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Abstract

We discuss the ideas behind the absence of a corona in the multiplier
algebra of the Drury-Arveson space. Included are

the Toeplitz corona theorem,

the Koszul complex,

Charpentier�s solution operators to d bar equations, and

the interplay with complex tangential vector �elds.

These ideas extend to other Besov-Sobolev spaces of holomorphic
functions on the ball having varying degrees of smoothness, as well as to
vector-valued settings.
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Overview

1 Carleson�s classical Corona Theorem on the disk D, Sibony�s
counterexample in higher dimensions, the corona theorem for the DA
Hardy space H2n .

2 The Drury-Arveson Hardy space H2n , von Neumann�s inequality
and Drury�s extension, Hilbert function spaces.

3 The corona problem for multiplier algebras, the baby corona
theorem, the Toeplitz corona theorem.

4 The Koszul complex, Vector division, factorization and estimates
independent of dimension.

5 Solving the ∂ equation with estimates,

1 Charpentier�s solution kernels,
2 real variable spaces,
3 integration by parts and exchanging singularities,
4 Schur estimates,
5 operator estimates on iterates of Charpentier�s solution kernels, the
rogue terms.
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The Classical Corona Theorem

We discuss Carleson�s Corona Theorem, Sibony�s counterexample in higher
dimensions, and our corona theorem.
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The classical corona theorem

In 1941, Kakutani asked if there was a corona in the maximal ideal
space 4 of H∞ (D), i.e whether or not the disk D was dense in 4.
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Carleson�s Corona Theorem

In 1962 Lennart Carleson

demonstrated in [9] the absence of a corona by showing that if
fgjgNj=1 is a �nite set of functions in H∞ (D) satisfying

N

∑
j=1
jgj (z)j � c > 0, z 2 D, (1)

then there are functions ffjgNj=1 in H∞ (D) with

N

∑
j=1
fj (z) gj (z) = 1, z 2 D. (2)
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Corona failure in higher dimensional domains
Sibony�s counterexample

Let fang∞
n=1 be a sequence of points in the unit disk D such each

point e iθ 2 T = ∂D is a nontangential limit point of fang∞
n=1. Let

fλng∞
n=1 be a sequence of positive numbers tending so quickly to 0

that:

1 the in�nite product

V (z) �
∞

∏
n=1

����z � an2

����λn
converges for z in D,

2 the function V is continuous in D, and
3 V (z) = 0 if and only if z = an for some n � 1.
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A domain of revolution

Consider the open set of revolution

U �
n
(z ,w) 2 C2 : jz j < 1 and jw j < e�V (z )

o
.

If g 2 H∞ (U) and kgk∞ � 1, then one has

g (z ,w) =
∞

∑
k=0

hk (z)w
k , (z ,w) 2 U. (3)

Cauchy�s estimates yield

jhk (z)j �
�

1
e�V (z )

�k
sup

jw j<e�V (z )
g (z ,w) � ekV (z ) � ek , z 2 D.
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Extension of bounded holomorphic functions

Thus for each k � 1 the function hk 2 H∞ (D) with khkk∞ � ek . But
since

jhk (an)j � ekV (an) = 1,
Fatou�s theorem implies that for almost every e iθ 2 T,���h�k �e iθ���� = lim

an!e iθ nontangentially
jhk (an)j � 1.

Thus we have the stronger bound khkk∞ � 1, and it follows that the
series in (3) converges for all (z ,w) in the open unit polydisk D2. Thus U
is a domain of holomorphy that satis�es:

Lemma

Every g 2 H∞ (U) extends uniquely to a function eg 2 H∞ �D2
�
with the

same norm.
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Failure of the two-generator Bezout equation

For any point (α, β) 2 D2 n U, there is δ > 0 such that

jz � αj2 + jw � βj2 � δ2 > 0, (z ,w) 2 U.

Yet there cannot exist g1, g2 2 H∞ (U) satisfying

(z � α) g1 (z ,w) + (w � β) g2 (z ,w) = 1, (z ,w) 2 U,

since by unique continuation we would then have

(z � α) eg1 (z ,w) + (w � β) eg2 (z ,w) = 1, (z ,w) 2 D2,

contradicting the fact that the left hand side vanishes when
(z ,w) = (α, β).

Sibony then embeds this domain in the boundary of a smooth domain
Ω � C3 which is strongly pseudoconvex at all boundary points but
one, and fails the three-generator Bezout equation.
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Our main result

Our main result is that the corona theorem, namely the absence of a
corona in the maximal ideal space, holds for the multiplier algebra of
the Drury-Arveson Hardy space H2n in n dimensions.

More generally, we obtain the corona theorem for the multiplier
algebras MB σ

2 (Bn)
of the Besov-Sobolev spaces Bσ

2 (Bn), 0 � σ � 1
2 ,

on the unit ball Bn in Cn. The space H2n occurs as B
1
2
2 (Bn), while

B02 (Bn) is the Dirichlet space.
The space Bσ

2 (Bn) consists of those holomorphic functions f whose
derivatives of order n2 � σ lie in the classical Hardy space

H2 (Bn) = B
n
2
2 (Bn), equivalently whose antiderivatives of order σ lie

in the Dirichlet space:(
m�1
∑
k=0

���f (k ) (0)���2 + Z
Bn

�����1� jz j2�m+σ
f (m) (z)

����2 dλn (z)

) 1
2

< ∞,

where dλn (z) =
�
1� jz j2

��n�1
dV (z) is invariant measure.
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The Drury-Arveson
Hardy Space H2n

on the unit ball in C n

We discuss von Neumann�s classical inequality and Drury�s extension to
multivariate operators. This introduces the Drury-Arveson Hardy Space
H2n and indicates its central role in operator theory.
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The DA Hardy space

The �rst hint that the classical Hardy space H2 (Bn) (consisting of
holomorphic functions on the ball with L2 (σ) boundary values) may not
be the correct generalization of the classical Hardy space on the disk came
with the failure of von Neumann�s inequality in higher dimensions. Recall
the classical inequality:

Theorem
(von Neumann 1951 [17]) Let H be a Hilbert space and let f be a
complex-valued polynomial. Then for any contraction T on H,

kf (T )kH!H � kf (S�)kH 2!H 2 = kf kH∞(D) ,

where S� is the backward shift operator on H2 = H2 (D).

