label), in trivial components (green, “=1” label), and in other connected
components (blue, “¿1” label). After ictal onset, nodes leave the largest component and become isolated or join other connected
components. (c) Examples of connected components during early ictal (top row), middle ictal (middle row), and late ictal
(bottom row) intervals. Each circle indicates a subdural electrode oriented to match surgical placement, and each black line
indicates an edge. The electrode colors signify components — red denotes the largest component, and white denotes single
(isolated) electrodes. During the middle seizure interval, the largest component shrinks as more non-trivial components appear
compared to the early and late ictal intervals.

representative networks appearing near ictal onset of a seizure. Circles filled with the same color indicate nodes that
belong to the same component, and red filled nodes signify the largest component. At ictal onset (I1), a majority
of nodes join the largest component which covers the entire vertical extent of the electrode grid shown here. During
the seizure (I6, middle row), the largest component shrinks to cover only the lower half of the electrode grid, and we
find more collections of nontrivial components; examine the extent of the green and blue components in the first and
second rows. Finally, at ictal termination (I10, bottom row) nodes rejoin the giant component which again dominates
the network.

C. Ictal components are more coherent than preictal components.

Creating the functional topologies requires analysis of the voltage dynamics (i.e., the ECoG data recorded at elec-
trode pairs) to define network edges. Therefore, components necessarily represent collections of nodes with correlated
dynamics. To further explore correlations of the voltage dynamics within components, we apply another coupling
measure — the coherence — to the ECoG data. We choose the coherence to examine the coupling between electrodes
focused on four distinct frequency bands: delta and theta (1−8 Hz), alpha (8−15 Hz), beta (15−25 Hz), and gamma
(25 − 45 Hz).

We first consider the coherence within components for two temporal intervals, one preseizure (label “-1” in Figures
??-??) and the other during the middle portion of the seizure (label I7). In both intervals approximately the same
percentage (near 65%) of nodes participate in nontrivial components (Figure ??b), and the ictal interval tends to
possess significantly more components than the preictal interval (8 versus 6 components, respectively, see Figure ??(a)).
To compute the coherence distributions within a component, we first select a patient, seizure, and interval. Then,

Brain regions coalesce at termination
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FIG. 2: The largest network components fracture during seizure. (a) The number of connected components increases during
the course of a seizure; points plotted in red indicate a statistically significant increase from preictal values. (b) The percentage
of nodes in the largest connected component (red, Max label), in trivial components (green, “=1” label), and in other connected
components (blue, “¿1” label). After ictal onset, nodes leave the largest component and become isolated or join other connected
components. (c) Examples of connected components during early ictal (top row), middle ictal (middle row), and late ictal
(bottom row) intervals. Each circle indicates a subdural electrode oriented to match surgical placement, and each black line
indicates an edge. The electrode colors signify components — red denotes the largest component, and white denotes single
(isolated) electrodes. During the middle seizure interval, the largest component shrinks as more non-trivial components appear
compared to the early and late ictal intervals.

representative networks appearing near ictal onset of a seizure. Circles filled with the same color indicate nodes that
belong to the same component, and red filled nodes signify the largest component. At ictal onset (I1), a majority
of nodes join the largest component which covers the entire vertical extent of the electrode grid shown here. During
the seizure (I6, middle row), the largest component shrinks to cover only the lower half of the electrode grid, and we
find more collections of nontrivial components; examine the extent of the green and blue components in the first and
second rows. Finally, at ictal termination (I10, bottom row) nodes rejoin the giant component which again dominates
the network.

C. Ictal components are more coherent than preictal components.

Creating the functional topologies requires analysis of the voltage dynamics (i.e., the ECoG data recorded at elec-
trode pairs) to define network edges. Therefore, components necessarily represent collections of nodes with correlated
dynamics. To further explore correlations of the voltage dynamics within components, we apply another coupling
measure — the coherence — to the ECoG data. We choose the coherence to examine the coupling between electrodes
focused on four distinct frequency bands: delta and theta (1−8 Hz), alpha (8−15 Hz), beta (15−25 Hz), and gamma
(25 − 45 Hz).

We first consider the coherence within components for two temporal intervals, one preseizure (label “-1” in Figures
??-??) and the other during the middle portion of the seizure (label I7). In both intervals approximately the same
percentage (near 65%) of nodes participate in nontrivial components (Figure ??b), and the ictal interval tends to
possess significantly more components than the preictal interval (8 versus 6 components, respectively, see Figure ??(a)).
To compute the coherence distributions within a component, we first select a patient, seizure, and interval. Then,

Macroscale data



40

41
42

43
44

45
46

47

32

33
34

35
36

37
38

39

24

25
26

27
28

29
30

31

17
18

19
20

21
22

23

9
10

11
12

13
14

15
16

1
2

3
4

5
6

7
8

48

49
50

51
52

53
54

55
56

57
58

59
60

61
62

63
64

4

3

21

Schematic representation.  Not to scale.

