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Abstract

We discuss the ideas behind the absence of a corona in the multiplier
algebra of the Drury-Arveson space. Included are

o the Toeplitz corona theorem,

o the Koszul complex,

@ Charpentier's solution operators to d bar equations, and

@ the interplay with complex tangential vector fields.
These ideas extend to other Besov-Sobolev spaces of holomorphic

functions on the ball having varying degrees of smoothness, as well as to
vector-valued settings.
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Overview

@ Carleson’s classical Corona Theorem on the disk ID, Sibony's
counterexample in higher dimensions, the corona theorem for the DA
Hardy space H2.
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© © o o

Solving the 9 equation with estimates,

Charpentier’s solution kernels,

real variable spaces,

integration by parts and exchanging singularities,

Schur estimates,

operator estimates on iterates of Charpentier’s solution kernels, the
rogue terms.
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The Classical Corona Theorem

We discuss Carleson’s Corona Theorem, Sibony's counterexample in higher
dimensions, and our corona theorem.
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The classical corona theorem

@ In 1941, Kakutani asked if there was a corona in the maximal ideal
space A of H* (ID), i.e whether or not the disk ID was dense in A.
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Carleson’'s Corona Theorem

@ In 1962 Lennart Carleson

demonstrated in [9] the absence of a corona by showing that if
{gj}j.vzl is a finite set of functions in H* (D) satisfying

Z|gj )] >¢c>0, zeD, (1)
then there are functions {6'}1':1 in H* (ID) with

N
;5(2)&-(2):1, zeD. 2)
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Corona failure in higher dimensional domains

Sibony's counterexample

o Let {a,,}‘;o:1 be a sequence of points in the unit disk ID such each
point e € T = 9D is a nontangential limit point of {a,}°" ;. Let
{An} 7| be a sequence of positive numbers tending so quickly to 0

that:
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Corona failure in higher dimensional domains

Sibony’s counterexample

o Let {a,} -, be a sequence of points in the unit disk ID such each
point e € T = 9D is a nontangential limit point of {a,}°"_ ;. Let
{An}57_; be a sequence of positive numbers tending so quickly to 0
that:

@ the infinite product

A
z—apl| "

2

V(Z)Eﬁ

n=1

converges for z in D,
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Corona failure in higher dimensional domains

Sibony’s counterexample

o Let {a,} -, be a sequence of points in the unit disk ID such each
point e € T = 9D is a nontangential limit point of {a,}°"_ ;. Let
{An}57_; be a sequence of positive numbers tending so quickly to 0
that:

@ the infinite product

A
_an n

-1l

n=1

converges for z in D,
@ the function V is continuous in D, and
@ V (z) =0if and only if z = a, for some n > 1.
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A domain of revolution

@ Consider the open set of revolution

U= {(z,w) €C?: |zl <land |w| < e*V(z>}.
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A domain of revolution

@ Consider the open set of revolution
U= {(z w) €C?:|z| <land |w| < e_V(Z)}.

e If g € H*(U) and ||g||, <1, then one has

g(z,w) = ;i hi (z) wh, (z,w) € U. (3)
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A domain of revolution

o Consider the open set of revolution
U= {(z w) €C?:|z| <land |w| < e_V(Z)}.
o If g€ H®(U) and ||g||, < 1, then one has
g(z,w) = i he (z) Wk,  (z,w) € U. (3)
k=0
@ Cauchy's estimates yield

k
lhe (2)] < (%) sup g(zow) <@ <k zeD.
e z
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Extension of bounded holomorphic functions

Thus for each k > 1 the function hy € H® (ID) with ||y
since

< ek. But

o

I (an)] < Vo) = 1,

Fatou's theorem implies that for almost every e € T,

n (e"")\ - lim e (an)] < 1.
an

—ef® nontangentially

Thus we have the stronger bound || hx||, < 1, and it follows that the

series in (3) converges for all (z, w) in the open unit polydisk ID?. Thus U
is a domain of holomorphy that satisfies:

Every g € H® (U) extends uniquely to a function g € H* (ID?) with the
same norm.
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Failure of the two-generator Bezout equation

e For any point (¢, ) € D?\ U, there is § > 0 such that

lz—a’ +|w—B°>62>0, (z,w)e U.

E. T. Sawyer ( McMaster University) Corona Theorems June 18, 2012 10 / 75



Failure of the two-generator Bezout equation

e For any point (&, ) € D?\ U, there is § > 0 such that
z—a’ +|w—B°>6>0  (z,w)eU.
@ Yet there cannot exist g1, g € H* (U) satisfying
(-0 (zw)+ (w—Pa(zw) =1, (zw)eU,
since by unique continuation we would then have
(-0 w)+ (w—P) (2w =1, (zw)eD

contradicting the fact that the left hand side vanishes when

(z,w) = (&, ).
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Failure of the two-generator Bezout equation

e For any point (&, ) € D?\ U, there is § > 0 such that
z—a’ +|w—B°>6>0  (z,w)eU.
@ Yet there cannot exist g1, g € H® (U) satisfying
(z-—w)a(zw)+(w—P)g(zw)=1  (z,w)eU,
since by unique continuation we would then have
(z-a)g(zw)+(w—B)&(zw) =1 (z,w)€D?

contradicting the fact that the left hand side vanishes when
(z.w) = (a. B).

@ Sibony then embeds this domain in the boundary of a smooth domain
Q) C C3 which is strongly pseudoconvex at all boundary points but
one, and fails the three-generator Bezout equation.
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Our main result

@ Our main result is that the corona theorem, namely the absence of a
corona in the maximal ideal space, holds for the multiplier algebra of
the Drury-Arveson Hardy space H? in n dimensions.
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Our main result

@ Our main result is that the corona theorem, namely the absence of a
corona in the maximal ideal space, holds for the multiplier algebra of
the Drury-Arveson Hardy space H2 in n dimensions.

@ More generally, we obtain the corona theorem for the multiplier
algebras MBg(]Bn) of the Besov-Sobolev spaces By (B,), 0 < ¢ < %

1
on the unit ball B, in C". The space H2 occurs as B} (B,), while
B9 (B,) is the Dirichlet space.
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Our main result

@ Our main result is that the corona theorem, namely the absence of a
corona in the maximal ideal space, holds for the multiplier algebra of
the Drury-Arveson Hardy space H2 in n dimensions.

@ More generally, we obtain the corona theorem for the multiplier
algebras Mpg(p,) of the Besov-Sobolev spaces BY (B,), 0 < o < %

1
on the unit ball B, in C". The space H2 occurs as B} (B,), while

B9 (B,) is the Dirichlet space.

@ The space By (B,) consists of those holomorphic functions f whose

derivatives of order 7 — ¢ lie in the classical Hardy space

H? (B,) = B; (B,), equivalently whose antiderivatives of order ¢ lie
in the Dirichlet space:

(o f Jo-w) e

—n—1
where dA, (z) = (1—|z|? dV (z) is invariant measure.