Drury found the correct generalization to the multivariable setting.
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Drury�s generalization

Let A = (A1, ...,An) be an n-contraction on a complex Hilbert space
H, i.e. an n-tuple of linear operators on H satisfying

AjAk = AkAj for all 1 � j , k � n, and
n

∑
j=1
kAjhk2 � khk2 for all h 2 H.

Drury showed in 1978 [13] that if f is a complex polynomial on Cn,
then

kf (A)k � kf kMK(Bn )
, (4)

for all n-contractions A on H where kf (A)k is the operator norm of
f (A) on H, and kf kMK(Bn )

denotes the multiplier norm of the
polynomial f on Drury�s Hardy space of holomorphic functions

K (Bn) =

(
∑
k

akz
k , z 2 Bn : ∑

k
jak j2

k !
jk j! < ∞

)
,

denoted by H2n in Arveson 1998 [1] (who also proves (4)).
Moreover, equality holds in (4) when A is the n-tuple (S�1 , ...S

�
n )

where Sj =Mzj .
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Chen�s identi�cation of the DA space

In 2003 Chen [11] has identi�ed the Drury-Arveson Hardy space

K (Bn) = H2n as the Besov-Sobolev space B
1
2
2 (Bn) consisting of

those holomorphic functions ∑k akz
k in the ball with coe¢ cients ak

satisfying

∑
k
jak j2

jk jn�1 (n� 1)!k !
(n� 1+ jk j)! < ∞.

The multiplier norms are equivalent:

kf kMK(Bn )
� kf kM

B
1
2
2 (Bn )

.

We note in passing that a number of operator-theoretic properties of
the Hilbert space H2n are developed by Arveson in [1], including some
model theory, that point to its central position in multivariable
operator theory.
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� kf kM

B
1
2
2 (Bn )

.

We note in passing that a number of operator-theoretic properties of
the Hilbert space H2n are developed by Arveson in [1], including some
model theory, that point to its central position in multivariable
operator theory.
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The corona problem
for multiplier spaces in C n

We introduce the baby corona problem, the Toeplitz Corona Theorem, and
our baby corona theorem.
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The baby corona problem

Let X be a Hilbert function space and let MX be its multiplier
algebra. The so-called baby corona problem for X is this: given
g1, ...gN 2 MX satisfying

jg1 (z)j2 + ...+ jgN (z)j2 � c > 0, z 2 Ω, (5)

is there a constant δ > 0 such that for each h 2 X there are
f1, ...fN 2 X satisfying

kf1k2X + ...+ kfNk
2
X � 1

δ
khk2X , (6)

f1 (z) g1 (z) + ...+ fN (z) gN (z) = h (z) , z 2 Ω?

More succinctly, (6) is equivalent to the operator lower bound

MgM�
g � δIX � 0, (7)

where g � (g1, ...gN ),Mg : �NX ! X byMg f = ∑N
α=1 gαfα, and

M�
gh =

�
M�

gα
f
�N

α=1
.
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Toeplitz Corona Theorem

For f = (fα)
N
α=1 2 �NX and h 2 X , de�ne Mf h = (fαh)

N
α=1 and

kf kMult(X ,�NX ) = kMf kX!�NX = sup
khkX�1

kMf hk�NX .

Note that max1�α�N kMfαkMX
� kf kMult(X ,�NX ) �

q
∑N

α=1 kMfαk
2
MX
.

Theorem

(Toeplitz Corona Theorem) Let X be a Hilbert function space in an
open set Ω in Cn with an irreducible complete Nevanlinna-Pick kernel. Let
δ > 0 and N 2 N. Then g1, ...gN 2 MX satisfy the operator lower bound
(7) with δ > 0 if and only if there are f1, ...fN 2 MX such that

kf kMult(X ,�NX ) � 1, (8)

f1 (z) g1 (z) + ...+ fN (z) gN (z) =
p

δ, z 2 Ω.
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The baby corona problem for two generators

In 2000 J. M. Ortega and J. Fabrega [18] obtain partial results with
N = 2 generators in (6) for the Banach spaces Bσ

p (Bn) with

σ 2
h
0, 1p

�
[
�
n
p ,∞

�
and 1 < p < ∞; and also for the case N = 2

with σ = n
p when 1 < p � 2. In [19] 2006, they prove the analogous

results for the Hardy-Sobolev scale of spaces.

To handle N = 2 generators they exploit the fact that a 2� 2
antisymmetric matrix consists of just one entry up to sign:

∂

 
g

jg j2

!
= ∂

 g1
jg j2
g2
jg j2

!
=

�
0 ω
�ω 0

� �
g1
g2

�
,

ω =
g2∂g1 � g1∂g2

jg j4
is a closed (0, 1) -form.
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Baby Corona Theorem ([12] 2008)

Theorem

Let 0 � σ < ∞ and 1 < p < ∞. Given g1, ..., gN 2 MB σ
p (Bn)

satisfying

N

∑
j=1
jgj (z)j2 � 1, z 2 Bn,

there is a constant Cn,σ,N ,p such that for each h 2 Bσ
p (Bn) there are

f1, ..., fN 2 Bσ
p (Bn) satisfying

N

∑
j=1
kfjkpB σ

p (Bn)
� Cn,σ,N ,p (g) khkpB σ

p (Bn)
, (9)

N

∑
j=1
fj (z) gj (z) = h (z) , z 2 Bn.
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Consequences

Corollary

([12] 2008) Let 0 � σ � 1
2 . Then the Banach algebra MB σ

2 (Bn)
has no

corona, i.e. the linear span of point evaluations ez (f ) = f (z),
f 2 MB σ

2 (Bn)
and z 2 Bn, is dense in the maximal ideal space of MB σ

2 (Bn)
.

In particular the multiplier algebra of the Drury-Arveson space H2n has no
corona.

Proof: The corollary follows using functional analysis from Theorems
4 and 3 since the spaces Bσ

2 (Bn) have an irreducible complete
Nevanlinna-Pick kernel when 0 � σ � 1

2 .