Anterior Temporal 
Depth  (Red, #15)

Frontopopolar 
Strip  (Blue/black) 

LEFT

- 8 Contact Depth

 
4

3
2

1

SubFrontal Strip             
(Purple/white)

4

3

21

Reference strip                             
(Blue/gray)

Posterior Subtemporal 
Strip  (Green/yellow)

MG49
Date of Implant:  XXXXXXXX

Posterior Temporal Depth  
(Green, #6)4

3
2

1

4

3

2

1

Anterior Subtemporal 
Strip  (Black, red/orange)

-Neuroport Array 
(research)

 

Thursday, February 2, 2012

Consider the LFP data . . . 

Microscale Data: Local field potential, LFP

2009).  This is is a critical problem, because the brain operates (and malfunctions) at multiple, interacting 
spatial scales (Churchland and Sejnowski 1988; Manning et al 2009).  Intuition suggests a straightforward 
approach: combine many models of individual neurons to simulate population activity.  Researchers have 
successfully employed this “brute force” approach in a variety of settings (Murakami et al 2002; Traub et al 
2005a; Markram 2006; Izhikevich and Edelman 2008) including as models of epilepsy (Traub et al 2005b; 
Dyhrfjeld-Johnsen et al 2007).  Although intuitively simple, the resulting models become extraordinarily 
complex.  For example, as the number of neurons increases, so does the number of unknown parameters.  In 
addition, the appropriate synaptic connectivity to employ in these models remains largely unknown.  Finally, 
how to transform the results of these models into observed macroscale activity (recorded clinically in the 
ECoG) is not clear.  Common procedures include computing average intracellular currents (Murakami et al 
2002), transmembrane ionic currents (Traub et al 2005a), or the mean network firing rate (Izhikevich and 
Edelman 2008).  An alternative approach to this issue, and the approach we employ here, is to combine 
multiscale models of seizure activity.  Briefly, we combine (in biophysically meaningful ways) microscale 
models of individual neurons with a macroscale model of neural population activity.  This combined approach 
allows us to concentrate on some specific biophysical aspects of the problem while abstracting others.

3.a.6. Beyond hand-tuning of computational models.  Computational models of neural activity often rely 
on researchers’ “expert judgment” to hand-tune model parameters and produce results qualitatively 
consistent with observed neural activity (Prinz et al 2003; Van Geit et al 2008). Recently, more sophisticated 
approaches have been employed to estimate model parameters directly from data (Huys et al 2006; Van Geit 
et al 2008; Schiff and Sauer 2008; Huys and Paninski 2009; Ullah and Schiff 2009).  We propose to 
implement and develop techniques for rigorous parameter estimation of multiscale models from 
corresponding multiscale data that will significantly improve the hand-tuning procedure in common use.

3.b  Overview of innovation.  We propose to pursue three primary innovations.  First, we will collect 
multiscale in vivo data from a population of human subjects.  Second, we will characterize these data - with 
particular focus on rhythmic activity and multiscale interactions - using sophisticated data analysis tools.  
Third, we will develop a biophysical, multiscale model constrained in rigorous ways by the in vivo data.  The 
culmination of these innovations will result in novel strategies to test seizure therapies in silico.

3.b.1  Innovation:  multiscale data collection.   We will collect brain voltage data from three spatial scales.  
The macroscale data consist of ECoG 
recordings from two-dimensional subdural 
electrode arrays, as well as linear arrays of 
electrodes penetrating the brain (grid/strips 
and depth electrodes respectively, Ad-tech 
Medical, Racine, WI).  These macroscale 
electrodes are placed, for purely clinical 
reasons, in order to confirm the hypothesized 

location of seizure onset and its relation to essential cortex, thus directing surgical treatment.  Synchronously 
recorded data have also been obtained from one of three different microelectrode array configurations 
including the Neuroport Array (Fig 1A), laminar microelectrode arrays (Fig 1B), or microwire bundles (Fig 1C). 
The design of these devices permits sampling of either micro/mesoscale neuronal activity in cortical grey 
matter under grids and strips, or insertion through the hollow core of depth macroelectrodes to sample deep 
brain structures.  The mesoscale data consist of local field potentials (LFP) acquired from low bandwidth 
sampling from the microelectrodes.  The microscale data consist of multi-unit neuronal action potential 
generation and single identifiable action potentials (described in more detail in 3.c.1).