2 3
dA, (z)} < 00,
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The Drury-Arveson
Hardy Space #2
on the unit ball in ¢~

We discuss von Neumann's classical inequality and Drury’s extension to
multivariate operators. This introduces the Drury-Arveson Hardy Space
H? and indicates its central role in operator theory.
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The DA Hardy space

The first hint that the classical Hardy space H? (B,) (consisting of
holomorphic functions on the ball with L2 (¢') boundary values) may not
be the correct generalization of the classical Hardy space on the disk came
with the failure of von Neumann's inequality in higher dimensions. Recall
the classical inequality:

Theorem

(von Neumann 1951 [17]) Let H be a Hilbert space and let f be a
complex-valued polynomial. Then for any contraction T on H,

D ly—n < NS etz = 11l ey -

where S* is the backward shift operator on H*> = H? (D).

Drury found the correct generalization to the multivariable setting.
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Drury's generalization

@ Let A= (A1,..., A,) be an n-contraction on a complex Hilbert space
‘H, i.e. an n-tuple of linear operators on H satisfying

AiA; = AcA; forall 1 < j k < n, and Y [|A;h]|> < |[h]|* for all h € F
j=1
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Drury's generalization

o Let A= (Ay,...,A,) be an n-contraction on a complex Hilbert space
‘H, i.e. an n-tuple of linear operators on ‘H satisfying

n
AiA = AcA; forall 1 < j k < n, and Y [|A;h]|> < |[h])* for all h € F
j=1
@ Drury showed in 1978 [13] that if f is a complex polynomial on C”,
then
£ A< [y, 4
for all n-contractions A on H where ||f (A)|| is the operator norm of
f(A) on H, and HfHM)C(]B : denotes the multiplier norm of the
polynomial f on Drury's Hardy space of holomorphic functions

k!
K (B,) = {Zakzk, zeB,: Z|ak|2 T < oo},
P P :

denoted by H2 in Arveson 1998 [1] (who also proves (4)).
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Drury's generalization

o Let A= (Ay,...,A,) be an n-contraction on a complex Hilbert space
‘H, i.e. an n-tuple of linear operators on ‘H satisfying

n
AiA = AcA; forall 1 < j k < n, and Y [|A;h]|> < |[h])* for all h € F

j=1
@ Drury showed in 1978 [13] that if f is a complex polynomial on C”,
then
OIS, *)

for all n-contractions A on H where || (A)|| is the operator norm of
f (A) on 'H, and Hf||MK(]B : denotes the multiplier norm of the

polynomial f on Drury's Hardy space of holomorphic functions

{Zakz 2By Ll ‘k’ }

denoted by H2 in Arveson 1998 [1] (who also proves (4)).
@ Moreover, equality holds in (4) when A is the n-tuple (S5, ..S;)
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Chen’s identification of the DA space

@ In 2003 Chen [11] has identified the Drury-Arveson Hardy space

1
K (B,) = H? as the Besov-Sobolev space B (BB,) consisting of
those holomorphic functions ), a,z* in the ball with coefficients ay
satisfying
o |k (n—1)1k!
MEN
p (n—1+ |k|)!

< 00,
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Chen’s identification of the DA space

@ In 2003 Chen [11] has identified the Drury-Arveson Hardy space
K (B,) = H? as the Besov-Sobolev space 82% (B,) consisting of
those holomorphic functions ¥, a;z* in the ball with coefficients a,
satisfying
o |k|" (n—1)1k!
VL Ry P Y

< 0.

@ The multiplier norms are equivalent:

1l ~ 1l
B7 (Bn)
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Chen’s identification of the DA space

@ In 2003 Chen [11] has identified the Drury-Arveson Hardy space
K (B,) = H? as the Besov-Sobolev space 82% (B,) consisting of
those holomorphic functions ¥, a;z* in the ball with coefficients a,
satisfying
o |k|" (n—1)1k!
VL Ry P Y

< 0.

@ The multiplier norms are equivalent:

11 s,y = Ml
8% (Bn)

@ We note in passing that a number of operator-theoretic properties of
the Hilbert space H? are developed by Arveson in [1], including some
model theory, that point to its central position in multivariable
operator theory.
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The corona problem
for multiplier spaces in ¢

We introduce the baby corona problem, the Toeplitz Corona Theorem, and
our baby corona theorem.
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The baby corona problem

@ Let X be a Hilbert function space and let My be its multiplier
algebra. The so-called baby corona problem for X is this: given

g1, ...8n € My satisfying
& ()P + .. +len (2)P>c>0, ze€Q, (5)

is there a constant & > 0 such that for each h € X there are
fi,...fy € X satisfying

1
Ial% + -+ Iflx < 3 A% . (6)
h(z)g(z)+...+n(z)gn(z) = h(z2), ze

June 18, 2012
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The baby corona problem

@ Let X be a Hilbert function space and let Mx be its multiplier
algebra. The so-called baby corona problem for X is this: given
g1, ---&n € My satisfying

& () + .. +lan ()P > >0, zeQ, (5)
is there a constant & > 0 such that for each h € X there are
fi,...fy € X satisfying

1605+ Il < 5 I1AlG. (6)
A(2)a(z)+...+n(2)gnv(z) = h(z), ze?
@ More succinctly, (6) is equivalent to the operator lower bound
MgMy, —6lx >0, (7)
where g = (g1, ...8n), Mg : ®VX — X by M,f = ZLV:1 gufy, and
Mih= (Mg f),,.
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Toeplitz Corona Theorem

For f = (f,))_, € ®¥X and h € X, define M¢h = (f,h)"_, and

HfHMult(X,GBNX) = [IM¢llxonx = sup [[M¢h[|guy -
[hllx <1

2
Note that maxi<a<n [ My, < ([l mpurex,anx) < \/221:1 My -

(Toeplitz Corona Theorem) Let X be a Hilbert function space in an
open set Q) in C" with an irreducible complete Nevanlinna-Pick kernel. Let
6>0and N € IN. Then g1,...gn € Mx satisfy the operator lower bound
(7) with 6 > 0 if and only if there are fi,...fy € Mx such that

||f||l\/lu/t(X,€BNX) < 1 (8)
h(2)eg(2)+..+fw(2)en(z) = V6, zeQ.

E. T. Sawyer ( McMaster University) Corona Theorems June 18, 2012 18 / 75



The baby corona problem for two generators

@ In 2000 J. M. Ortega and J. Fabrega [18] obtain partial results with
N = 2 generators in (6) for the Banach spaces B] (B,) with

o e [O, %) U (g,oo) and 1 < p < o0; and also for the case N = 2
with 0 = 2 when 1 < p < 2. In [19] 2006, they prove the analogous
results for the Hardy-Sobolev scale of spaces.
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The baby corona problem for two generators

@ In 2000 J. M. Ortega and J. Fabrega [18] obtain partial results with
N = 2 generators in (6) for the Banach spaces B (B,) with
s {0, %) U (%,oo) and 1 < p < o0; and also for the case N = 2
with 0 = 2 when 1 < p < 2. In [19] 2006, they prove the analogous
results for the Hardy-Sobolev scale of spaces.