The baby corona theorem holds for in�nitely many generators N = ∞
with appropriately de�ned norms.
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Novelties

In order to treat N > 2 generators in (6) with estimates independent of N,
we need: to use the Koszul complex, its factorization in the exterior
algebra, to invert higher order forms in the ∂ equation, and in order to
obtain results for σ � 1

2 , to devise new estimates for the Charpentier
solution operators for these equations.
In particular the novel estimates include

1 the use of sharp estimates on Euclidean expressions
���(w � z) ∂

∂w f
��� in

terms of the invariant length j1� wz j jϕz (w)j multiplied by the
invariant derivative

��� erf ���,
2 the use of the exterior calculus together with the explicit form of
Charpentier�s solution kernels to handle rogue Euclidean factors
wj � zj ), and

3 the application of generalized operator estimates of Schur type to
obtain appropriate boundedness of solution operators.
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The Koszul complex

We introduce complex derivatives and di¤erentials and describe how the
Koszul complex reduces the corona problem to estimates.
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The d-bar equation

De�ne

∂

∂z
=
1
2

�
∂

∂x
+

∂

i∂y

�
,

∂

∂z
=
1
2

�
∂

∂x
� ∂

i∂y

�
where z = x + iy and dz = dx + idy , dz = dx � idy . Let

∂f =
n

∑
k=1

∂f
∂zk

dzk .

Given a (0, 1)-form η (z) = η1 (z) dz1 + ...+ ηn (z) dzn in the ball
Bn, the ∂-equation for η is

∂f = η in the ball Bn. (10)

More generally, we can let η = ∑jI j=p,jJ j=q+1 ηI ,J (z) dz
I ^ dzJ be a

(p, q + 1)-form in the ball and ask for a (p, q)-form f to satisfy (10).
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The Koszul complex

If g = (gj )
N
j=1 satis�es jg j

2 = ∑N
j=1 jgj j2 � 1, let

Ω1
0 =

g

jg j2
=

 
gj
jg j2

!N
j=1

=
�
Ω1
0 (j)

�N
j=1 ,

which we view as a 1-tensor (in CN ) of (0, 0)-forms with components
Ω1
0 (j) =

gj
jg j2 .

Then f = Ω1
0h satis�es f � g = h, but in general fails to be

holomorphic.

The Koszul complex provides a scheme when g , h are holomorphic for
solving a sequence of ∂ equations that result in a correction term
ΛgΓ20 that when subtracted from f above yields a holomorphic
solution to f � g = h.
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Lifting of forms, or division of vectors

The 1-tensor of (0, 1)-forms ∂Ω0 =
�

∂
gj
jg j2
�N
j=1

=
�

∂Ω1
0 (j)

�N
j=1

is

given by

∂Ω1
0 (j) = ∂

gj
jg j2

=
1

jg j4
N

∑
k=1

gkfgk∂gj � ∂gkgjg.

A key fact is that this 1-tensor of (0, 1)-forms can be written as

∂Ω1
0 = ΛgΩ2

1 �
"
N

∑
k=1

Ω2
1 (j , k) gk

#N
j=1

,

where the 2-tensor Ω2
1 of (0, 1)-forms is given by

Ω2
1 =

�
Ω2
1 (j , k)

�N
j ,k=1 =

"
fgk∂gj � ∂gkgjg

jg j4

#N
j ,k=1

.

Thus the form ∂Ω1
0 has been factored as (or lifted to) ΛgΩ2

1 where
Ω2
1 is alternating.

E. T. Sawyer ( McMaster University) Corona Theorems June 18, 2012 26 / 75



Lifting of forms, or division of vectors

The 1-tensor of (0, 1)-forms ∂Ω0 =
�

∂
gj
jg j2
�N
j=1

=
�

∂Ω1
0 (j)

�N
j=1

is

given by

∂Ω1
0 (j) = ∂

gj
jg j2

=
1

jg j4
N

∑
k=1

gkfgk∂gj � ∂gkgjg.

A key fact is that this 1-tensor of (0, 1)-forms can be written as

∂Ω1
0 = ΛgΩ2

1 �
"
N

∑
k=1

Ω2
1 (j , k) gk

#N
j=1

,

where the 2-tensor Ω2
1 of (0, 1)-forms is given by

Ω2
1 =

�
Ω2
1 (j , k)

�N
j ,k=1 =

"
fgk∂gj � ∂gkgjg

jg j4

#N
j ,k=1

.

Thus the form ∂Ω1
0 has been factored as (or lifted to) ΛgΩ2

1 where
Ω2
1 is alternating.

E. T. Sawyer ( McMaster University) Corona Theorems June 18, 2012 26 / 75
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Repeating the division

We can repeat this division process to obtain

∂Ω2
1 = ΛgΩ3

2 �
"
N

∑
`=1

Ω3
2 (j , k, `) g`

#N
j ,k=1

,

where the alternating 3-tensor Ω3
2 of (0, 2)-forms is given by

Ω3
2 =

�
Ω3
2 (j , k, `)

�N
j ,k ,`=1

=

"
2
fg` (∂gk ^ ∂gj ) + gk (∂gj ^ ∂g`)� gj (∂gk ^ ∂g`)g

jg j6

#N
j ,k ,`=1

.
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The division calculation

Here is the calculation: ∂Ω2
1 (j , k) =

∂ jg j�4 fgk∂gj � gj∂gkg

=
jg j4 2∂gk ^ ∂gj � 2 jg j2 ∂ jg j2 ^ fgk∂gj � gj∂gkg

jg j8

= 2

�
∑N
`=1 g`g`

�
∂gk ^ ∂gj � 2

�
∑N
`=1 g`∂g`

�
^ fgk∂gj � ∂gkgjg

jg j6

=
2

jg j6
N

∑
`=1

g`fg` (∂gk ^ ∂gj )� gk (∂g` ^ ∂gj ) + gj (∂g` ^ ∂gk )g.

Now recall that h is holomorphic. Thus Ω3
2h is ∂-closed since every

(0, 2)-form is ∂-closed, and this will allow us to solve the ∂ equations

∂Γ31 = Ω3
2h;

∂Γ20 = Ω2
1h�ΛgΓ31.
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Solving the complex in two dimensions

Since Ω3
2h is ∂-closed and alternating, there is an alternating 3-tensor

Γ31 of (0, 1)-forms satisfying

∂Γ31 = Ω3
2h.