3.b.2  Innovation:  multiscale data analysis.  To characterize the multiscale data, we will go beyond visual 
inspection of the time series - the typical clinical analysis of seizure voltage data.  Instead, we will develop 
sophisticated data analysis routines, focusing on the neural rhythms of seizure and multiscale interactions.  
For the latter, we will concentrate initially on coherence measures.  We will examine the “field-field” 
coherence between simultaneously recorded LFP and ECoG activity, thus connecting the “field” activity at the 
macro- and mesoscales.  To examine interactions between the microscale and meso/macroscale, we will 
employ the “spike-field” coherence measure (Jarvis and Mitra 2001).  We propose to address a confound in 
this measure (namely, that changes in neural firing rate appear as changes in interscale coupling) and 
thereby develop innovative mathematical tools to characterize multiscale neural interactions, of immediate 
use to the general neuroscience community.

Fig 1.  Microelectrode array systemsMicroelectrode array
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Ex:  one microelectrode
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Temporal scales:  LFP rhythms

Time-frequency spectrum
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H:  Rhythms slow at microscale during seizure.
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Ex: dynamics across scales

What’s happening dynamically at the end of the seizure?



Tipping point
•An abrupt transition at which the system shifts from one state to 

another (a.k.a, catastrophic shift, critical transition, . . . )
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Warning signs (1)

• Critical slowing down
Near the transition, the system becomes increasingly slow in recovering from 
perturbations.  

• Slower fluctuations & increased autocorrelations

Far from transition:

Kick - quickly return

Near transition:

Kick - slowly return

Tipping points can be preceded by dynamical signatures:

A

A

Potential well



• Flickering
The system moves back and forth between two alternative attractors just 
before the tipping point.

Example:

A

Small kicks

Big kick

A

B

Small kicks

“Flicker” between 
two states

“time”

Big kick

Warning signs (2)

Position:

B



Ex:  ECoG data
Visual inspection:

1. Critical slowing down? 2. Flickering?

10s

Dynamical signatures of tipping point?

“Post-seizure state”“Seizure state”

Consider quantitative analysis . . .

Ictal chirp
Autocorrelation?
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2. Flickering

Define states: Classify var in two intervals:
ictal = high variance
post-ictal = low variance
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Model A “simple” biophysical model of seizure termination

Analyze model dynamics:

Seizure attractor Post-seizure attractor

950 F. Frascoli et al. / Physica D 240 (2011) 949–962

band oscillations and its relationship to cognition [16–18] and

the onset and characteristics of epileptic seizures [19–22,10];

c.f. Ref. [23] for a recent review. We use here Liley’s MFM [3,

24], which is capable of reproducing the main spectral fea-

tures of spontaneous (i.e., not stimulus-locked) EEG, in particu-

lar the ubiquitous alpha rhythm [25]. Firstly, this model is bi-

ologically constituted: all state variables and parameters can

be constrained on the basis of existing anatomical and phys-

iological measurements in the literature. Secondly, it supports

a rich repertoire of behaviors both physiologically relevant and

dynamically interesting. For example, parametrically widespread,

robust chaotic activity of various origins has been found [26–28],

and multistability, i.e., the presence of various coexisting dyna-

mical regimes, has been demonstrated. Multistability has been

speculated to correspond neurobiologically to the formation of

memories [29].

In the spirit of the dynamical approach [30], in this paper we

link nonlinear electrical activity and neurobiologically significant

attributes of cortex. To this end, we consider a representative sam-

ple of parameter sets that have previously been found to gener-

ate physiologically plausible behavior [11]. This sample contains

73,454 sets and for each of these we computed the bifurcation

plots when varying two parameters related to inhibition, i.e., the

qualitative changes of recurrent activity patterns, when neuronal

inhibition is altered. It turns out that we can sort the sets into two

distinct ‘‘families’’ of dynamical behavior. These families are found

to correlate with EEG signal power and responses to anesthetics,

whereas family membership is determined by specific neurobio-

logical parameters.

The paper is divided into three main sections. First, we briefly

introduce Liley’s ordinary differential Equations (ODEs). We next

discuss the theoretical and numerical tools employed in some

detail, in particular how one arrives at a systematic bifurcation

analysis procedure to show the qualitative changes of the model

solutions when inhibition is varied. Then, we present the main

distinctive features of the families, such as their responses to

the simulated induction of anesthetics and their correlations with

model parameters of interest. We are also able to show how

exogenous agents, i.e., input from the thalamus to the cortex,

can induce dramatic changes in those patterns and stimulate

transitions from one type of family to the other. That, in particular,

provides a compelling example for the modulation thalamus is

thought to exert on the cortex [31]. All these relations cannot

be discovered with standard linear or nonlinear analyses of the

physiological parameter space, and represent the main result of

this work. A discussion of open problems concludes the paper.