@ To handle N = 2 generators they exploit the fact that a 2 x 2
antisymmetric matrix consists of just one entry up to sign:

() - 2(5)-1551(2)

2081 — 810>
w = W is a closed (0, 1)-form.
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Baby Corona Theorem ([12] 2008)

Let0 <o <ocoandl < p<oco. Given gi,....8n € MBg(]Bn) satisfying

N
Z (2)?>1 zeB,

there is a constant Cp, N p such that for each h € By (B,,) there are
fi,....fn € By (B,) satisfying

Mz

|| g@,) < Coonp (&) Il - (9)

fi(z)g(z) = h(z), ze€B,

'F’JZ _

—
Il
oy

v
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Consequences

Corollary

([12] 2008) Let 0 < o < 1. Then the Banach algebra Mpg(B,) has no
corona, i.e. the linear span of point evaluations e, (f) = f (z),
f € Mpg,) and z € By, is dense in the maximal ideal space of Mgg(p,,).

In particular the multiplier algebra of the Drury-Arveson space H? has no
corona.

@ Proof: The corollary follows using functional analysis from Theorems
4 and 3 since the spaces By (BB,,) have an irreducible complete
Nevanlinna-Pick kernel when 0 < g < %
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Consequences

Corollary

([12] 2008) Let 0 < o < 1. Then the Banach algebra Mpg(B,) has no
corona, i.e. the linear span of point evaluations e, (f) = f (z),

f € Mpg,) and z € By, is dense in the maximal ideal space of Mgg(p,,).
In particular the multiplier algebra of the Drury-Arveson space H? has no
corona.

@ Proof: The corollary follows using functional analysis from Theorems
4 and 3 since the spaces BY (B,) have an irreducible complete
Nevanlinna-Pick kernel when 0 < o < %

@ The baby corona theorem holds for infinitely many generators N = oo
with appropriately defined norms.
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In order to treat N > 2 generators in (6) with estimates independent of N,
we need: to use the Koszul complex, its factorization in the exterior
algebra, to invert higher order forms in the 9 equation, and in order to
obtain results for o > % to devise new estimates for the Charpentier
solution operators for these equations.

In particular the novel estimates include

@ the use of sharp estimates on Euclidean expressions ‘(W —z) %f‘ in

terms of the invariant length |1 — wz||¢@, (w)| multiplied by the
invariant derivative ‘67“

@ the use of the exterior calculus together with the explicit form of
Charpentier's solution kernels to handle rogue Euclidean factors
W~ ), and

@ the application of generalized operator estimates of Schur type to
obtain appropriate boundedness of solution operators.

E. T. Sawyer ( McMaster University) Corona Theorems June 18, 2012 22 /75



The Koszul complex

We introduce complex derivatives and differentials and describe how the
Koszul complex reduces the corona problem to estimates.
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The d-bar equation

@ Define
9 _1(a 9 9 _1(9 9
dz 2 \ox idy)’ 0z 2 \ox idy
where z = x + iy and dz = dx + idy, dz = dx — idy. Let

of =Y —dz
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The d-bar equation

@ Define
9 _1(9 9 9_1(9_ 90
dz 2 \ox oy )’ 0z 2 \ox idy

where z = x4+ iy and dz = dx + idy, dZ = dx — idy. Let

5f:[n:£ Zk
k=1

e Given a (0,1)-form 5 (z) =1, (z) dzi + ... + 11, (z) dz in the ball

B,, the d-equation for # is

of =7 in the ball B,,. (10)
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The d-bar equation

@ Define

9 _1(9 9 9_1(9_ 90
dz 2 \ox oy )’ 0z 2 \ox idy

where z = x4+ iy and dz = dx + idy, dZ = dx — idy. Let

~ & of
of = Y ~dz
Hon

o Given a (0,1)-form 1 (z) = 1, (z) dz1 + ... + 11, (z) dZ, in the ball
B, the 0-equation for 7 is

of =7 in the ball B,. (10)

o More generally, we can let 7 = Y |—p,|Jj=q+1 7, 4 (2) dz' A dz’ be a
(p, g+ 1)-form in the ball and ask for a (p, g)-form f to satisfy (10).

E. T. Sawyer ( McMaster University) Corona Theorems

June 18, 2012 24 /75



The Koszul complex

o If g = (gj)JI.V:1 satisfies |g|* = 21’-\/:1 lg> > 1, let

N
g § N
- %= (5)" o
& &™) i

which we view as a 1-tensor (in CV) of (0,0)-forms with components

0f () =7
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The Koszul complex

o If g = (g,rj)j.v:l satisfies |g|* = ZJ’-\’Zl |gj|2 >1, let

o . N
0j= % - (g) _ @)Y,

2
g l&l” /) 2y

which we view as a 1-tensor (in CV) of (0,0)-forms with components

0} (j) = 5.
@ Then f = Q(l)h satisfies f - g = h, but in general fails to be
holomorphic.
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The Koszul complex

o If g = (g,rj)j.v:l satisfies |g|* = ZJ’-\’Zl |gj|2 >1, let

_ _\N
af =55 = <g> = (Q5G),

2
gl l&l” /) 2y

which we view as a 1-tensor (in CV) of (0,0)-forms with components

1( — &
@ Then f = Qll)h satisfies f - g = h, but in general fails to be
holomorphic.

@ The Koszul complex provides a scheme when g, h are holomorphic for
solving a sequence of 0 equations that result in a correction term
AgF% that when subtracted from f above yields a holomorphic
solution to f - g = h.
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Lifting of forms, or division of vectors

_ N _ N
@ The 1-tensor of (0,1)-forms 0Q)y = (a‘gf‘ ) (803 (j)) ) is
=
given by

_ . 1 N
90} (j) = ag,z = Y & {208 — 0geg; ).
k=1
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Lifting of forms, or division of vectors

_ N _ N
@ The 1-tensor of (0,1)-forms 0Q)y = (a £ ) (aQ(l) (J)) is

lg | j=1
given by
o0y (j) = |g| Z «{grdg; — daxe;}-
=1
@ A key fact is that this 1-tensor of (O 1)-forms can be written as
a0 = A O = 2
k=1 j:1
where the 2-tensor )2 of (0, 1)-forms is given by
N
2 _ o2 oV _ | {8k9g — dgkgi}
07 = [Ql (Jv k)L’,k:l - [ ’ 4 ’ :
&l k=1
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Lifting of forms, or division of vectors

_ _ o \N _ N
@ The 1-tensor of (0,1)-forms 0Q)y = (8&) = (aﬂ(l) (J)) . is
j=1 j=

given by

= N

00 (j) =0 || Z {gkogj — dgkg;}-
k=

1
o A key fact is that this 1-tensor of (0, 1)-forms can be written as

N N
00 = A O] = [Z ]

j=1

where the 2-tensor )2 of (0, 1)-forms is given by
N
Oz — de.o
=
&l k=1

@ Thus the form 90} has been factored as (or lifted to) A, Q? where
Q% is alternating.
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Repeating the division

@ We can repeat this division process to obtain

N

N
003 = A Q3 = [Z Q3 (j, k, 0) gg] :
(=1 jok=1

where the alternating 3-tensor ()3 of (0, 2)-forms is given by
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Repeating the division

