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Henry Markram: “We can [build a brain] within 10 yéars

Albert Einstein: "You do not really understand something
unless you can explain it to your grandmother ™

Rhetorical Q1. Will we understand multi-scale diseases
such as epilepsy once we build Markram’s simulated
brain?

Rhetorical Q2. What do we do with all the partial models
of epilepsy that we have built?

Q1. What's missing in our methodology?
Q2. How might we better proceed?




What's missing?

It's not lack of modeling effort ...




Model zoology: not a
“model state”©
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Model ethnoé’raphy

Models are often developed in isolation
The process is subjective and esoteric

What biological parts and relationships to
represent?

Much ‘curve fitting” is done
Assumptions often implicit

Assumptions are often strong and a priori

Multiple scales may not be so well separated, or
state-dependent

Too broad and inclusive (under-constrained)
Unconvincing about specifics in realisystems
How they. break helps connect to other models
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Model inter-operability =

Incompatible assumptions between models
Related example: General Circulation Models

Difficult to:
reconcile predictions
trust / adapt parameter values
re-use, compose or unify models
explore space of possible models
understand underlying causal mechanisms of emergence

Models are much more fragile than we like to admit
(in print)

Inter-operability.is necessary. for an efficient and
robust multi-level understanding of brain function
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My (little) work on epilepsy.

Multi-scale representation of network dynamics in
Hippocampus (Netoff et al., J Neurosci, 2004)

- —

Predicts mechanistic roles for physiological parameters
(alone or in combo)

Predictions easier to generate/analyze than using large data-
driven simulations

Encodes basic assumptions

Validated against our large-scale (10k neuron) simulations

Abstract model derived from detailed model, first principles,
and data - no curve fitting!

Excitable neurons

S ma I I'WO rld Refractory tail
connectivity . 'I
(nOt Shown) a neurons in wave front
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My (Iittle) work bn Epilepsy” =

E.g. mappings correctly predict
Equilibrium loses stability in increasing synaptic efficacy causes
(1+R)-D map, 1-D map network to burst in CA3 before CA1
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Multi-level mechanisms of*
epileptogenesis?

A prototype for predicting result of parameter changes

In mechanistic, computational models across multiple
scales

Provides anchors for experimental testing of
assumptions and predictions




Example from the work of Alona Ben-Tal, Massey University

Mathematical models of the respiratory system

“Simplified” model

Detailed models of Neurological models of
oxygen binding to bursting
hemoglobin

Fast-slow decomposition

3 =< [
Averaging | 9= T -[o q:(t)dt

VE _>4 Pac02 Pa02.

A community bias is that this is | 4
insufficiently innovative, novel

work: “it is just admin” Vo Vi, athgv\ilf;‘:iglew Crsﬁ(i)tzi




What's missing?

I[t's not data ...




The End of Theory - Wired madazine,
June 2008

“The quest for knowledge used to begin with
grand theories. Now it begins with massive
amounts of data. Welcome to the Petabyte Age.™

We're obsessed with greedy data collection and list
making, from Facebook to gene sequencing

We spend much less effort and $$ on good hypotheses

NSE has substantial funds for. bioinformatics, but
Roger Pennington, head of its OCI admits:

“We don't know how to do data-driven science”
His view. is not being taken seriously:




What's missing?

It's not lack of computing power ...




High-Performance Computing

-

Raw computing power is great for collecting,
documenting, associating or creating raw data

It /s reasonable to exhaust lucrative low-hanging scientific
targets with new technology

But funding agencies and policy makers act as It allkwe
need to do is keep building bigger computers

It is certainly @ more tangible goal, simplifies funding
decisions, looks shiny, and makes $$$

Brutes tend to get stupid or lazy
When all you have is a hammer ...

And that hammer is‘increasingly. cheap,compared to
alternatives




Anatomic detail of a simulation model of a
cortical micro-column (Markram et al.)

neocorte But wh at you do need'
is-a very b|g computer
Henry Markram, the IBM Blue
Brain project II(TED. talk) ~
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Would you program Amazon.com's sales transaction
system using 1's and 0’s and CPU code?
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No, use high-level languages (e.g., Object Oriented)
and appropriate representations for eagh component




Heterogeneous Representations

How do we expect to build complex biological' models
directly from differential equations, parameter valties
and initial conditions?