Now note that the 2-tensor Ω2
1h�ΛgΓ31 of (0, 1)-forms is ∂-closed

since both h and g are holomorphic:

∂
�
Ω2
1h�ΛgΓ31

�
= ∂Ω2

1h� ∂ΛgΓ31 = ΛgΩ3
2h�ΛgΩ3

2h = 0.

Thus there is an alternating 2-tensor Γ20 of (0, 0)-forms, i.e. functions,
satisfying

∂Γ20 = Ω2
1h�ΛgΓ31.
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The Bezout equation

Now
f � Ω1

0h�ΛgΓ20

is holomorphic since Γ20 is alternating:

∂
�
Ω1
0h�ΛgΓ20

�
=

�
∂Ω1

0

�
h�Λg ∂Γ20

=
�
ΛgΩ2

1

�
h�Λg

�
Ω2
1h�ΛgΓ31

�
= Λg

�
ΛgΓ31

�
� Γ20 (g , g) = 0.

Thus we compute that

f � g = Ω1
0h � g �ΛgΓ20 � g = h� 0 = h.
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Factorization of the Koszul complex

With the standard basis feigNi=1 for the exterior algebra on CN ,
Andersson and Carlsson obtained the following factorization of the
Koszul complex:

Ω2
1 =

"
fgk∂gj � ∂gkgjg

jg j4

#N
j ,k=1

= 2 ∑
1�j<k�N

fgk∂gj � ∂gkgjg
jg j4

ej ^ ek

= �2
 

N

∑
j=1

gj
jg j4

ej

!
^
 

N

∑
k=1

∂gk
jg j4

ek

!
= Ω1

0 ^ fΩ1
0;

Ω`+1
` = � (`+ 1)Ω1

0 ^
`̂ fΩ1

0.

The Hilbert-Schmidt norm is multiplicative on tensors, hence
quasi-multiplicative on wedge products with constant depending only
on the number of factors and not on N.
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Charpentier�s solution kernels

We describe Charpentier�s solutions of the ∂-equation in the ball, which
are superbly adapted to solving the corona problem. But �rst it is useful to
compare the ∂-equation above with the more familiar gradient r equation
in real Euclidean space, and then to introduce the Cauchy-Leray form.
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The Cauchy kernel

In one complex dimension, the equation ∂f = η is easily solved using
the Cauchy kernel,

Cη (z) =
1
2πi

Z
D

η (w)
w � z dw ^ dw

=
1
2πi

Z
D

(w � z)
jw � z j2

η (w) dw ^ dw ,

together with the distributional equation

∂

∂z
1
z
=
1
π

δ0,

to obtain
∂Cη (z) = η (z) .
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Charpentier�s solution kernels

We begin with some notation. Denote by 4 : Cn �Cn ! [0,∞) the map:

4 (w , z) = j1� wz j2 �
�
1� jw j2

� �
1� jz j2

�
(11)

=
�
1� jz j2

�
jw � z j2 + jz(w � z)j2

=
�
1� jw j2

�
jw � z j2 + jw(w � z)j2

= j1� wz j2 jϕw (z)j
2

= j1� wz j2 jϕz (w)j
2

=

����Pw (z � w) +q1� jw j2Qw (z � w)����2
=

����Pz (z � w) +q1� jz j2Qz (z � w)����2 .
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The Cauchy-Leray form

The Cauchy-Leray form

µ(ξ,w , z) � 1
(ξ(w � z))n

n

∑
i=1
(�1)i�1ξ i

�
^j 6=idξ j

�
^ni=1 d(wi � zi ),

is a closed form on Cn �Cn �Cn. One then lifts the form µ via a section
s : Cn �Cn ! Cn to give a closed form on Cn �Cn:

s�µ (w , z) � 1
(s (w , z) (w � z))n

n

∑
i=1
(�1)i�1si (w , z)

�
^j 6=idsj

�
^ni=1 d (wi � zi ) .

Now �x s to be the following section used by Charpentier:

s(w , z) � w(1� wz)� z(1� jw j2). (12)

We compute that s(w , z)(w � z) = 4 (w , z) by (11).
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Charpentier�s forms

De�ne the Cauchy Kernel on Bn �Bn by Cn (w , z) � s�µ(w , z)
where s is Charpentier�s section.

De�nition

For 0 � p � n and 0 � q � n� 1 we let Cp,qn be the component of
Cn (w , z) that has bidegree (p, q) in z and bidegree (n� p, n� q � 1) in
w .

Thus if η is a (p, q+ 1)-form in w , then Cp,qn ^ η is a (p, q)-form in z
and a multiple of the volume form in w .
We next give explicit formulas for Charpentier�s solution kernels
C0,qn (w , z).
Let ωn (z) =

Vn
j=1 dzj . For n a positive integer and 0 � q � n� 1

let Pqn denote the collection of all permutations ν on f1, . . . , ng that
map to fiν, Jν, Lνg where Jν is an increasing multi-index with
card(Jν) = n� q � 1 and card(Lν) = q. Let εν � sgn (ν) 2 f�1, 1g
denote the signature of the permutation ν.
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Explicit formulas for Charpentier kernels

Theorem

Let n be a positive integer and suppose that 0 � q � n� 1. Then

C0,qn (w , z) = ∑
ν2P qn

(�1)q Φq
n (w , z) sgn (ν) (wiν � ziν)

�
^
j2Jν

dwj
^
l2Lν

dzl
^

ωn (w) .

where Φq
n (w , z) �

(1�wz )n�1�q(1�jw j2)
q

4(w ,z )n for 0 � q � n� 1.