@ We can repeat this division process to obtain

N

. N
30 = A0} = [z 036, k. ) gg]
(=1 j k=1

where the alternating 3-tensor Q)3 of (0, 2)-forms is given by

o
3 3¢ N
0 = [ RUKO];
N
- lz{gz (9gx A 9g;) + gk (9g; /\ Igr) — & (9gk Aagé)}]
g|® Jokt=1
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The division calculation

o Here is the calculation: 90 (j, k) =

9| {gxog; — gioex}
lg|* 20g N og; —21g|’ 9 |g]’ A {gkdg; — goex )}

gl°
(Tt s87) 96 705 - 2 (2L 695:) 1 (08— 618
lg|°
2 N
— H Y gi{gr (98 N 9g;) — g« (0g¢ A dgj) + & (9g¢ A g }-
/=1
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The division calculation

o Here is the calculation: 90 (j, k) =

0| {&x0g; — giogx}
lg|* 20g A og; —2|g|’ 9|g]’ A {gkdg; — goex}
g|®

, (Zévzl g@) gk N dgj — 2 (22":1 gz("?z) A{gog — dgrg;
6

g

2 N
= r Y gi{gr (dgk N 9gj) — gk (0ge N 9g;) + g; (3g N dgk) }-
(=1

@ Now recall that h is holomorphic. Thus Qgh is 0-closed since every
(0, 2)-form is d-closed, and this will allow us to solve the 9 equations

oy = Qdn;
oMy = Q2h— A,T;.
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Solving the complex in two dimensions

@ Since Qgh is 0-closed and alternating, there is an alternating 3-tensor
I3 of (0, 1)-forms satisfying

oI = Q3h.
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Solving the complex in two dimensions

e Since O3h is 0-closed and alternating, there is an alternating 3-tensor
I3 of (0, 1)-forms satisfying

ors = Q.

o Now note that the 2-tensor Q2h — A,I3 of (0, 1)-forms is 0-closed
since both h and g are holomorphic:

0 (QTh— A T}) = 00Th — AT = AgQ3h— AgQO3h = 0.
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Solving the complex in two dimensions

e Since O3h is 0-closed and alternating, there is an alternating 3-tensor
I3 of (0, 1)-forms satisfying

ors = Q.
o Now note that the 2-tensor Q2h — A,I3 of (0, 1)-forms is 0-closed
since both h and g are holomorphic:
0 (QFh— A T3) = 00Fh —0A, T} = AgQ3h— AgQ3h = 0.

@ Thus there is an alternating 2-tensor F% of (0,0)-forms, i.e. functions,

satisfying B
o3 = Q2h — A,T3.
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The Bezout equation

o Now
f=Qfh— AT}

is holomorphic since F(Q) is alternating:
3 (Qbh— A T2) = (505) h— AgoT?

(AgO) h— Ag (OFh — A,TY)
= Ag (Agri) = l"% (g.g)=0.
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The Bezout equation

o Now
f=Qfh— AT}

is holomorphic since 1"[2) is alternating:
3 (Ofh— A2 = (50(1)) h— AgoT2

= (AgQ]) h— Ay (Q3h— AT3)
= /g (Agri) = FS (g.g)=0.

@ Thus we compute that

f-g=Qfh-g—AT5-g=h—0=h
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Factorization of the Koszul complex

e With the standard basis {e,-},/-V:1 for the exterior algebra on CV,
Andersson and Carlsson obtained the following factorization of the
Koszul complex:

N
0 - [{gkagj agkgj}]
4
&l k=1
= 2 {gk gj 4gkgj}ej/\ek
1<j<k<N g
N — N 3
= -2 (Z gj4€j> A\ (Z gﬁek> = Q(l) /\Ql;
j=1 |g| k=1 |g|
b __
Qi = —(t+1)05A N\ Q.
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Factorization of the Koszul complex

o With the standard basis {e;} ", for the exterior algebra on CV,
Andersson and Carlsson obtained the following factorization of the
Koszul complex:

N
Q- [{gkag,-—agkg,-}]
- 4
’g’ jok=1
= 2 {gk gj 4gkgj}ej/\ek
1<j<k<N g
N — N N
= -2 (]E gj4€j> A\ <Z gﬁek> = Q(l)/\ﬂl;
=1 g] k=1 |g]
e __
Qi = —(t+1) 05 A N\ Q.

@ The Hilbert-Schmidt norm is multiplicative on tensors, hence
quasi-multiplicative on wedge products with constant depending only
on the number of factors and not on N.
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Charpentier’s solution kernels

We describe Charpentier's solutions of the d-equation in the ball, which
are superbly adapted to solving the corona problem. But first it is useful to
compare the d-equation above with the more familiar gradient V equation
in real Euclidean space, and then to introduce the Cauchy-Leray form.
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The Cauchy kernel

@ In one complex dimension, the equation 9f = 1 is easily solved using
the Cauchy kernel,

0 R R ACO W

27t Jpw — z

- L/ (W*Z)ﬂ( ) dw A dw,

27Ti D |w — z|
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The Cauchy kernel

@ In one complex dimension, the equation 9f = 1 is easily solved using
the Cauchy kernel,

N B GO
Cn(z) = 57 ]DW_ZdW/\dW

1 (w—2z) _

@ together with the distributional equation

91 _ 1
0zz %
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The Cauchy kernel

@ In one complex dimension, the equation 9f = 1 is easily solved using
the Cauchy kernel,

N B GO
Cn(z) = 57 ]DW_ZdW/\dW

1 (w—2z) _

@ together with the distributional equation

01 1
2z 7o

@ to obtain

acy (2) =1 (2).
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Charpentier's solution kernels

We begin with some notation. Denote by A : C" x C" — [0, o) the map:

A(w,z) = |1—Wf\2—(1—yw|2) (1—\2\2) (11)
= (1=12P) Iw= 2P+ 2w = 2)P
= (1= |wP) |w =z + [w(w - 2)]

= [1-wzl*lg, (2))?

= [1-wz]*|g, (W)

= ‘ (z—w)+4/1 |2QW (z—w)
2

= (z—w) —1z|°Q; (z — w)
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The Cauchy-Leray form

The Cauchy-Leray form

_ 1 Ve (A dET AT - e —
Pl(C,W,Z)—(C( (=1)"71¢; [Aj#idE;] Ay d(w; — z:),

w—2z))" o
is a closed form on C" x C" x C". One then lifts the form u via a section

s:C" xC" — C" to give a closed form on C" x C":

. _ 1  Dile (o 2) A de] AT Wi —
s 2) = (s(w,z)(w—2z))" :;( s (e 2) [Py Ny o (o

Now fix s to be the following section used by Charpentier:
s(w,z) = w(l —wz) —z(1— |w]?). (12)

We compute that s(w, z)(w — z) = A (w, z) by (11).
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Charpentier’s forms

@ Define the Cauchy Kernel on B, x B, by C, (w, z) = s*u(w, z)
where s is Charpentier’s section.

Definition

For0<p<nand0<qg<n—1welet Ch? be the component of
Cn (w, z) that has bidegree (p, q) in z and bidegree (n —p,n— g —1) in
w.
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Charpentier’s forms

o Define the Cauchy Kernel on B, x B, by C,, (w, z) = s*u(w, z)
where s is Charpentier’s section.