I, = gimfihiqi (V_Ei)

[axials/N = gaxial (V o Vaxon) = _]axialA

ds
T.(V)y—=s_(V)-s, s=m,h
o ( )dt (V) ;

d[Ca*]
TCa dt

=-FI., —[Ca*]+C,

= C_(I,)~[Ca™]




So, what /s missing?

dynamics and model assumptions across levels
Informatics means creating information, not merely data
Information from data requires hypotheses and theories

I suggest that we need an intermediate ground between

detailed biophysical models and abstract, toy models

Technological (computational tools, CPU power, storage)
Mathematical (dynamical systems, networks, statistics, reduction tech)
Informatic (inference, heuristics, logic, databases, book-keeping)

“Microscopic” _ |
mechanisms Detailed biophysical

and anatomy model

Real system —— ¢

Simple conceptual

. Toy model
mechanisms y




A rational plan for progress

Meta-studies Figure out how to do
data-driven, multi-level

modeling
Qualitative reasoning

Computer-assisted
management of model
building and testing

Transparency
Diagnostics
Validation

Collaborate
and share

All of this is possible even without inevitable
improvements in mathematics itself

There are a few precedents for all of the medium-term
ideas dating back to the 1990s
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How to fill in what is missing?

-l

Qualitative fitting of models to
data (analysis)
hypothesized mechanisms (synthesis)

Define a suite of qualitative features to fit
Need multi-objective optimization
Explore space of hybrid models

Context-dependent reductions to hybrid models
Generate truly modular, inter-operable. models
That we stand a chance of understanding
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Reverse engineering casual mechanisms

If you think you know how “it" works:
build it
stretch it
break it
diagnose it
re-build it

Let's exemplify some of this on a.single cell:

1) Show that Hodgkin-Huxley action potential can be
represented with a hybrid (piecewise) low-dimensional model

2) Show that the classic Phase Response Curve shape can be
understood from relationships between transient ionic channel

dynamics

Addresses how weak is iweak’, far from_ulimit cycle, etc.




Review: dominant scale analysis for
Hodgkin-Huxley:

Input variables . Z(driving forces)
for V dynamic V.()= W

passive T,(t)=1/ z (conductances)

}xe{V mnh}

V(%) is like a quasi-static
fixed point for V

(Clewley, Rotstein, Kopell, 2005) “Influence strengths” for V are
like eigenvalues for V,
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Dominant scale analysis

¢+ Algorithmic form of multiple scale analysis |
8 ¢ Finds dominant variables and fast/slow: variables
¢+ Separates dynamics into regimes

Influence ‘¥, and rate of influence 2, defined along an orbit w.r.t. s = m, n, h.

Also, time scale sets Fast and Slow relative to V.

oV Each of these are ranked at every time
Y =— Q: = step, then thresholded to determine

ds dominant sets Actsy(t), Actsq(t).

¥, measure which currents control local null-surface position (Cf. q.s.f.p.).

Q). determine “local autonomy” of reduced system: “which phase plane is OK™.

A



Clewley, Rotstein, Kopell, . e = e
Multiscale Modeling & Example: Type L interneuron with

St iy AULS time-dependent input (dimension4)™
Software tool: DSSRT

Inhibitory
synapse

(s)

Calculate dominance of
currents along
limit cycle, partitioning
into lower-dimensional
regimes

membrane potential (m

(s, 1, b} {s 1 b,m)
Regime I I III

Time interval i Passive
[00.00, 29.04) [, b

[29.04, 33.57) [, b

[33.57, 36.87)
[36.87, 37.62)
[37.62, 39.21)
(39.21, 49.98)




Na*/K* AP mechanistic “template’

Logical rules for defining Show video!
regimes / motifs (smooth dynamics)
regime transitions (discrete events)

Encode these to get hybrid model definition

Table 1 Domain and transition motif rules making up the AP template, and the appropriate phase planes in
which to view the reduced dynamics.

Motif | Phase plane | Domain rule | Transitional rule

(m,V) m € 2y n=9dg[l]Anes
(n,V) ne gy Am¢ oy ANhd¢ FAn¢F h=2q(1]
h,V) (medpVme My)\(n€ dp\Vne My) | m=dg[l]

I
II
I
ANh¢E FAng¢F
. (m,V) m ¢ Do

(R. Clewley, J. Comput. Neurosci., 2010)




Representing an AP with a

hybrid model

AP never before reduced to a self-contained math. description
Simulatable as hybrid model
Understandable intuitively
In traditional fast-slow analysis, n & A had to be imposed magically

time
Regime I1V(1) Regime IV(2) Regime IV(3) Regime IV(4)

m and V slower m and V still

than » and A slower (n—V &
(m—=V & h—V frozen) m—V frozen)

n—>V & h—=V
frozen

n-V& h-V
are frozen
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Representing an AP with a hybrid model

(qualitatively, as you can see...)

b Classic H-H
“(Type |l params)

Modified H-H
(Type | params
for interneuron)

14 15

(R. Clewley, J. Comput. Neurosci., 2010)




Locally-reduced models

Applies ideas adapted from asymptotics
Fast vs. slow currents, large vs. small
Weak vs. strong is most important

Takes advantage of coupling patterns &
emergent scales (not a prior)

Explicit domain of validity for reduced models

Global consistency checks
Requires automated reasoning,
book-keeping, data abstraction

Good for dealing with transients &




Phase Response Curve

Popular way to predict timing relationshipstin
networks of oscillators based on PRC of
components

e.g. synchrony

Measured empirically (bio)./ numerically (model)

Cannot be derived analytically for realistic
models

Would like to know: how changing channels affects it
Discussing isochronsiis just the first step




Isochrons

Isochrons are level sets of phase around a P.O:

Usually for stable periodic orbits, but extendable to excitable
systems ...