We can rewrite the formula for C0,qn (w , z) as

C0,qn (w , z) = Φq
n (w , z) ∑

jJ j=q
∑
k /2J

(�1)µ(k ,J ) (zk � wk )

�dzJ ^ dw (J[fkg)
c
^ωn (w) .
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Explicit formulas for kernels in two dimensions

We have the formulas

C0,02 (w , z)

=
(1� wz)
4(w , z)2 [(z2 � w2)dw1 ^ dw1 ^ dw2 � (z1 � w1)dw2 ^ dw1 ^ dw2] ,

and

C0,12 (w , z)

=
(1� jw j2)
4(w , z)2 [(w2 � z2)dz1 ^ dw1 ^ dw2 � (w1 � z1)dz2 ^ dw1 ^ dw2] .
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An explicit formula for a kernel in three dimensions

In n = 3 dimensions, the simplest kernel is given by

C0,q3 (w , z)

= ∑
σ2S3

sgn (σ)
(1� wz)2�q

�
1� jw j2

�q �
zσ(1) � wσ(1)

�
4 (w , z)3

�dζσ(2) ^ dζσ(3) ^ω3 (w) ,

where S3 denotes the group of permutations on f1, 2, 3g and q
determines the number of dzi in the form dζσ(2) ^ dζσ(3):

dζσ(2) ^ dζσ(3) =

8<:
dwσ(2) ^ dwσ(3) if q = 0
dzσ(2) ^ dwσ(3) if q = 1
dzσ(2) ^ dzσ(3) if q = 2

.
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Real variable spaces

We introduce real variable analogues of the holomorphic Besov-Sobolev
spaces.
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Invariant derivatives

De�ne

rz =

�
∂

∂z1
, ...,

∂

∂zn

�
and rz =

�
∂

∂z1
, ...,

∂

∂zn

�

Fix α 2 Tn the Bergman tree and let a = cα. Recall that the gradient
with invariant length given byerf (a) = (f � ϕa)

0 (0) = f 0 (a) ϕ0a (0)

= �f 0 (a)
��
1� jaj2

�
Pa +

�
1� jaj2

� 1
2
Qa

�
fails to be holomorphic in a.
To rectify this, we de�ne for z 2 Bn,

Daf (z) = f 0 (z) ϕ0a (0) (13)

= �f 0 (z)
��
1� jaj2

�
Pa +

�
1� jaj2

� 1
2
Qa

�
.
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The two-dimensional derivative

When n = 2 we can calculate Da neatly using the basis�
a =

�
a1
a2

�
, a? =

�
�a2
a1

��
.

In the basis
�
a, a?

	
, we compute that�Da is��

1� jaj2
��

a1
∂

∂z1
+ a2

∂

∂z2

�
,
�
1� jaj2

� 1
2

�
�a2

∂

∂z1
+ a1

∂

∂z2

��
,

where at the point a,
�
a1 ∂

∂z1
+ a2 ∂

∂z2

�
f (a) = f 0 (a) a is the complex

radial derivative of f at a, and
�
�a2 ∂

∂z1
+ a1 ∂

∂z2

�
f (a) = f 0 (a) a? is

the complex tangential derivative of f at a.
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A tree seminorm

Lemma

Let a, b 2 Bn satisfy β (a, b) � C. There is a positive constant Cm
depending only on C and m such that

C�1m jDmb f (z)j � jDma f (z)j � Cm jDmb f (z)j ,

for all f 2 H (Bn).

De�nition

Suppose σ � 0, 1 < p < ∞ and m � 1. We de�ne a �tree semi-norm�
k�k�B σ

p,m (Bn)
by

kf k�B σ
p,m (Bn)

=

 
∑

α2Tn

Z
Bd (cα,C2)

����1� jz j2�σ
Dmcα
f (z)

���p dλn (z)

! 1
p

. (14)
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Pointwise multipliers

Lemma
We have

kf k�B σ
p,m (Bn)

+
m�1
∑
j=0

���rj f (0)
��� � kf kB σ

p,m (Bn)
.

Let ϕ 2 H∞ (Bn) \ Bσ
p (Bn). If m > n

p � σ and 0 � σ < ∞, then ϕ is a
pointwise multiplier on Bσ

p (Bn) if and only if�����1� jz j2�m+σ
rmϕ (z)

����p dλn (z) (15)

is a Bσ
p (Bn)-Carleson measure on Bn. If m > 2

�
n
p � σ

�
and

0 � σ < n
p + 1, then (15) can be replaced by����1� jz j2�σ

Dmϕ (z)
���p dλn (z) .
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The real variable Besov space

De�nition

We denote by Xm the vector of all di¤erential operators of the form
X1X2...Xm where each Xi is either the identity operator I , the operator D,
or the operator

�
1� jz j2

�
R. We calculate the products X1X2...Xm by

composing Da and
�
1� jaj2

�
R and then setting a = z at the end. Note

that Da and
�
1� jaj2

�
R commute since the �rst is an antiholomorphic

derivative and the coe¢ cient z in R = z � r is holomorphic.

De�nition
We de�ne the norm k�kΛσ

p,m (Bn)
for f smooth on the ball Bn by

kf kΛσ
p,m (Bn)

�
�Z

Bn

����1� jz j2�σ
Xm f (z)

���p dλn (z)
� 1

p

. (16)
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Lemma

����(z � w)α ∂m

∂w αF (w)

���� � C
 p

4 (w , z)
1� jw j2

!m ���DmF (w)��� , m = jαj .

(17)

jDz 4 (w , z)j � C
n�
1� jz j2

�
4 (w , z)

1
2 +4 (w , z)

o
,(18)����1� jz j2�R 4 (w , z)��� � C

�
1� jz j2

�q
4 (w , z),

���Dmz n(1� wz)ko��� � C j1� wz jk
 
1� jz j2

j1� wz j

!m
2

,(19)

����1� jz j2�m Rm n(1� wz)ko��� � C j1� wz jk
 
1� jz j2

j1� wz j

!m
.
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Integration by parts
We generalize the integration by parts formulas of Ortega and Fabrega.
These formulas serve to relax the singularities of the kernel on the diagonal

and boundary at the expense of di¤erentiating the form.
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A reproducing vector �eld

Let Z = Zz ,w be the vector �eld acting in the variable w = (w1,w2)
and parameterized by z = (z1, z2) given by

Z = Zz ,w = (w1 � z1)
∂

∂w1
+ (w2 � z2)

∂

∂w2
. (20)

The (0, 1)-form Zmη is obtained from η by componentwise
di¤erentiation holding monomials in w � z �xed, and acts on the
vector �eld Z to obtain�
Zmη

� �
Z
�
=

 
2

∑
k=1

Z jηk (w) dwk

! 
2

∑
j=1
(wj � zj )

∂

∂wj

!