Definition

For0<p<nand0<qg<n—1welet Ch? be the component of
Cn (w, z) that has bidegree (p, q) in z and bidegree (n —p,n— g —1) in
w.

e Thusif7isa (p,q+ 1)-form in w, then Ci'? Ay is a (p, g)-form in z
and a multiple of the volume form in w.
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Charpentier’s forms

o Define the Cauchy Kernel on B, x B, by C,, (w, z) = s*u(w, z)
where s is Charpentier’s section.

Definition

For0<p<nand0<qg<n—1welet Ch? be the component of
Cn (w, z) that has bidegree (p, q) in z and bidegree (n —p,n— g —1) in
w.

e Thusif7isa (p,q+ 1)-form in w, then Ci'? Ay is a (p, g)-form in z
and a multiple of the volume form in w.
@ We next give explicit formulas for Charpentier's solution kernels

Cg’q(w,z).
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Charpentier’s forms

o Define the Cauchy Kernel on B, x B, by C,, (w, z) = s*u(w, z)
where s is Charpentier’s section.

Definition

For0<p<nand0<qg<n—1welet Ch? be the component of
Cn (w, z) that has bidegree (p, q) in z and bidegree (n —p,n— g —1) in
w.

e Thusif7isa (p,q+ 1)-form in w, then Ci'? Ay is a (p, g)-form in z
and a multiple of the volume form in w.
o We next give explicit formulas for Charpentier’s solution kernels

Cr9(w, z).
o Let w,(z) = Aj_; dz;. For n a positive integer and 0 < g < n—1
let Py denote the collection of all permutations v on {1,...,n} that

map to {iy, Jy, L, } where J, is an increasing multi-index with
card(Jy) =n—q—1and card(L,) = q. Let e, = sgn(v) € {—1,1}
denote the signature of the permutation v.
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Explicit formulas for Charpentier kernels

Let n be a positive integer and suppose that 0 < g < n— 1. Then

Cri(w.z) = ) (-1)7®f(w.2)sgn(v) (W;, — )

vePd

x N\ dwj N\ dzi \wa (w).

Jjedhy leLy

_W?n—l—q _W2 q
WhereQDf,’(w,z)E(1 )A(Wz()lnl ) for0<qg<n-—1.

We can rewrite the formula for C,?’q (w, z) as
O (w,z) = ®I(wz) ¥ Y (1)) (z —wp)
[J|=q k¢J
xdz? A dw DA w, (w).
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Explicit formulas for kernels in two dimensions

We have the formulas

C3°%(w, z)
1-wz) -
m [(22 - W2)dW1 A dwy A dwy — (21 — Wl)dW2 A dwy A dW2]

and

Cyt (w, z)
m[(w — 2,)dZ1 A dwy A dwo — (W1 — 21)dZ; A dwy A dws]
Alw 22 |(W2 = 22)d2 1 2 1—21)dz; 1 n)

E. T. Sawyer ( McMaster University)

Corona Theorems June 18, 2012 38 /75



An explicit formula for a kernel in three dimensions

@ In n = 3 dimensions, the simplest kernel is given by

€57 (w,2)

— Y sen(o) (1—wz)* ¢ (1 — ]W|2)" (zg(l) - Wa(1))

7ESs A (W,z)3

Xd?@)/\ d€0<3> N w3 (W) )
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An explicit formula for a kernel in three dimensions

@ In n = 3 dimensions, the simplest kernel is given by

€37 (w,2)

= Y sgn(o) (1—wz)> 9 (1 — |W|2)q (20(1) - Wa(l))

(7683 A(W'Z)?)

Xdég(z) VAN dgo‘(}}) N w3 (W) ,

@ where S3 denotes the group of permutations on {1,2,3} and g
determines the number of dz; in the form d{, o) A dly(3):

dWU<2) A dW(T(3) if q = 0
d€0.<2) A\ dC(7<3) = dZO-(2) A dWU-(3) if q = 1
dZU<2) A dZU(3) if q = 2
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Real variable spaces

We introduce real variable analogues of the holomorphic Besov-Sobolev
spaces.
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Invariant derivatives

@ Define
0 0 — 0 0
V, = <821"82n> and V, = <821'Y82n>
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Invariant derivatives

@ Define
0 d — d d
Vz— (azl’,azn) and Vz = (azl"azn)

@ Fix & € 7, the Bergman tree and let a = ¢,. Recall that the gradient
with invariant length given by

Vf(a) = (fog,) (0)=f(a)¢,(0)

—f'(a) { (1 - \a|2) P, + (1 - a|2)% Qa}

fails to be holomorphic in a.
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Invariant derivatives

@ Define
0 d — d d
vz— <azl’,azn> and Vz = (azl"azn>

o Fix & € 7, the Bergman tree and let a = ¢,. Recall that the gradient
with invariant length given by

Vf(a) = (fog,) (0)="r"(a)¢),(0)

= —f'(a) {(1 - |a|2) P, + (1 = \al2); Qa}

fails to be holomorphic in a.
@ To rectify this, we define for z € B,

D.f (z) = f'(2) ¢, (0) (13)

= f/(z){(la\2> Pa+(1a\2)50a}-
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The two-dimensional derivative

@ When n = 2 we can calculate D, neatly using the basis
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The two-dimensional derivative

@ When n = 2 we can calculate D, neatly using the basis

=(n)=(2))

@ In the basis {a, aL}, we compute that—D, is

((1 - ‘312) <318821 +828622> : (1 - \a]2>; (3288 +31822>> ,

where at the point a, (31% + 32%> f(a)= f! (a) a is the complex

radial derivative of f at a, and <—‘TQ% +?1%> f(a)=f"(a)alis
the complex tangential derivative of f at a.
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A tree seminorm

Lemma

Let a, b € B, satisfy p(a, b) < C. There is a positive constant Cp,
depending only on C and m such that

G IDPf (2)] < |DF'f (2)] < G [DFF (2)]

for all f € H(B,).

Definition

Suppose 0 > 0, 1 < p < o0 and m > 1. We define a “tree semi-norm”
H'||Eg,m(113") by

fll e = /
1155, 8,) (Z By(cuC)

aeT,

o=

(1-127)" Df (z)‘p A, (z)> . (14)

v
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Pointwise multipliers

We have

m—1 )
113 ) + X |7/ ©)] ~ Iflsg, 5,)-
j=0

Let 9 € H* (B,) N By (By). If m> 2 —0 and 0 < 0 < oo, then ¢ is a
pointwise multiplier on By (B,) if and only if

(1-12) " 970 2 " dh (2) (15)

is a By (B,)-Carleson measure on B,,. If m > 2 (% - 0) and
0 <o < J+1, then (15) can be replaced by

(1- 21*) D™y (z))P dAn (2).
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The real variable Besov space

Definition

We denote by X' the vector of all differential operators of the form -
X1Xo... Xm where each X; is either the identity operator /, the operator D,

or the operator <1 - |z|2) R. We calculate the products X1 X5...X, by
composing D, and (1 - |a|2) R and then setting a = z at the end. Note

that D, and (1 — ]a\z) R commute since the first is an antiholomorphic

derivative and the coefficient z in R = z - V is holomorphic.