To study transients, here we will extend to any local
neighborhood in terms of exit time (Cf. Day et al., 2009)

What ionic properties determine isochrons?

limitcycley

Image credit:
Scholarpedia




“Isochron” surrogate near node

Suppose a linear stable node with unequal eigenvalues
Consider time taken to reach an “exit” boundary in the plane
Boundary is defined to be parallel to the strong stable manifold

Exit times can be computed analytically
defines “relative phase”

strong stable /

manifold

“exit”
boundary

I(A) < t(B) — t(C)

exit exit exit




“Isochron” surrogate near focus

No stable manifolds now (complex eigenvectors)
Eigenvectors still indicate ‘axes’ for relative compression of:spiral

For a given position and angle of exit boundary, there'is an
“isochron” vector at point B dividing phase advance and delay.
relative to trajectory starting from B ending at boundary:

eigenvectors

“isochron”

“exit”
boundary

I(A) > I(B) > t(C)

exit exit exit
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PRC (STDM) for '—I:y-e HEE

Spike Time Difference Map (STDM) in lieu of @ PRC

we won't need periodicity anyway
using a +0.1mV perturbation
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We can remove Na* A inactivation (hold it constant) to study -STDM
mechanism sub-threshold

Almost no effect on STDM (but model no longer recovers after AP)~
Create a micro-level low-dimensional hybrid reduced model

e
e

Consider A
exit time from I} Also consider
the next . A spike til
regimes 5 il

Study voltagel< 1 >-|*

0

perturbations : *
in Regime 11 :_¢
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Initial observations

At t = 5.88 (start of Regime II, near minimum of PRC)

V =-65.8mV
Perturb V— V + 0.1

Measure when V crosses thresholds at +2 mV, +5 mV, +10 mV, +20"mV.

relative to unperturbed orbit

K-V phase plane

40

20

-20

n nullcline

State @ t = 5.88

V nullcline

| | | | |

0.5 0.6 0.7 0.8 0.9

One ‘fixed point’ in (n, V)

Na-V phase plane

40 -

20

—20

I I I I

V nullcline

m nullcline

State @ t = 5.88

|
0.2 0.4 0.6 0.8 1.0

Three ‘fixed points’ in (m, V)
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Initial observations

STDM involves a non-local, non-stationary, non-linear effect:
initial phase advance becomes a delay! why?
one does not simply look at a variational equation with frozen coefficients
around the orbit at £ = 5.88 (e.qg., see Nick Trefethen’s work)

- advance
Compare numeric
STDM(5.88) = -0.0397.




Local linearization of nullelines

Create a virtual fixed point, valid only while A curvature and
A autonomy remain low

Step forward in time to new linearization according to smallest
relevant time scale

Na-V phase plane
T T

|
- ghost of SN
bifurcation

V nullcline

m nullcline

(m, V) state point
@t=8
| |

0.2 0.4
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Local linearization of nullelines

Locally, the weak stable manifold defines the river fora
virtual node ...

e.g., in (m, V) plane
+ I/ perturbation has negative feedback effect on decreasing
n here => locally phase-delaying

[~ 6 ms [~38ms

Na-V phase plane Na-V phase plane

—62.5

—63.0

—63.5

-64.0F

—64.5
weak stable

650 manifold 7

Mo,

—65.5

4
—66.0 ¥ / : l ' '
0.045 0.050 0.055 0.060 0.065
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Analytic isochrons for nonlinear systems?

Nonlinear analysis of isochrons is prohibitively: difficult
(see Day, Rubin, and Chow)

Take a piecewise linear approach instead!
Must derive on-the-fly for a given system and IC

Let the computer bear the burden of tracking self-
consistency conditions and numeric details

Python + PyDSTool

We still achieve an intuitive and (approximate)
analytic understanding of the mechanisms at work




COarse'grained eStiglzl;l.te part 1 =

From t = 5.88 until Vincreases by 2mV.