=
n

∑
k=1

(w1 � z1)Z
m

η1 (w) + (w2 � z2)Z
m

η2 (w) .

A key property is Z 4 (w , z) = 4 (w , z).
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A reproducing vector �eld

Let Z = Zz ,w be the vector �eld acting in the variable w = (w1,w2)
and parameterized by z = (z1, z2) given by

Z = Zz ,w = (w1 � z1)
∂

∂w1
+ (w2 � z2)

∂

∂w2
. (20)

The (0, 1)-form Zmη is obtained from η by componentwise
di¤erentiation holding monomials in w � z �xed, and acts on the
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The covariant derivative

The Charpentier kernel C0,qn (w , z) takes (0, q + 1)-forms in w to
(0, q)-forms in z . In order to express the solution operator C0,qn in
terms of a volume integral, our de�nition of Dmη, must include an
appropriate exchange of w -di¤erentials for z-di¤erentials.

Lemma

Let m � 0. For a (0, q + 1)-form η = ∑jI j=q+1 ηI dw
I in the variable w,

de�ne the (0, q)-form Dmη in the variable z by

Dmη (w) = ∑
jJ j=q

Zm
�

ηydw J
� �
Z
�
(w) dzJ .
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Explanation of the derivative

The e¤ect of Dm on a basis element ηI dw
I is to replace a di¤erential dwk

from dw I (I = J [ fkg) with the factor (�1)µ(k ,J ) (wk � zk ) (and this is
accomplished by acting a (0, 1)-form on Z), replace the remaining
di¤erential dw J with dzJ , and then to apply the di¤erential operator Zm

to the coe¢ cient ηI . We will refer to the factor (wk � zk ) introduced
above as a rogue factor since it is not associated with a derivative ∂

∂wk
in

the way that (w � z)α is associated with ∂m

∂w α . The point of this distinction
will be explained later when dealing with estimates for solution operators.
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Relaxing diagonal singularities with covariant derivatives

The following lemma expresses C0,qn η (z) in terms of integrals involving

Djη for 0 � j � m. Note that the overall e¤ect is to reduce the
singularity of the kernel on the diagonal by m factors of

p
4 (w , z), at the

cost of increasing by m the number of derivatives hitting the form η. Let

Φ`
n (w , z) �

(1� wz)n�1�`
�
1� jw j2

�`
4 (w , z)n .

Lemma

Let q � 0. For all m � 0 we have the formula,

C0,qn η (z) =
m�1
∑
k=0

ckSn
�
Dkη

�
(z) +

q

∑
`=1

c`Φ`
n

�
Dmη

�
(z) . (21)
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Relaxing boundary singularities with radial derivatives

Recall R = ∑n
j=1 wj

∂
∂wj

and Rb = n+b+1
b+1 I +

1
b+1R.

Lemma

Let b > �1. For Ψ 2 C
�
Bn
�
\ C∞ (Bn) we haveZ

Bn

�
1� jw j2

�b
Ψ (w) dV (w) =

Z
Bn

�
1� jw j2

�b+1
RbΨ (w) dV (w) .

The important point is that combinations of radial derivatives R and
the identity I are played o¤ against powers of 1� jw j2, thus relaxing
the singularity of the kernel on the boundary at the expense of
di¤erentiating the function.
Typically this lemma is applied with Ψ (w) = 1

(1�wz )s ψ (w , z), where

z is a parameter in the ball Bn and then RΨ (w) = 1
(1�wz )s Rψ (w , z)

since 1
(1�wz )s is antiholomorphic in w .
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Exchanging boundary singularities for tamer ones

Lemma

Suppose that s > n and 0 � q � n� 1. For all m � 0 and smooth
(0, q + 1)-forms η in Bn we have the formula,

C0,qn,s η (z) =
m�1
∑
k=0

c 0k ,n,sSn,s
�
Dkη

� �
Z
�
(z) +

q

∑
`=0

c`,n,sΦ`
n,s

�
Dmη

�
(z) ,

where the ameliorated operators Sn,s and Φ`
n,s have kernels given by,

Sn,s (w , z) = cn,s

�
1� jw j2
1� wz

�s�n�1 1

(1� wz)n+1
,

Φ`
n,s (w , z) = Φ`

n (w , z)

 
1� jw j2

1� wz

!s�n n�`�1
∑
j=0

cj ,n,s

 �
1� jw j2

� �
1� jz j2

�
j1� wz j2

!j
.

The point is to exchange boundary singularities with tamer ones.
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Schur�s Test

Scur�s test is surprisingly e¤ective in dealing with boundedness of the
ameliorated Charpentier solution operators on the real-variable Besov
spaces.
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Schur�s Test

Here we characterize boundedness of the positive operators that arise as
majorants of the solution operators below. The case c = 0 of the following
lemma is Theorem 2.10 in Zhu [27]. Note the balance of powers in
numerator and denominator.

Lemma

Let a, b, c , t 2 R. Then the operator

Ta,b,c f (z) =
Z

Bn

�
1� jz j2

�a �
1� jw j2

�b �p
4 (w , z)

�c
j1� wz jn+1+a+b+c

f (w) dV (w)

is bounded on Lp
�

Bn;
�
1� jw j2

�t
dV (w)

�
if and only if c > �2n and

�pa < t + 1 < p (b+ 1) . (22)
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Operator estimates
on iterates of

Charpentier�s solution kernels

We describe how to use integration by parts, the crucial inequalities, and
Schur estimates to prove the baby corona theorem. The rogue terms are
discussed.
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The main estimate in two dimensions

From the Koszul complex we must show that f = Ω1
0h�ΛgΓ20 2 Bσ

p (Bn)
where

f = Ω1
0h�ΛgΓ20

= Ω1
0h�ΛgC0,02,s1

�
Ω2
1h�ΛgΓ31

�
= Ω1

0h�ΛgC0,02,s1Ω
2
1h+ΛgC0,02,s1ΛgC0,12,s2Ω

3
2h

� F 0 �F 1 +F 2.
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Estimates

The goal is to establish

kf kB σ
p (B2)

� C (g) khkΛσ
p (B2)

,

which we accomplish by showing that

kFµkB σ
p,m1

(B2)
� C (g) khkΛσ

p,mµ (B2)
, 0 � µ � 2, (23)

for a choice of integers mµ satisfying

2
p
� σ < m1 < m2.