Definition

We define the norm ||'||A‘,§m(an) for f smooth on the ball B, by

1Flag oo = (
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(1- |z|2)‘7xmf(z)|p dA, (z)>’1’ . (16)




z=w)" amF(W)‘gc( A(W'Z)>m‘DmF(w)), m=|a|.

1—|wl?

(17)

< c{(1—yzy2)A(W,z)%+A(W,z)](18)
‘(1—|Z|2>RA(W,Z)‘ < C<1—|z|2) A(w, z),

m
2

‘D;"{(l—Wz)k}‘ < C|1—Wz|k<1_|z|2> (19)

|1 —wz|

‘(1—1212)"'Rm{<1—m>k}‘ < cy1—wz\k<|11:’vzvfl> .
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Integration by parts
We generalize the integration by parts formulas of Ortega and Fabrega.
These formulas serve to relax the singularities of the kernel on the diagonal
and boundary at the expense of differentiating the form.
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A reproducing vector field

o Let Z = Z,,, be the vector field acting in the variable w = (wi, wo)
and parameterized by z = (z1, z2) given by

Z=Zon= (7)ot (BT s (20)

Wi owy
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A reproducing vector field

o Let Z = Z,,, be the vector field acting in the variable w = (wy, wy)
and parameterized by z = (z1, z2) given by

— d

(20)

e The (0,1)-form Z"5 is obtained from 5 by componentwise
differentiation holding monomials in W — Z fixed, and acts on the
vector field Z to obtain

(™) 2] = (ZZJW de> (2(%-4)88%,)
= Y - Z)E (W) + (-2 2" ().

k=1
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A reproducing vector field

o Let Z = Z,,, be the vector field acting in the variable w = (wy, wy)
and parameterized by z = (z1, z2) given by

2= Z = (W 7) s + (- 7) (20)

w1 ows

e The (0,1)-form Z"7 is obtained from 5 by componentwise
differentiation holding monomials in w — Z fixed, and acts on the
vector field Z to obtain

—m _ 2 — 2 9
(™) 2] = (;Z nk(w)dwk> Z(Wj—zj-))
- k"zlwl—z1>z’”m<w>+<m—z2>zmn2<w>.

o A key property is Z A\ (w,z) = A (w, z).
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The covariant derivative

e The Charpentier kernel C3'9 (w, z) takes (0, g + 1)-forms in w to
(0, g)-forms in z. In order to express the solution operator C29 in
terms of a volume integral, our definition of @mn, must include an
appropriate exchange of w-differentials for z-differentials.
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The covariant derivative

o The Charpentier kernel C3'9 (w, z) takes (0, g + 1)-forms in w to
(0, g)-forms in z. In order to express the solution operator C29 in
terms of a volume integral, our definition of 5”717, must include an
appropriate exchange of w-differentials for z-differentials.

Let m>0. Fora (0,q+1)-form 1 = ¥ jj—q11 1,dw' in the variable w,

define the (0, q)-form 5"177 in the variable z by

Dy (w)= ¥ 2" (yadw’) [Z] (w) d’.
J|=q
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Explanation of the derivative

The effect of D" on a basis element 17,dw' is to replace a differential dwjy
from dw' (I = JU {k}) with the factor (—1)"*) (W — 2) (and this is
accomplished by acting a (0, 1)-form on Z), replace the remaining
differential dw” with dz’, and then to apply the differential operator Z
to the coefficient #,. We will refer to the factor (W, — Z) introduced

above as a rogue factor since it is not associated with a derivative -2 in

Wy
the way that (w — z)" is associated with 2. The point of this distinction
will be explained later when dealing with estimates for solution operators.
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Relaxing diagonal singularities with covariant derivatives

The following lemma expresses CS"’q (z) in terms of integrals involving
T)’iy for 0 < j < m. Note that the overall effect is to reduce the

singularity of the kernel on the diagonal by m factors of /A (w, z), at the
cost of increasing by m the number of derivatives hitting the form 7. Let

(1—wz)" " (1— |W|2)£

CD,{ (w,z) = Aw.2)

Let g > 0. For all m > 0 we have the formula,

m—1

8o (2) = L, e (D) () + L e (D"0) (). (20

k=0
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Relaxing boundary singularities with radial derivatives

@ Recall R=Y7_, vvj-a%j and Ry = 224 4+ 4R

Let b> —1. For ¥ € C (B,) N C*® (B,) we have

Lo W) Fw)av (w) = [ (1= |wl?) " Ry¥ (w)dV (w).
B B

n n
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Relaxing boundary singularities with radial derivatives

o Recall R = Yy wj55- and Ry = 5274 + iR,

Let b> —1. For ¥ € C (B,) N C*® (B,) we have

Lo W) Fw)av (w) = [ (1= |wl?) " Ry¥ (w)dV (w).
B, B

n

@ The important point is that combinations of radial derivatives R and
the identity / are played off against powers of 1 — \W]Q, thus relaxing
the singularity of the kernel on the boundary at the expense of
differentiating the function.
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Relaxing boundary singularities with radial derivatives

o Recall R = Yy wj55- and Ry = 5274 + iR,

Let b> —1. For ¥ € C (B,) N C*® (B,) we have

Lo W) Fw)av (w) = [ (1= |wl?) " Ry¥ (w)dV (w).
B, B

n

@ The important point is that combinations of radial derivatives R and
the identity / are played off against powers of 1 — |W|2, thus relaxing
the singularity of the kernel on the boundary at the expense of
differentiating the function.

@ Typically this lemma is applied with ¥ (w) = ﬁl[) (w, z), where

z is a parameter in the ball B, and then RY (w) = ﬁRl[] (w, z)

since

is antiholomorphic in w.

1
(1-wz)*
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Exchanging boundary singularities for tamer ones

Lemma

Suppose that s > n and 0 < g < n—1. For all m > 0 and smooth
(0, g + 1)-forms i in B,, we have the formula,

CB20/(2) = 5 chnsSos (') [2) (2)+ 2 ctns®h (D7) (2,

where the ameliorated operators S, s and P! s have kernels given by,

1_ |W|2 s—n—1 1
S 1 = [ — 1
ns (W, z) Cn,s ( 1 — w2 ) (1— )n+1
1

wz

&, (w,2) :cpqwz)(l—rwl) f ((1—|w|2><1—|z"
men AT 1—wz =

11— wz|?

N

The point is to exchange boundary singularities with tamer ones.
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Schur's Test

Scur’s test is surprisingly effective in dealing with boundedness of the
ameliorated Charpentier solution operators on the real-variable Besov
spaces.
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Schur's Test

Here we characterize boundedness of the positive operators that arise as
majorants of the solution operators below. The case ¢ = 0 of the following
lemma is Theorem 2.10 in Zhu [27]. Note the balance of powers in
numerator and denominator.