2. Neuronal mean field equations

Liley’s MFM aims to provide a mathematically and physiolog-

ically parsimonious description of average neuronal activity in a

human cortex, with spatially coarse-grained but temporally pre-

cise dynamics. One excitatory and one inhibitory neuronal pop-

ulation, respectively, is considered per macrocolumn, which is a

barrel-shaped region of approximately 0.5–3 mm diameter com-

prising the whole thickness of cortex (thus ≈3–4 mm deep). Cor-

tical activity is locally described by the mean soma membrane

potentials of the excitatory (he) and inhibitory (hi) neuronal popu-
lations, alongwith fourmean synaptic inputs Iee, Iie, Iei, and Iii. These
inputs convey the reciprocal interaction between neuronal popu-

lations, where double subscripts indicate first source then target

(each either excitatory e or inhibitory i). The connection withmea-

surements is through he, which is linearly related to the EEG sig-

nal [32]. Lumped neuron populations are modeled as passive RC
compartments, into which all synaptically induced ionic currents

terminate. According to population types (j, k) = e, i, synaptic

activity drives the mean soma membrane potentials from their

Fig. 1. Architecture of Liley’s mean field model. Two separate model macro-

columns are shown, each containing one excitatory and one inhibitory neuronal

population. Note that long-range connections are exclusively excitatory and that

self-couplings correspond to connections of neurons of the same type within the

local populations.

resting values. The equations for he and hi are given by

τe
dhe

dt
= hr

e − he(t) + heq
ee − he(t)
|heq

ee − hr
e|

Iee(t) + heq
ie − he(t)
|heq

ie − hr
e|

Iie(t), (1)

τi
dhi

dt
= hr

i − hi(t) + heq
ei − hi(t)
|heq

ei − hr
i |

Iei(t) + heq
ii − hi(t)
|heq

ii − hr
i |

Iii(t), (2)

where hr
e and hr

i are mean resting potentials, and τe and τi
are the membrane time constants of the respective neuronal

populations. The reversal potentials of the transmembrane ionic

fluxes mediating excitation and inhibition are given by heq
ek and heq

ik ,
respectively. Note that the synaptic inputs are weighted with +1

(excitatory Iek) and−1 (inhibitory Iik) at the resting potential of the
respective excitatory or inhibitory neuronal population, and that

these weights then vary linearly with voltage.

The mean synaptic inputs describe the postsynaptic activation

of ionotropic neurotransmitter receptors by presynaptic action

potentials, arising from the collective activity of neurons both

nearby and distant. The time course of such activity, based on

well-established experimental data [33], is modeled by a critically

damped oscillator driven by the mean rate of incoming excitatory

or inhibitory axonal pulses. We thus have, for k = e, i:
�

d

dt
+ γek

�2

Iek(t) = Γekγeke{Nβ
ekSe[he(t)] + pek(t) + φek(t)}, (3)

�
d

dt
+ γik

�2

Iik(t) = Γikγike{Nβ
ikSi[hi(t)] + pik(t)}, (4)

where the terms in curly brackets correspond to sources of the

axonal pulses from three origins: local, i.e., in the same macro-

column of the cortex Nβ
lkSl, arriving through long-range, excitatory

cortico-cortical connections from other macrocolumns φek, and
extracortical, i.e., primarily of thalamic origin plk. For subsequent
simplicity we assume the absence of any extracortical inhibitory

input, i.e. pik ≡ 0. Nβ
lk quantifies the strength of anatomical pop-

ulation connectivity. The maximal postsynaptic potential (PSP)

amplitude Γlk occurs in the target population k = e, i at time 1/γlk
after the arrival of the presynaptic spike from the source popula-

tion l = e, i. A schematic illustration of the architecture of interac-

tions in the Liley model can be found in Fig. 1.