Yellow orbit has + 0.1V initial condition
(n, V) plane is most autonomous (i.e., most accurate)

K-V phase plane
T T

|
n nullcline

original
v.f.p. orbits
(focus)

for +2 mV

reduced
orbits

Only 1 iterate
shown (2 used)

|
0.370 0.375 0.380




Coarse-grained estimate part2

Continue where left off until Vincreases by:3mV. —
(m, V) plane is most autonomous (most accurate)

Na-V phase plane
T T

V nullcline motion
(n decreasing)

boundary
for +3 mV

== =‘“isochron”

|
0.07




Coarse-grained estimate part 3.

Iterating in each sub-regime to exit boundary.
Error in exit time differences < 0.002 ms

Analytically understand origin of this difference
micro-to-macro level

Could continue iterating in expansive part of (m, \/)

Or use “scaffolding principle”
Use final iterates as ICs to original 4D model

See when original model spikes
Predicts STDM(5.88) = -0.0355 (vs.-0.0397 actual)

Other insights

Dynamics up to +5mV sets both states to,be almost identical

Here, difference onlyiin n of +1E-5 for perturbed orbit yields
STDM = -0.04




Expansive region = analysis past ghosEor =
saddle-node bifurcation

+ V/ perturbations out here have almost stationary: virtual fixed-
point repeller behind them

positive feedback effect on increasing nis too slow to matter!

Na-V phase plane

0LV nullcline has almost
no local motion here

—20) .
m nullcline

V nullcline has local
motion (n increasing
again now)

60 state point @ t= 10

|
0.2 0.4 0.6




Multi-level moélig—n*TethodOlogy

Reverse engineering for optimal parsimony

=t

Ask a specific question that your model should solve

Make observations from experimental / simulation data

Mine data for important features / modules / motifs
Sensitivity analysis, bottlenecks, etc.

Hypothesize high-level conceptual model for them
Data-driven constraints

Hypothesis-driven constraints




Multi-level molng—‘h?ethodol Ogy-_:.:

Reverse engineering for optimal parsimony.

>

imposed surrogate
inputs

~—

Impose the hypotheses to one motif (“open the loop™)

Reduce the motif and determine local validity constraints
Open loop configuration

What worked and what didn’ t re. original question?
Compare gualitative features (avoid over-fitting)
Diagnostics and optimization to fine-tune




Multi-level moélig—n*TethodOlogy

Reverse engineering for optimal parsimony

Re-contextualize (non-trivial without good software)

Impose the hypotheses on the rest of the system,
by replacing model parts with reduced ones

What worked, and what didn’.t re. original question?
More diagnostic and optimization steps




Multi-level moélig—n*TethodOlogy

Reverse engineering for optimal parsimony

Continue process and build entire, hybrid model
Heterogeneous abstractions at multi-levels
Many inter-related consistency constraints
Re-closes loop

I call this a “scaffolding” approach
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An aspirational methodoelogy,

Seek conceptual models for causes at all levels

Build working micro-theories, test their assumptions and
predictions against data and functional hypotheses

Systematic, rational derivation of high-level emergent properties
from low-level details in @ complex system

Semi-analytic, semi-numeric

Use informatic software tools to

manage derivations
optimization, data fitting
enumerate combinations of possibilities
track consistency conditions
inference and qualitative reasoning

navigate the data produced
create more meaningful meta-data about models
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Built and simulated hybrid models

Fast C-code integrators w/ auto-code generation and event
detection

Interfaces to AUTO via PyCont

Model-building utilities / symbolic expressions
E.g. for symbolic Jacobians

Templates for conductance-based neural models
Phase plane analysis objects and tools
Optimization and inference tools

Advanced interactive scripting through Python
Mathematically-meaningful classes
Rich meta-data

_""

PyDSTool dynamical systems softwa‘r"é"




Overview of PyDSTool

Symbolic manipulation
Macros / constructors
Hierarchical structures

Intelligent editing tools ! !
Simulation

Maps
ODEs

DAEs
Model analysis Hybrid models Data analysis

(Precise events)
Bifurcation analysis (Arbitrary inputs) Subspace ID (e.g. PCA)
Sensitivity analysis Fractal dimension

Reduction analysis — : Feature detection
Phase plane Optimization

Feature detection etc.

PRC (adjoint and direct) |Parameter estimation
Qualitative reasoning

Inference
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PyDSTool dynamical systems software

Since 2006, hosted at pydstool.sourceforge.net
Tutorial, installation instructions, documentation

Basic features:
Entirely scripted / command line (like Matlab)
Index-free variables equations
Can use indices for macro structure
Context heavy (e.g., description/tag/label attributes)
Equations easily defined by constructors or directly as strings

State/time events, auxiliary “helper™ functions, external inputs,
Jacobians, special points
Fast ODE/DAE solvers + AUTO interface built in

C RHS of your vector field is'automatically: produced!
Essentially as fast as native C code!