Recall that we de�ned both of the norms kFkB σ
p,mµ (B2)

and kFkΛσ
p,mµ (B2)

for smooth functions F in the ball B2.
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The setup

The norms k�kΛσ
p,m (B2)

will now be used to estimate the composition
of Charpentier solution operators in each function

F 2 = ΛgC0,02,s1ΛgC0,12,s2Ω
3
2h,

F 1 = ΛgC0,02,s1Ω
2
1h,

F 0 = Ω1
0h,

as follows.

We will use the facts that

khkpB σ
p (B2)

�
Z

B2

����1� jz j2�σ
Xmh (z)

���p dλ2 (z) , (24)

kgkpMBσ
p (B2 )

� kgkp∞ +
����1� jz j2�σ

Xmg (z)
���p dλn (z)


B σ
p (B2)�Carleson

,

for 0 � σ < 2
p + 1 and m > 2

�
2
p � σ

�
.
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The iterations

Fix attention for the moment on the function F 2 = F 20 and write

F 20 = ΛgC0,02,s1
n

ΛgC0,12,s2Ω
3
2h
o
= ΛgC0,02,s1

�
F 21
	
,

F 21 = ΛgC0,12,s2
�

Ω3
2h
	
= ΛgC0,12,s2

�
Fµ
2

	
,

F 22 = Ω3
2h,

so that F 2q = ΛgC0,q2,sq+1
n
F 2q+1

o
where F 2q is a (0, q)-form.

The same can be done for F 1 = F 10 :

F 10 = ΛgC0,02,s1
�

Ω2
1h
	
= ΛgC0,02,s1

�
F 11
	
,

F 11 = = Ω3
2h.
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Integration by parts in each factor

We perform integration by parts in Fµ
q = ΛgC0,qn,sq+1

n
Fµ
q+1

o
to obtain

Fµ
q = ΛgC0,qn,sq+1F

µ
q+1 (25)

=

m 0q+1�1

∑
j=0

c 0j ,n,sq+1ΛgSn,sq+1
�
DjFµ

q+1

�
(z)

+
µ

∑
`=0

c`,n,sq+1ΛgΦ`
n,sq+1

�
Dm

0
q+1Fµ

q+1

�
(z) .
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The main terms

Now we compose these formulas for Fµ
k to obtain an expression for Fµ

that is a complicated sum of compositions of the individual operators in
(25) above. For now we will concentrate on the main terms

ΛgΦµ
n,sk+1

�
Dm

0
k+1Fµ

k+1

�
that arise in the second sum above when ` = µ.

The composition of these main terms is�
ΛgΦµ

n,s1D
m 01
�
Fµ
1 (26)

=
�

ΛgΦµ
n,s1D

m 01
� �

ΛgΦµ
n,s2D

m 02
�
Fµ
2

=
�

ΛgΦµ
n,s1D

m 01
� �

ΛgΦµ
n,s2D

m 02
�
...
�

ΛgΦµ
n,sµD

m 0µ
�

Ωµ+1
µ h.
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The rogue factors

At this point we would like to take absolute values inside all of these
integrals and use the crucial inequalities to obtain a composition of
positive operators of the type considered in Lemma 18. However,
there is a di¢ culty in using inequality (17) to estimate the derivative
Dm on (0, q + 1)-forms η given by

Dmη (z) = ∑
jJ j=q

∑
k /2J

∑
jαj=m

(�1)µ(k ,J ) (wk � zk )(w � z)α ∂m

∂w α ηJ[fkg (w) .

The problem is that the factor (wk � zk ) has no derivative ∂
∂wk

naturally associated with it, as do the other factors in (w � z)α. We
refer to the factor (wk � zk ) as a rogue factor, as it requires special
treatment in order to apply (17). Note that we cannot simply
estimate (wk � zk ) by jw � z j because this is much larger in general
than the estimate

p
4 (w , z) obtained in (17).
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An illustrative case in two dimensions

When n = 2 and µ = 2, we show thatZ
B2

�����1� jz j2�m1+σ
Rm1ΛgC0,0n,s1ΛgC0,1n,s2Ω

3
2h

����p dλ2 (z) (27)

� C
Z

B2

�����1� jz j2�σ �
1� jz j2

�m 003
Rm

00
3D

m 03+2Ω3
2h (z)

����p dλ2 (z) .

We will have to deal with a rogue term
�
z2 � ξ2

�
where there is no

derivative ∂
∂ξ2

to associate to the factor
�
z2 � ξ2

�
. We perform integration

by parts m02 times in the �rst iterated integral in C0,0n,s1ΛgC0,1n,s2Ω3
2, and m

0
3

times in the second iterated integral. We also perform integration by parts
in the radial derivative m002 times in the �rst iterated integral, so that the

additional factor
�
1� jξj2

�m 002
can be used crucially in the second iterated

integral, and also m003 times in the second iterated integral for use in acting
on Ω3

2.
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A typical part of the resulting kernel of the operator C0,02,s1C
0,1
2,s2Ω

3
2 (z) is

Z
ξ2B2

(1� ξz)
4 (ξ, z)n

 
1� jξj2

1� ξz

!s1�n �
z2 � ξ2

�
(28)

�
�
1� jξj2

�m 02
Rm

0
2Dm

00
2

Z
w2B2

�
1� jw j2

�
4 (w , ξ)n

 
1� jw j2

1� wξ

!s2�n
�
�
w1 � ξ1

� �
1� jw j2

�m 03
Rm

0
3Dm

00
3 Ω3

2h (w) dV (w) dV (ξ) ,

where we have chosen
�
z2 � ξ2

�
and

�
w1 � ξ1

�
as the rogue factors.

Now we recall that Ω3
2h (w) must have both derivatives

∂g
∂w1

and ∂g
∂w2

occurring in it along with other harmless powers of g that we ignore. We
set h � 1 for simplicity.