Lemma

Let a, b, c,t € R. Then the operator

—z2a —W2b W,ZC
(1-127)" (1= 1wP) (VA w.2) )V (o

n+14a+b+c

Tonof (2) = /

t
is bounded on LP (]B,,; (1 — |w|2) dv (w)) if and only if c > —2n and

—pa<t+1<p(b+1). (22)

v
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Operator estimates

on iterates of
Charpentier’s solution kernels

We describe how to use integration by parts, the crucial inequalities, and

Schur estimates to prove the baby corona theorem. The rogue terms are
discussed.
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The main estimate in two dimensions

From the Koszul complex we must show that f = Qgh — AI'§ € BS (B,)
where

f o= Qfh— AT}
= Ofh— ACY2 (QFh— A.TT)
= Ofh— AgCog Oih+ AgCorg AgCyry O3
= ]—“0—]-“1+]-"2.
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The goal is to establish
HfHBg(IBQ) < C(g) Hh||Ag(JB2) '
which we accomplish by showing that
| Ns;, sy < C (&) Ihllag, ). O0SHE2

for a choice of integers m,, satisfying

2
—— o< m < my.
p

Recall that we defined both of the norms ||F||Bg (B,) and ||F||Ag (B
My ,m

for smooth functions F in the ball B,.

(23)

2)
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@ The norms ||-|| zc (B,) Will now be used to estimate the composition
p.m
of Charpentier solution operators in each function

0,0 0,1

F? = NgCyo AgCoi O3h,
0,0

F' o= A 0%h,

F° = QOgh,

as follows.
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@ The norms ||| xv (B,) will now be used to estimate the composition
p,m
of Charpentier solution operators in each function

F? = NCPIA 63'512Q§h,
F'o= AL 0%
FO = QOlh,

as follows.
@ We will use the facts that

by~ |1 27) @) a2, <

2\ m p
el ~ lale || (1 122) a7 )] s 2

A1

%

BS(B2)—Carle

2 2
for0§0<5+1andm>2(5—a>.
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The iterations

@ Fix attention for the moment on the function F?2 = .7:5 and write

0
F? = L {Q3h} = A0252{]-'”}

1 - 252

F = Qgh,

f2 = A 0251 {A Cgi Q3h} 251 {fl}

so that F2 = A LC9 . {.7:3“} where F2 is a (0, g)-form.

June 18, 2012 60 /
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The iterations

e Fix attention for the moment on the function F2 = F¢ and write

Fg = A C251 {A 6251203 } 251 {fl}
'7:12 = 252 {Q3h} A C2 ,52 {fﬂ}
F = Qgh,

so that F2 = A ng+1 {fgﬂ} where F2 is a (0, g)-form.

@ The same can be done for F1 = .7:&:
Fo = NCY2{OFh} =AY {F1},

2,51

A = =0k

2012 60 / 75
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Integration by parts in each factor

We perform integration by parts in Fl = Cn "Sg+1 {qu} to obtain
Fo = AgChd Ty (25)
mq_*_lfl
/
= Z ernv5q+lA n,5q+1 (Djf +1> (Z)
j=0

L .
+ Y Cons i Mg Phs - <D q+1-7:5+1> ().
(=0

E. T. Sawyer ( McMaster University) Corona Theorems June 18, 2012 61 /75



Now we compose these formulas for .7-",;: to obtain an expression for F*
that is a complicated sum of compositions of the individual operators in
(25) above. For now we will concentrate on the main terms

SR |
quﬂ;,sk+1 (Dm”lferl) that arise in the second sum above when ¢ = .
The composition of these main terms is

(As®h.D™) 7 (26)
= (Ae®haD™) (A0 D) F

= (A®haD™) (@5 D™) . (Ag®h,, D™ ) QLA
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The rogue factors

@ At this point we would like to take absolute values inside all of these
integrals and use the crucial inequalities to obtain a composition of
positive operators of the type considered in Lemma 18. However,
there is a difficulty in using inequality (17) to estimate the derivative
D" on (0, g+ 1)-forms 7 given by

5m’?(z) = 2 2 2 (*1)}1(’“) (Wka)(WZ)a;Vr;Wju{k}(W)

|J|=q k¢J |a|=m
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The rogue factors

@ At this point we would like to take absolute values inside all of these
integrals and use the crucial inequalities to obtain a composition of
positive operators of the type considered in Lemma 18. However,
there is a difficulty in using inequality (17) to estimate the derivative
D" on (0,q+ 1)-forms 7 given by

Dy (z) = Z Z Z (_l)y(k'J)(Wk_zk><W—Z)“;Vr;x’7Ju{k}(W)

|J[=q kg a|=m

@ The problem is that the factor (wyx — zx) has no derivative %
naturally associated with it, as do the other factors in (w — z)*. We
refer to the factor (wy — zx) as a rogue factor, as it requires special
treatment in order to apply (17). Note that we cannot simply

estimate (wyx — zx) by |w — z| because this is much larger in general

than the estimate /A (w, z) obtained in (17).
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An illustrative case in two dimensions

When n = 2 and u = 2, we show that

A

< C

" () (27)

n,si

+
<1—|z|2)m1 R™ ACO0 A,COL O3h

(1 - |z|2)‘7 (1 - |z|2)m,3, R™D™ 2030 ()] ds (2)

We will have to deal with a rogue term (5 — ?2) where there is no

derivative ag to associate to the factor (72 — (S) We perform integration
2

by parts m), times in the first iterated integral in C30 A CYL O3, and m}

times in the second iterated integral. We also perform integration by parts

in the radial derivative m} times in the first iterated integral, so that the
//

additional factor (1 — ¢ ) * can be used crucially in the second iterated

integral, and also mj times in the second iterated integral for use in acting
03
On 2.
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A typical part of the resulting kernel of the operator C2 51cg _;03 (z) is

. ? _ 2 S1—n o
/@BQ (1(¢i)) (11—@) (z2-&,) (28)

N - (1= IwP) (1= |w]\"
(1P TRTD | A \ 1w

% (@ —8) (1= (w?) " R™D™03h (w) dV (w) aV (2),

where we have chosen (z; —¢,) and (w1 — &;) as the rogue factors.
Now we recall that Q3h (w) must have both derivatives aag and a?/%

occurring in it along with other harmless powers of g that we ignore. We
set h = 1 for simplicity.
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So with o o
n-0=(@-wm) — (& —wm)

we write the above iterated integral as
. s1—2
/ (1—¢&2) (1-¢
ceBy A (¢, 2)° \ 1-¢2
mY 1—m, 1— 2 — 2 22
<, () Rt ) (1
wEB, A (w,§) 1—w(

mj e 8 —mh—
x [(1—\Wy2) "R (&, — W) ; ég]

Iwy

<[ (1= 1) R (@ - ) | v () v (@

owr
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minus

/ (1-¢2) (1-le\" "
ceB, A (&, 2)" \ 1-¢z

N s [ (L= w?) (1= w7
P Gl {A(w@"(l—wa

5 " a —mh—
x [(1— yw|2)"’3 R™ (23 — W) " ﬂg}

oW

< (1= o)™ RS (@ = ) 2D v w0V (@)

2N\ 7 2 my m" ~m!
Now we apply <1 —|z| ) (1 —|z| ) R™ D™ to these operators.
Using the crucial inequalities, the result of this application on the above

integrals is dominated respectively by these two iterated integrals:
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/CEM (1— |z|2> 11— ¢z {(1_ ’z’2> A(g,z)} i