Local mean soma potentials hk are nonlinearly transformed to

mean neuronal population firing rates with a sigmoidal function

Sk[hk(t)] = Smax
k

�
1 + exp

�
−

√
2
hk(t) − µk

σk

��−1

, (5)

whereµk and σk indicate the firing thresholds and their associated

standard deviations for the respective neural population. The

Mean-field model of population activity, (not 
“spikes” of individual neurons).
[Liley et al, Network,  2002]
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Conclusions
• Seizures across spatial and temporal scales

2009).  This is is a critical problem, because the brain operates (and malfunctions) at multiple, interacting 
spatial scales (Churchland and Sejnowski 1988; Manning et al 2009).  Intuition suggests a straightforward 
approach: combine many models of individual neurons to simulate population activity.  Researchers have 
successfully employed this “brute force” approach in a variety of settings (Murakami et al 2002; Traub et al 
2005a; Markram 2006; Izhikevich and Edelman 2008) including as models of epilepsy (Traub et al 2005b; 
Dyhrfjeld-Johnsen et al 2007).  Although intuitively simple, the resulting models become extraordinarily 
complex.  For example, as the number of neurons increases, so does the number of unknown parameters.  In 
addition, the appropriate synaptic connectivity to employ in these models remains largely unknown.  Finally, 
how to transform the results of these models into observed macroscale activity (recorded clinically in the 
ECoG) is not clear.  Common procedures include computing average intracellular currents (Murakami et al 
2002), transmembrane ionic currents (Traub et al 2005a), or the mean network firing rate (Izhikevich and 
Edelman 2008).  An alternative approach to this issue, and the approach we employ here, is to combine 
multiscale models of seizure activity.  Briefly, we combine (in biophysically meaningful ways) microscale 
models of individual neurons with a macroscale model of neural population activity.  This combined approach 
allows us to concentrate on some specific biophysical aspects of the problem while abstracting others.

3.a.6. Beyond hand-tuning of computational models.  Computational models of neural activity often rely 
on researchers’ “expert judgment” to hand-tune model parameters and produce results qualitatively 
consistent with observed neural activity (Prinz et al 2003; Van Geit et al 2008). Recently, more sophisticated 
approaches have been employed to estimate model parameters directly from data (Huys et al 2006; Van Geit 
et al 2008; Schiff and Sauer 2008; Huys and Paninski 2009; Ullah and Schiff 2009).  We propose to 
implement and develop techniques for rigorous parameter estimation of multiscale models from 
corresponding multiscale data that will significantly improve the hand-tuning procedure in common use.

3.b  Overview of innovation.  We propose to pursue three primary innovations.  First, we will collect 
multiscale in vivo data from a population of human subjects.  Second, we will characterize these data - with 
particular focus on rhythmic activity and multiscale interactions - using sophisticated data analysis tools.  
Third, we will develop a biophysical, multiscale model constrained in rigorous ways by the in vivo data.  The 
culmination of these innovations will result in novel strategies to test seizure therapies in silico.

3.b.1  Innovation:  multiscale data collection.   We will collect brain voltage data from three spatial scales.  
The macroscale data consist of ECoG 
recordings from two-dimensional subdural 
electrode arrays, as well as linear arrays of 
electrodes penetrating the brain (grid/strips 
and depth electrodes respectively, Ad-tech 
Medical, Racine, WI).  These macroscale 
electrodes are placed, for purely clinical 
reasons, in order to confirm the hypothesized 

location of seizure onset and its relation to essential cortex, thus directing surgical treatment.  Synchronously 
recorded data have also been obtained from one of three different microelectrode array configurations 
including the Neuroport Array (Fig 1A), laminar microelectrode arrays (Fig 1B), or microwire bundles (Fig 1C). 
The design of these devices permits sampling of either micro/mesoscale neuronal activity in cortical grey 
matter under grids and strips, or insertion through the hollow core of depth macroelectrodes to sample deep 
brain structures.  The mesoscale data consist of local field potentials (LFP) acquired from low bandwidth 
sampling from the microelectrodes.  The microscale data consist of multi-unit neuronal action potential 
generation and single identifiable action potentials (described in more detail in 3.c.1).

3.b.2  Innovation:  multiscale data analysis.  To characterize the multiscale data, we will go beyond visual 
inspection of the time series - the typical clinical analysis of seizure voltage data.  Instead, we will develop 
sophisticated data analysis routines, focusing on the neural rhythms of seizure and multiscale interactions.  
For the latter, we will concentrate initially on coherence measures.  We will examine the “field-field” 
coherence between simultaneously recorded LFP and ECoG activity, thus connecting the “field” activity at the 
macro- and mesoscales.  To examine interactions between the microscale and meso/macroscale, we will 
employ the “spike-field” coherence measure (Jarvis and Mitra 2001).  We propose to address a confound in 
this measure (namely, that changes in neural firing rate appear as changes in interscale coupling) and 
thereby develop innovative mathematical tools to characterize multiscale neural interactions, of immediate 
use to the general neuroscience community.

Fig 1.  Microelectrode array systems
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• Termination:  tipping point.
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