E. T. Sawyer ( McMaster University) Corona Theorems June 18, 2012 65 / 75



So with
z2 � ξ2 = (z2 � w2)�

�
ξ2 � w2

�
we write the above iterated integral as

Z
ξ2B2

(1� ξz)

4 (ξ, z)2

 
1� jξj2

1� ξz

!s1�2

�
Z
w2B2

�
1� jξj2

�m 002
Rm

00
2Dm

0
2

8<:
�
1� jw j2

�
4 (w , ξ)2

 
1� jw j2

1� wξ

!s2�29=;
�
��
1� jw j2

�m 003
Rm

00
3
�
ξ2 � w2

� ∂

∂w2
Dm

0
3�`g

�
�
��
1� jw j2

�m 003
Rm

00
3
�
ξ1 � w1

� ∂

∂w1
D`g

�
dV (w) dV (ξ)
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minus

Z
ξ2B2

(1� ξz)
4 (ξ, z)n

 
1� jξj2

1� ξz

!s1�n

�
Z
w2B2

�
1� jξj2

�m 002
Rm

00
2Dm

0
2

(�
1� jw j2

�
4 (w , ξ)n

 
1� jw j2

1� wξ

!s2�n)

�
��
1� jw j2

�m 003
Rm

00
3 (z2 � w2)

∂

∂w2
Dm

0
3�`g

�
�
��
1� jw j2

�m 003
Rm

00
3
�
ξ1 � w1

� ∂

∂w1
D`g

�
dV (w) dV (ξ) .

Now we apply
�
1� jz j2

�σ �
1� jz j2

�m 001
Rm

00
1Dm

0
1 to these operators.

Using the crucial inequalities, the result of this application on the above
integrals is dominated respectively by these two iterated integrals:

E. T. Sawyer ( McMaster University) Corona Theorems June 18, 2012 67 / 75



Z
ξ2B2

�
1� jz j2

�σ
j1� ξz j

4 (ξ, z)m
0
1+m

00
1+2

��
1� jz j2

�q
4 (ξ, z)

�m 001
(29)

�
(��

1� jz j2
�q

4 (ξ, z)
�m 01

+4 (ξ, z)m
0
1

) �����1� jξj21� ξz

�����
s1�2

�
Z
w2B2

�
1� jξj2

�m 002 �
1� jw j2

�
4 (w , ξ)m

0
2+m

00
2+2

 p
4 (ξ, z)
1� jξj2

!m 02 ��
1� jξj2

�q
4 (w , ξ)

�m 002
�
(��

1� jξj2
�q

4 (w , ξ)
�m 02

+4 (w , ξ)m
0
2

) �����1� jw j21� wξ

�����
s2�2

�
 p

4 (w , ξ)
1� jw j2

!m 03  p4 (w , ξ)
1� jw j2

!2
�
�����1� jw j2�m 003 Rm 003Dm 03+2g (w)���� dV (w) dV (ξ) ;
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Z
ξ2B2

�
1� jz j2

�σ
j1� ξz j

4 (ξ, z)m
0
1+m

00
1+2

��
1� jz j2

�q
4 (ξ, z)

�m 001
(30)

�
(��

1� jz j2
�q

4 (ξ, z)
�m 01

+4 (ξ, z)m
0
1

) �����1� jξj21� ξz

�����
s1�2

�
Z
w2B2

�
1� jξj2

�m 002 �
1� jw j2

�
4 (w , ξ)m

0
2+m

00
2+2

 p
4 (ξ, z)
1� jξj2

!m 02 ��
1� jξj2
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The only di¤erence between these two iterated integrals is that one of

the factors
p
4(w ,ξ)
1�jw j2 that occur in the �rst is replaced by the factor

p
4(w ,z )
1�jw j2 in the second.

Now for the iterated integral in (29), we can separate it into the
composition of two operators. One factor is the operator
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and the other factor is the operator
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where f (w) =
�
1� jw j2

�σ
�����1� jw j2�m 003 Rm 003Dm 03+2g (w)����.

We can apply Lemma 18 to each of these operators to obtain the
appropriate boundedness.
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To handle the integral in (30) we must �rst deal with the rogue factorp
4 (w , z) whose variable pair (w , z) doesn�t match that of either of

the denominators 4 (ξ, z) or 4 (w , ξ).

For this we use the fact thatq
4 (w , z) = j1� wz j jϕz (w)j = δ (w , z)2 ρ (w , z) ,

where ρ (w , z) = jϕz (w)j is the invariant pseudohyperbolic metric on
the ball and where δ (w , z) = j1� wz j

1
2 satis�es the triangle

inequality on the ball.
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Thus we have

ρ (w , z) � ρ (ξ, z) + ρ (w , ξ) ,

δ (w , z) � δ (ξ, z) + δ (w , ξ) ,

and so alsoq
4 (w , z) � 2

h
δ (ξ, z)2 + δ (w , ξ)2

i �
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����
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!q
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+2

 
1+
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��
!q

4 (w , ξ).
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Thus we can writep
4 (w , z)
1� jw j2

(33)

. 1� jξj2

1� jw j2

p
4 (ξ, z)
1� jξj2

+

��1� wξ
��

1� jw j2
1� jξj2

j1� ξz j

p
4 (ξ, z)
1� jξj2

+

p
4 (w , ξ)
1� jw j2

+
j1� ξz j
1� jξj2

1� jξj2��1� wξ
��
p
4 (w , ξ)
1� jw j2

.

All of the terms on the right hand side of (33) are of an appropriate
form to distribute throughout the iterated integral, and again Lemma
18 applies to obtain the appropriate boundedness, but with c = �1
this time as the remaining parameters have already been chosen.
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Open Problems

Does the algebra H∞ (Bn) of bounded analytic functions on the ball
have a corona in its maximal ideal space? The lack of Blaschke
products in higher dimensions precludes the nonlinear best
approximation used in the original proof of Carleson. The failure of
the complete Nevanlinna-Pick property for H2 (Bn) when n � 2
precludes the use of the Toeplitz corona theorem.

Does the corona theorem for the multiplier algebra of the
Drury-Arveson space H2n extend to more general domains in Cn, such
as strictly pseudoconvex domains?

Can we prove a corona theorem for any algebra in higher dimensions
that is not the multiplier algebra of a Hilbert space with the complete
Nevanlinna-Pick property?

Is there a more robust notion of completing point evaluations by
holomorphy extension, that circumvents the example of Sibony, and
produces an empty "corona"?
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