A (¢, Z)m/1+m/1/+2

B

"
2

(1-1R)™ - wP) [ aEg\™ 2
X/WE]B2 A (w, gt (1_ygy2> [<1_|§|)\/m

s51—2
1-g)*
1—¢z7

m’2 1_ |W’2 sp—2

+A<w,c>mé} —

|
(59)" ()

2

—|w]
"

W‘Z)m3 Rmé’DméJr?g(W)’ dV (w) dV (§);

VS
—
|
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/CEM (1—|z|2> 11— &z {(1—]42) A(C,z)}m%

A ((:’ Z)m/1+m/1/+2

x { (-1eP) o)+ 2 z)m’l}

"
2

(1-1R)™ - wP) [ aEg\™ 2
X/WE]B2 A (w, gt ( 1— 2P ) [<1_|§| )2
|

s51—2
1-g)*
1-¢z

-2
1—|wf N

1—wé

{
<¢<Tc>>( A(w.z>>( A(w.@)

1—|wlf? 1—|wl?

"

WE)"“ R™S D2 g (W)’ dV (w)dV ().

/N
=
|
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@ The only difference between these two iterated integrals is that one of

Aw.6)

the factors 2 that occur in the first is replaced by the factor

1—|w
A(w,z) .
% in the second.
1—|w|
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@ The only difference between these two iterated integrals is that one of

A(w, . . .
the factors N |(W|2§) that occur in the first is replaced by the factor
—|w
A(w,z) .
M in the second.
1—|w|

@ Now for the iterated integral in (29), we can separate it into the
composition of two operators. One factor is the operator

/éeIB2 <1A_(|€ny>)m’1+lm’l_/+iz [(1 - |Z|2) A (¢, z)] " (31)
{{(1 !z!2 A((j,z)]mleA(g,Z)mi}

( @z) |a5ﬁ2
&

(1-1e7) "F@av(@.
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@ and the other factor is the operator

Fo=/ . (123 z)fg:gw | (1-1eP) A<W,¢)ﬂ§"§/)
d

m4+4-2 W
% (W) (1_|W\2) f(w)dV (w),

1—|w

-2
1 |w]?|”

1—we

(1 B ‘§‘2> A (Wvé)} " + A (W,g)mé}

2 o 2 m,3, m! ~AmL+2
where f(W)z(l—\W\ ) (1—|W‘ ) R™ DMt (w)].
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@ and the other factor is the operator
(1-12?)" (1= w?) m
F ()= /WeBz A £ [(1 —leP) (w,é)ﬂsz)
mé / B sp—2
x {[(1— ) /2 (. +A<w,c>m2} Ll

m5+2 Y
« (W) (1_ |W|2> fF(w)dV (w),

1—|w

where f (w) = (1 - |W\2>” (1 - |W|2)’"§/ R™ D™ 2g (w)].

@ We can apply Lemma 18 to each of these operators to obtain the
appropriate boundedness.
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@ To handle the integral in (30) we must first deal with the rogue factor
VA (w, z) whose variable pair (w, z) doesn't match that of either of
the denominators A (&, z) or A (w, §).
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@ To handle the integral in (30) we must first deal with the rogue factor
VA (w, z) whose variable pair (w, z) doesn't match that of either of
the denominators A (&, z) or A (w, §).

@ For this we use the fact that

VA (w.2) = [1-wzl|g, (w)| =6 (w.2) p(w,2),

where p (w, z) = |@, (w)| is the invariant pseudohyperbolic metric on

1
the ball and where J (w, z) = |1 — wZ|? satisfies the triangle
inequality on the ball.
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@ Thus we have

IAIA
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@ Thus we have

p(w, 2)
0 (w,z)

IAIA

@ and so also

Awz) < 2[6@27+6w.e] (I, @1+ ]| w)])
. Q(H‘,ll‘”gj‘) A(G.2)

1-¢7|
+2 <1+ ‘1_Wé‘> A (w, &),

June 18, 2012
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@ Thus we can write
A (w, z)
1—|w|
< 1P VAGY  [t-wi 1[5 VA2
B U7 e (A B V77 Lt e B (e

VAW p-gz1-[E VAW

L—|wl*  1-gP [1-wg| 1—|w*

(33)
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@ Thus we can write
A (w, z)
1—|wf
< 1-[P VARG  [1-wl1-¢f VAE.2)
B e e i e = A T
VAW.E)  [1-gz[ 1-[¢* VAW

L—|w*  1-gP [1-wg| 1—|w*

(33)

+

@ All of the terms on the right hand side of (33) are of an appropriate
form to distribute throughout the iterated integral, and again Lemma
18 applies to obtain the appropriate boundedness, but with ¢ = +1
this time as the remaining parameters have already been chosen.

74/ 75
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Open Problems

@ Does the algebra H* (BB,,) of bounded analytic functions on the ball
have a corona in its maximal ideal space? The lack of Blaschke
products in higher dimensions precludes the nonlinear best
approximation used in the original proof of Carleson. The failure of
the complete Nevanlinna-Pick property for H? (B,,) when n > 2
precludes the use of the Toeplitz corona theorem.
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Open Problems

@ Does the algebra H* (BB,,) of bounded analytic functions on the ball
have a corona in its maximal ideal space? The lack of Blaschke
products in higher dimensions precludes the nonlinear best
approximation used in the original proof of Carleson. The failure of
the complete Nevanlinna-Pick property for H? (IB,,) when n > 2
precludes the use of the Toeplitz corona theorem.

@ Does the corona theorem for the multiplier algebra of the
Drury-Arveson space H? extend to more general domains in C”, such
as strictly pseudoconvex domains?
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Open Problems

Does the algebra H* (B,) of bounded analytic functions on the ball
have a corona in its maximal ideal space? The lack of Blaschke
products in higher dimensions precludes the nonlinear best
approximation used in the original proof of Carleson. The failure of
the complete Nevanlinna-Pick property for H? (IB,,) when n > 2
precludes the use of the Toeplitz corona theorem.

Does the corona theorem for the multiplier algebra of the
Drury-Arveson space H? extend to more general domains in C”, such
as strictly pseudoconvex domains?

Can we prove a corona theorem for any algebra in higher dimensions
that is not the multiplier algebra of a Hilbert space with the complete
Nevanlinna-Pick property?
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Open Problems

Does the algebra H* (B,) of bounded analytic functions on the ball
have a corona in its maximal ideal space? The lack of Blaschke
products in higher dimensions precludes the nonlinear best
approximation used in the original proof of Carleson. The failure of
the complete Nevanlinna-Pick property for H? (IB,,) when n > 2
precludes the use of the Toeplitz corona theorem.

Does the corona theorem for the multiplier algebra of the
Drury-Arveson space H? extend to more general domains in C”, such
as strictly pseudoconvex domains?

Can we prove a corona theorem for any algebra in higher dimensions
that is not the multiplier algebra of a Hilbert space with the complete
Nevanlinna-Pick property?

Is there a more robust notion of completing point evaluations by
holomorphy extension, that circumvents the example of Sibony, and
produces an empty "corona"?
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